Math Level 1 SAT Practice Test 19

- 39. Three candidates for president of the Student Council—Ashley, José, and Kim—must each be scheduled for a single 10-minute address to the entire student body. If the order of the presentations is determined randomly, how many different orders are possible?
 - (A) 3
 - **(B)** 6
 - (C) 9
 - **(D)** 12
 - (E) 27
- **40.** If $x \neq 0$ then $\frac{8^{2x}}{2^{4x}} =$
 - (A) 2^{2x}
 - (B) 4^{-x}
 - (C) 4^{2x}
 - (D) 4^{1-x}
 - (E) 8-x

All S are M. No P are M.

- **41.** Which of the following conclusions can be logically deduced from the two statements above?
 - (A) All S are P.
 - (B) All M are S.
 - (C) Some S are not M.
 - **(D)** Some M are P.
 - (E) No P are S.
- **42.** Cube *Q* has volume *V*. In terms of *V*, a cube with edges only one–fourth the length of those of *Q* will have a volume of
 - (A) $\frac{V^3}{64}$
 - **(B)** $\frac{V^3}{4}$
 - **(C)** $\frac{V}{64}$
 - **(D)** $\frac{V}{4}$
 - **(E)** $\frac{\sqrt[3]{V}}{8}$

- **43.** If θ is an acute angle and $\cos \theta = \frac{b}{c}$, b > 0 and c > 0 and $b \ne c$, then $\sin \theta =$
 - (A) $\frac{b}{\sqrt{b^2-c^2}}$
 - **(B)** $\quad \frac{c}{\sqrt{c^2 b^2}}$
 - $(\mathbf{C}) \quad \frac{\sqrt{b^2 c^2}}{b}$
 - **(D)** $\frac{\sqrt{b^2-c^2}}{c}$
 - $(\mathbf{E}) \quad \frac{\sqrt{c^2 b^2}}{c}$
- **44.** If a cube has an edge of length 2, what is the distance from any vertex to the center of the cube?
 - **(A)** $\frac{\sqrt{2}}{2}$
 - **(B)** $\sqrt{3}$
 - (C) $2\sqrt{2}$
 - **(D)** $2\sqrt{3}$
 - **(E)** $\frac{3}{2}$
 - **45.** If $x^2 + ax + bx + ab = 0$, and x + b = 2, then x + a = 0
 - (A) -8
 - **(B)** −4
 - (C) -2
 - **(D)** 0
 - (E) 2

- 46. Figure 10 shows two right circular cylinders, C and C'. If r = kr' and h = kh', then what is the ratio of: $\frac{\text{Volume of } C}{\text{Volume of } C}$?
 - (A) $\frac{1}{\pi}$ (B) π

 - (C) kπ
 - **(D)** $\frac{1}{k^3}$ **(E)** k^3

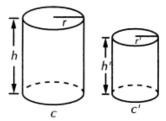


Figure 10

- 47. If the circumference of a circle is 1, what is its area?
 - (A) .08
 - (B) .79
 - (C) 1.27
 - (D) 3.14
 - (E) 6.28
- 48. What are the coordinates of the point of intersection of the lines having the following equations:

$$x - \sqrt{3y} = \sqrt{3}$$

$$\sqrt{3x} + y = 1$$

(A)
$$\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

(B)
$$\left(-\frac{2\sqrt{3}}{3}, -\frac{1}{2}\right)$$

(C)
$$\left(\frac{1}{2}, \frac{2}{\sqrt{3}}\right)$$

(D)
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

(E)
$$\left(\frac{3}{2\sqrt{3}}, -\frac{1}{2}\right)$$

- 49. In Figure 12, the radius of the circles is 1. What is the perimeter of the shaded part of the figure?
 - **(A)** $\frac{4\pi}{3}$
 - **(B)** π
 - (C) $\frac{2\pi}{3}$ (D) $\frac{\pi}{3}$ (E) $\frac{\pi}{6}$

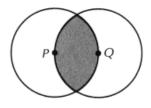


Figure 12

50. If
$$f(x) = \frac{x-2}{(x-2)(x^2+2)}$$
, for what value of x is

f(x) undefined?

- (A) -4
- **(B)** −2
- **(C)** 0
- (D) $\frac{1}{2}$ (E) 2

39. B 40. A 41. E 42. C 43. E 44. B 45. D 46. E 47. A 48. E 49. A 50. E