	(To be fi	Hed up by the	candidate b	y blue/bl	ack ball	-point pen)	
Roll No.		10 32					
Serial No.	of OMR	uswer Sheet	***************************************				
Day and I	ate		***************************************				e of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to recard the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen us mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Extendination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 32 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK

No. of Questions: 120

Tin	ne : :	2 Hours		Full Marks: 36
Not	te : (1	(Three) marks. One m	ark will b	u can. Each question carries and deducted for each incorrect varded for each unattempted
	(2) If more than one alter, the correct answer, ch		vers seem to be approximate to osest one.
01.		centration to a lower co		es move a region of higher to spread uniformity is called
	(1)	Osmosis	(2)	Diffusion
	(3)	Transportation	(4)	Conduction
02.	is c	alled:	face molecu	ales of a liquid are held together
	(1)	Tensile strength	(2)	Power
	(3)	Cohesive	(4)	Surface tension
03.	Chic	ef cells secrete :		
	(1)	NaOH	(2)	HCI
	(3)	NaHCO ₃	(4)	Enzymes

04.	If a r	reaction is eq	uilib	ium,	the free en	ergy,	ΔG is equal	to:		
	(1)		(2)	2	(3)		(4)			
05.		ch are the no boiling points H-bonds hydrophobio	s of w	vater '		Van	ible for the l	orce		
	****	ch of the folk	inc	rie a	suicide en	zvme	2			
06.	(1)	Glucokinase		gisa	(2)	LDI				
					(4)	GO	r'			
	(3) Cyclooxygenase (4) GOT 7. Why is red wine particularly beneficial? (1) It contains vitamins (2) It contains proper carbohydrate (3) It contains antioxidants (4) It contains proteins									
08	. Wh	Dabsyl chle Fluorodini	in? brom bride trobe	ide enzene	e	iden	tifying the ar	mino-termina		
		100								

	Wh	ich of the	e follow	ing	amino	acid re	esidues i	s likely to	be found on
:08	the	inside of	a wate	r-sc	luble p	rotein	.		
	(1)	His	. (3	2)	Asp	(3)	Ile	(4)	Arg
10.		resistar				one la	yer of a	liquid in	noving over
	(1)			*		(2)	Viscos	dty	
	(3)	Force	12			(4)	Torque	e .	
11.	Wh	ich of the	follow	ing i	s true ?	?			
	(1)	Apoenzy	me - c	oen	zyme =	holoer	zyme		
	(2)	Apoenzy	me + (coen	zyme =	holoe	nzyme	p.	
	(3)	Apoenzy	me =]	holo	enzyme	•			
	(4)	Coenzyn	ne = h	oloei	nzyme	8	¥.		20
2.	Whi	ch of the	followi	ng is	the in	portan	t reactive	group of	glutathione
	in it	s role as	an anti	oxid	ant?				
	(1)	Hydroxyl	group	,		(2)	Sulfhyd	lryl group	
((3)	Keto gro	ap			(4)	Carbox	yl group	190
					5	ı	Ď.		P.T.O.

13.	Whic	ch of the follo	wing i	s not	a die	tary a	antioxidant?
	(1)	Vitamin C				(2)	Vitamin E
	(3)	Vitamin K				(4)	β-Carotene
14.							nino acid is 110, the molecular
	weig	ght of a peptio	le ma	de up	of 10	amii	no acids is expected to be:
	(1)	1100				(2)	744
	(3)	938				(4)	876
15.			cules	of Vita	min	A are	formed from one Molecule of
	BC	arotene?					
	(1)	1	(2)	2		(3)	3 (4) 4
16		photosynthes tochrome Oxi				respi	ration processes, the catalyst
		Cu	(2)	Fe		(3)	Cu and Fe (4) Ni
17	. W	no gave the n	ame "	Nuclei	c Aci	ď"	
	(1)	Altmann				(2)) Franklin
	(3)	Watson				(4) Crick
		*				6	

18.	Th	e offsprings	s obtain !	how m	uch ge	ene	s from	father	?		
	(1)	25%	(2)	75%	£.	(3)	50%		(4)	100%	
19.	A c	child with I	Q 140 be	longs	to whi	ch (categor	y ?			
	(1)	Genius				(2)	Super	rior			
	(3)	Most sur	perior '	(47)		(4)	Avera	ge			
20.	In 1	which era l	ife was e	volved	?				*		
	(1)	Precabris	ın Era		1	(2)	Mesoz	oic Era	a	6	
	. (3)	Coenozio	c ear		. ,	(4)	Palaec	ozoin e	ra	•*	
21.	A. s	pecific char	acteristi	c of cla	ss ins	ect	s is :			1.00	
	(1)	Two pairs	of legs	€							
	(2)	Three pai	rs of legs	Ĺ							
,	(3)	Four pair	s of legs	p.							
	(4)	Five pairs	of legs								
22.	Slee	ping sickn	ess occu	rs due	to :						
	(1)	Ugléna			· · · · · · · · · · · · · · · · · · ·	2)"	Plásmo	dium			
	(3)	Trypanoso	ma		(4	1)	Protozo	A STATE OF	٠		
				6							

P.T.O.

