Q. 1 If x and y are real numbers such that $x^{2}+(x-2 y-1)^{2}=-4 y(x+y)$, then the value $x-2 y$ is

Ans 1. 1
$\times 2.2$
X 3. -1
$\times 4.0$
Q. 2 Let n be the least positive integer such that 168 is a factor of 1134^{n}. If m is the least positive integer such that 1134^{n} is a factor of 168^{m}, then $m+n$ equals
Ans
$\times 1.24$
$\times 2.12$
$\times 3.9$
๑4. 15
Q. 3 If $\sqrt{5 x+9}+\sqrt{5 x-9}=3(2+\sqrt{2})$, then $\sqrt{10 x+9}$ is equal to

Ans
$\times 1.3 \sqrt{31}$
$\times 2.2 \sqrt{7}$

- 3 . $3 \sqrt{7}$
$\times 4.4 \sqrt{5}$
Q. 4 If x and y are positive real numbers such that $\log _{x}\left(x^{2}+12\right)=4$ and $3 \log _{y} x=1$, then $x+y$ equals

Ans
$\checkmark 1.10$
$\times 2.68$
$\times 3.20$
$\times 4.11$
Q. 5 The number of integer solutions of equation $2|x|\left(x^{2}+1\right)=5 x^{2}$ is

Case Sensitivity: No
Answer Type: Equal
Possible Answer: 3
Given --
Answer:
Q. 6 The equation $x^{3}+(2 r+1) x^{2}+(4 r-1) x+2=0$ has -2 as one of the roots. If the other two roots are real, then the minimum possible non-negative integer value of r is

Case Sensitivity: No
Answer Type: Equal
Possible Answer: 2
Given --
Answer :
Q. 7 Let α and β be the two distinct roots of the equation $2 x^{2}-6 x+k=0$, such that $(\alpha+\beta)$ and $\alpha \beta$ are the distinct roots of the equation $x^{2}+p x+p=0$. Then, the value of $8(k-p)$ is

Case Sensitivity: No
Answer Type: Equal
Possible Answer: 6
Given --
Answer :
Q. 8 In an examination, the average marks of 4 girls and 6 boys is 24. Each of the girls has the same marks while each of the boys has the same marks. If the marks of any girl is at most double the marks of any boy, but not less than the marks of any boy, then the number of possible distinct integer values of the total marks of 2 girls and 6 boys is
Ans

- 1.21

X2. 19
$\times 3.20$
$\times 4.22$
Q. 9 The salaries of three friends Sita, Gita and Mita are initially in the ratio $5: 6: 7$, respectively. In the first year, they get salary hikes of $20 \%, 25 \%$ and 20%, respectively. In the second year, Sita and Mita get salary hikes of 40% and 25%, respectively, and the salary of Gita becomes equal to the mean salary of the three friends. The salary hike of Gita in the second year is

Ans

- 1.26%

X 2.30%
X 3.28%
X4.25\%
Q. 10 The minor angle between the hours hand and minutes hand of a clock was observed at 8:48 am. The minimum duration, in minutes, after 8.48 am when this angle increases by 50% is

Ans
จ1. $\frac{24}{11}$
$\times 2 . \frac{36}{11}$
$\times 3.4$
$\times 4.2$
Q. 11 Brishti went on an 8-hour trip in a car. Before the trip, the car had travelled a total of $x \mathrm{~km}$ till then, where x is a whole number and is palindromic, i.e., x remains unchanged when its digits are reversed. At the end of the trip, the car had travelled a total of 26862 km till then, this number again being palindromic. If Brishti never drove at more than $110 \mathrm{~km} / \mathrm{h}$, then the greatest possible average speed at which she drove during the trip, in km / h, was

