Math Level 2 SAT Practice Test 20

37. Which of the following figures represents the graph of $x = 3 \sin \theta$

 $v = 2 \cos \theta$

(A)

(B)

(D)

(E)

- **38.** If $5^x = 2$, what does 3^x equal?
 - (A) 2.8
 - (B) 2.3
 - (C) 2.1
 - (D) 1.9
 - (E) 1.6
- **39.** If $4 \cos x = \sin x$ and if x is in radian measure, what is the least positive value of x?
 - (A) 6.452
 - (B) 2.133
 - (C) 1.326
 - (D) 1.021
 - (E) 0.933
- **40.** Triangle ABC has coordinates A(-1, -2), B(0,4), and C(3,-1). Which of the following provides the coordinates of triangle A'B'C', respectively, the image of triangle ABC after a reflection in the line y = -x?
 - (A) (-2, -1), (4,0), (-3, -1)
 - **(B)** (1,2), (0, -4), (-3,1)
 - (C) (2,1), (-4,0), (1, -3)
 - **(D)** (3,2), (5,1), (2, -2)
 - (E) (4,0), (3, -1), (-1, -2)
- **41.** If $\sin x = \cos x$, then x could terminate only in the
 - (A) first quadrant
 - (B) second quadrant
 - (C) first or third quadrants
 - (D) second or third quadrants
 - (E) second or fourth quadrants
- **42.** If the line x = k is tangent to the circle $(x-2)^2 + (y+1)^2 = 4$, then the point of tangency is
 - (A) (-6, -1) or (2, -1)
 - **(B)** (-2, -1) or (6, -1)
 - (C) (0,-1) or (4,-1)
 - **(D)** (0,1) or (4,1)
 - **(E)** (2,1) or (6,1)
- **43.** The graph of $y = 2 \cos 2x + 2$ intersects the yaxis where y =
 - (A) 0
 - (B) 2
 - (C) 3
 - **(D)** 4
 - (E) 5

- **44.** What is the last term in the expansion $(2x + 3y)^4$?
 - (A) y⁴
 - (B) 9y⁴
 - (C) 27y⁴
 - **(D)** $81y^4$
 - (E) (xy)4
- **45.** If two unbiased dice are rolled, what is the probability that the number of dots on the two exposed faces will total 4?
 - **(A)** $\frac{1}{36}$
 - **(B)** 1/18
 - (C) $\frac{1}{12}$
 - **(D)** $\frac{1}{9}$
 - **(E)** $\frac{1}{6}$

46. Which of the following could be a graph of the equation $y = ax^2 + bx + c$, where $b^2 - 4ac = 0$?

(A)

(**B**)

(**C**)

(D)

(E)

- 47. A plane cuts through a cube in such a way that the plane passes through three of the cube's vertices, no two of which lie on the same edge. If the edge of the cube has a length of 1, what is the surface area of the smaller fragment of the cube?
 - (A) 2.4
 - **(B)** 2.7
 - (C) 3.1
 - **(D)** 3.7
 - (E) 4.3
- **48.** Which of the following equations describes a parabola with focus (2,3) and directrix y = 0?
 - (A) $(x+2)^2 + (y+3)^2 = 2$
 - **(B)** $(x-2)^2 + (y-3)^2 = 4$
 - (C) $(x-2)^2 = -(y-3)^2$
 - **(D)** $(x-2)^2 = 2(y+3)$
 - **(E)** $(x-2)^2 = 3(2y-3)$
- 49. A student taking a true—false test guesses randomly on three items. What is the probability that exactly two of the guesses will be correct?
 - (A) $\frac{1}{16}$
 - **(B)** $\frac{1}{8}$
 - (C) $\frac{1}{4}$
 - **(D)** $\frac{3}{8}$
 - (E) $\frac{1}{2}$

- **50.** (1) Given any individual x, if x is a C, then x is also a Q.
 - (2) There exists at least one individual x such that x is not a Q.

Which of the following conclusions can be logically deduced from the two statements above?

- (A) There exists at least one x such that x is not a C.
- (B) There exists at least one x such that x is a C.
- (C) There exists at least one x such that x is a O.
- **(D)** There are no x's that are C's.
- (E) There are no x's that are Q's.

37. E 38. E 39. C 40. C 41. C 42. C 43. D 44. D 45. C 46. A 47. B 48. E 49. D 50. A