			12	
23.	Silve	erfish is:		
	(1)	Insect	(2)	Fish
	(3)	Crustacean	(4)	Bird
24.	Hyd	ra moves with fast speed by:		
	(1)	Looping	(2)	Walking on foot
	(3)	Creeping	(4)	Somar salting
25.	On	which segment of the body	, the	earthworm possesses male
	rep	roductory organ?		
	(1)	Segment 10	(2)	Segment 19
	(3)	Segment 20	. (4)	Segment 21
26.	. Ter	ndons connect :		
	(1)	Bone to bone	(2)	Bone to muscle
	(3)	Muscle to muscle	(4)	Skin to muscle
27	. wi	hich of the following is not an	enzy	me?
	(1)		(2)	9 9
	(3)	Trypsin	(4)	10

28.	Mos	st of the m	embers (of Vitamin	B complex are primarily used as:					
	(1)	Hormon	cs		(2)	Enzymes	3			
	(3)	Co-enzy	mes		(4)	Digestive	elemen	ts		
29.	Chl	oride shift	in blood	l in essenti	ial for	the transp	ort of w	hich gas ?		
	(1)	,O ₂	(2)	N_2	(3)	CO2	(4)	со		
3Q .	Tric	cuspid val	re exists	between:						
	(1)	Right av	ricle and	ventricle						
	(2)	Both au	ricles			***				
	(3)	Both ver	tricles							
	(4)	Left auri	cle and v	entricle				ï		
31,	Hap	itens are :	٠				•			
	(1)	Small m	oleculea							
	(2)	Large m	decules	•						
	(3)	Medium	alze mek	cules						
	(4)	Inclusion	bodies	,				2		
31,	(1) (2) (3)	Small m	olecules decules size mok							

32.	How	much protei	in is t	here in	HD	r 5			
	(1)	10%	(2)	20%	10.	(3)	50%	(4)	35%
33.	The	letters used	to de	note try	ptop	han	and lysine ar	e:	
	(1)	W,K	(2)	R,W		(3)	L,K	(4)	K,S
34.	Dea	mination of c	ytosii	ne leads	to:			į	
	(1)	Thimine				(2)	Uracil	6.	
	(3)	Guanine				(4)	Adenine		
35.	Mor	e than one co	odon (an spec	ify t	he sa	ume amino ac	id. th	is is called
	(1)	Degeneracy				(2)	Regeneracy		
	(3)	continuity	10			(4)	Universality		
36.		ne cytosine o			dup	lex is	s 20% of the	total	bases, the
	(1)	10%	(2)	30%		(3)	40%	(4)	60%
37.	Whi	ich of the im	muno	globulir	is c	rosse	s the placent	s and	l reaches to
	fetu	is is?							
	(1)	lgA	(2)	IgM		(3)	IgG	(4)	IgE

38.	Ligh	t reactions take place in :		•
	(1)	Stroma	(2)	Grana
	(3)	Endoplasmic reticulum	(4)	Golgi body
39.	In c	ell cycle, the per-DNA synth	esis ph	ase is termed as :
	(1)	G2 phase	(2)	S phase
	(3)	G1 phase	(4)	M phase
40.	Cro	ssing over takes place in wh	ich sta	ge ?
	(1)	Pachytene	(2)	Zygotene
	(3)	Leptotene	(4)	Diplotene
41.	The	mixture of H ₂ and CO is an	indust	rial fuel known as :
	(1)	Fuel gas	(2)	Water gas
	(3)	Industrial gas	(4)	Vapour
42.	On	spot treatment of environme	nt poll	utant is known as :
	(1)	In situ	(2)	Ex situ
	(3)	Local	(4)	Tansported

43.	End	orphin is a :		10
	(1)	Lipid	(2)	Protein
	(3)	Carbohydrate	(4)	Nucleic acid
44.	The	loss or addition of one or mor	e chr	omosomes is known as :
	(1)	Polyploidy	(2)	Aneuploidy
	(3)	Euploidy	(4)	Aploidy
45.	Who	said, "Ontogeny recapitulates	s ont	ogeny" ?
	(1)	Robert Hook	(2)	Haeckel
	(3)	Baltimore	(4)	Crick
46.	The	science of improving human s	tock	is known as :
	(1)	Genetics	(2)	Biology
	(3)	Eugenics	(4)	Animal science
47.	Ade	novirus contains :		
	(1)	Double stranded DNA, none	avelo	ped
	(2)	Double Stranded DNA, envel	oped	
	(3)	Double Stranded RNA, none	nvelo	oped
	(4)	Single stranded RNA, envelo	ped	