Ans
$\times 1.90$
$\times 2.80$

- 3. 100
$\times 4.110$
Q. 12 Gita sells two objects A and B at the same price such that she makes a profit of 20% on object A and a loss of 10% on object B. If she increases the selling price such that objects A and B are still sold at an equal price and a profit of 10% is made on object B, then the profit made on object A will be nearest to
Ans
X 1.42\%
X 2. 49\%
X 3.45\%
- 4.47%

```
Question Type : MCQ
    Question ID : }4891681498
    Option 1 ID : 48916836684
    Option 2 ID : 48916836687
    Option 3 ID : }4891683668
    Option 4 ID : 48916836686
    Status:Answered
Q. 13 A mixture \(P\) is formed by removing a certain amount of coffee from a coffee jar and replacing the same amount with cocoa powder. The same amount is again removed from mixture \(P\) and replaced with same amount of cocoa powder to form a new mixture \(Q\). If the ratio of coffee and cocoa in the mixture \(Q\) is \(16: 9\), then the ratio of cocoa in mixture \(P\) to that in mixture \(Q\) is
Ans
\(\times 1.4: 9\)
X 2.1:3
- \(3.5: 9\)
\(\times 4.1: 2\)
Q. 14 Anil invests Rs. 22000 for 6 years in a certain scheme with \(4 \%\) interest per annum, compounded half-yearly. Sunil invests in the same scheme for 5 years, and then reinvests the entire amount received at the end of 5 years for one year at \(10 \%\) simple interest. If the amounts received by both at the end of 6 years are same, then the initial investment made by Sunil, in rupees, is
Case Sensitivity: No
Answer Type: Equal
Possible Answer: 20808
Given --
Answer:
Q. 15 The amount of job that Amal, Sunil and Kamal can individually do in a day, are in harmonic progression. Kamal takes twice as much time as Amal to do the same amount of job. If Amal and Sunil work for 4 days and 9 days, respectively, Kamal needs to work for 16 days to finish the remaining job. Then the number of days Sunil will take to finish the job working alone, is
Case Sensitivity: No
Answer Type: Equal
Possible Answer: 27
Given --
Answer:
Q. 16 Arvind travels from town \(A\) to town B, and Surbhi from town B to town A, both starting at the same time along the same route. After meeting each other, Arvind takes 6 hours to reach town B while Surbhi takes 24 hours to reach town A. If Arvind travelled at a speed of \(54 \mathrm{~km} / \mathrm{h}\), then the distance, in km , between town \(A\) and town \(B\) is
Case Sensitivity: No
Answer Type: Equal
Possible Answer: 972
Given 972
Answer :
Q. 17 A quadrilateral \(A B C D\) is inscribed in a circle such that \(A B: C D=2: 1\) and \(B C: A D=5: 4\). If \(A C\) and \(B D\) intersect at the point \(E\), then \(A E\) : CE equals
Ans
X1.2:1
\(\times 2.1: 2\)
2.8:5
\(\times 4.5: 8\)
Q. 18 Let C be the circle \(x^{2}+y^{2}+4 x-6 y-3=0\) and L be the locus of the point of intersection of a pair of tangents to \(C\) with the angle between the two tangents equal to \(60^{\circ}\). Then, the point at which \(L\) touches the line \(x=6\) is
Ans
X 1. \((6,6)\)
\(\times 2 .(6,4)\)
\(\times\) 3. \((6,8)\)
4. \((6,3)\)
Q. 19 In a right-angled triangle \(\triangle A B C\), the altitude \(A B\) is 5 cm , and the base \(B C\) is \(12 \mathrm{~cm} . P\) and \(Q\) are two points on \(B C\) such that the areas of \(\triangle A B P, \triangle A B Q\) and \(\triangle A B C\) are in arithmetic progression. If the area of \(\triangle A B C\) is 1.5 times the area of \(\triangle A B P\), the length of \(P Q\), in cm , is
Case Sensitivity: No
Answer Type: Equal
Possible Answer: 2
Given --
Answer :
Q. 20 For some positive and distinct real numbers \(x, y\) and \(z\), if \(\frac{1}{\sqrt{y}+\sqrt{z}}\) is the arithmetic mean of \(\frac{1}{\sqrt{x}+\sqrt{z}}\) and \(\frac{1}{\sqrt{x}+\sqrt{y}}\), then the relationship which will always hold true, is

Ans \(\quad X 1, x, y\) and \(z\) are in arithmetic progression
\(x\) 2. \(\sqrt{x}, \sqrt{y}\) and \(\sqrt{z}\) are in arithmetic progression
3. \(y, x\) and \(z\) are in arithmetic progression
\(x\) 4. \(\sqrt{x}, \sqrt{z}\) and \(\sqrt{y}\) are in arithmetic progression
Q. 21 The number of all natural numbers up to 1000 with non-repeating digits is

Ans
- 1.738
\(\times 2.648\)
\(\times 3.504\)
\(\times 4.585\)
Q. 22 A lab experiment measures the number of organisms at 8 am every day. Starting with 2 organisms on the first day, the number of organisms on any day is equal to 3 more than twice the number on the previous day. If the number of organisms on the \(n^{\text {th }}\) day exceeds one million, then the lowest possible value of \(n\) is

Case Sensitivity: No
Answer Type: Equal
Possible Answer: 19
Given --
Answer :```