48.	Any	gene that is place	d into a pla	smid	is called:	1.	
	(1)	Small plasmid	×	(2)	DNA		
	(3)	Insert		(4)	Trans gene		
49.	A si	ngle stranded DNA	/RNA mole	cule	used to detect	the presen	ce of
	a co	omplementary nucl	eic acid is	called	:	9	
	(1)	Sensor	181	(2)	Probe		٠
***	(3)	Insert .	r	(4)	Detector		
50.	Oxio	dative stress is cau	sed due to	:			
	(I)	Production of exce	essive free	radica	als		
	(2)	Production of exce	essive HCl	n sto	mach	*.	
	(3)	Indigestion					
	(4)	Low BMR					
51.	Adju	wants are the agen	its that :		į.		
	(1)	Decrease immuno	genicity of	an a	ntigen	¥	
	(2)	Increase immunos	enicity of a	an an	tigen		
	(3)	Decrease immuni	ty		•		
	(4)	Increase immunity	y		•		
					174		

52.	Con	fining the enzyme molecules t	o a d	istinct phase is known as :
	(1)	Immobilisation	(2)	Purification
	(3)	Adsorption	(4)	Absorption
53.	An a	nalytical device which employs	s a bi	ological material to specifically
	inte	ract with an analyte and meas	ures	the generated electrical signal
	by t	ransducer is called as :		
	(1)	Electrometer	(2)	Biosensor
	(3)	Conductor	(4)	Amplifier
54.	The	disease of tomato is caused by	y:	
	(1)	Alternaria solani		
	(2)	Fusarium oxysporium		
	(3)	Helminthosporium sativum		
	(4)	Erysiphe polygoni		
55.	"Ca	ryopasis" is the fruit in memb	er of	the family :
	(1)	Fabaceae	(2)	Asteraceae
	(3)	Poaceae	(4)	Abiaceae

56 .	Wh	ich of the fo	ollow	ing an	tibio	tic	inhibits the	e trai	nsla	tion in
	cuk	aryotes ?								
	(1)	Tetracyclin				(2)-	Puromycin			
	(3)	Penicillin			er.	(4)	Chloromyce	tin		
57.	Poly	ymerase chair	read	ction wa	s dev	elop	sed by:			
	(1)	(1) Watson and Crick								
	(2)	Har Govind	Khor	ana						
	(3)	Albert Smith	1							
	(4)	Kary Mulis		•					•	
58.	The	first immune	globi	ulin syn	thesi	zed	by the fetus	is : .		i i
	(1)	lgA	(2)	IgG		(3)	IgM	(4)	IgE	
59.	Whe	en atoms or io	ns a	re misse	d or	misį	placed in a cr	ystal,	the	defects
		called as.								
	(1)	Surface defe	ct			(2)	Point defect			
	(3)	Unit cell defe	ect	- 10	ļ	(4)	Displacemen	nt		
					15		•			D # ~

6 0.	The	molarity of a	250	ml solutio	n conta	ining 0.1 n	nole of N	IaOH would	
	be:								
	(1)	0.1	(2)	0.2	(3)	0.3	(4)	0.4	
61.	Afte	r dissolution	of io	line in a s	solution	, the entro	ру:		
	(1)	Increases				15.0			
	(2)	(2) Decreases							
	(3)	(3) First increases and then decreases							
	(4)	First decrea	ses a	nd then is	ncrease				
62.	The	order of reac	tion f	or radioad	ctive de	cay is:			
	(1)	First			(2)	Second			
	(3)	Third			(4)	Zero			
63.	Wha	at is produce	d who	en ethano	l vap ou	rs are pass	ed over	alumina a	
	600	K?							
	(1)	Ethane			(2)	Ethene			
	(3)	Acetylene			(4)	Methane			

64.	Th	e metal o	oxide whic	h is knov	vn as p	hilosophe	r's wool :	
	(1)	ZnO	(2)	CuO	. (3)	FeO	(4)	CdO
65.	Giv	e one ex	cample of	substanc	e used	in hair dy	re:	
	(1)	Amino	phenoi		(2)	Cyclon	ethicone	
	(3)	Butyle	ne glycol		(4)	Propyle	ne glycol	
66.	1 n	nM is eq	ual to:					
	(1)	1 nme	de/mi	•	(2)	1 µ mol	e/ml	
	(3)	1 pmo	le/ml	7	(4)	1 fmole	/ml	
67,	The	sum of	pKa and p	Kb is equ	ual to :			
	(1)	12	(2)	14	(3)	10	(4)	7
68.	Hov	many (different s	creolsom	ers are	possible	with an al	dohexose ?
	(1)		(2)	8	(3)	12	. (4)	16
59.	A D	NA has	2:1×10 ⁵ m	icleotides	in its	coding st	rand. The	number of
	(1)	7×104			(2)	6×10³		
	(3)	7×10³			(4)	4×10³	2	
				-	3631			

7 0.	In w	hich of the following compoun	ds C	-H bond length is minimum?
	(1)	Ethane .	(2)	Ethene
	(3)	1,2-dichloroethene	(4)	1, 2-dichloroethane
71.	Free	ons are :		*
	(1)	Chloroflurocarbons	(2)	Aromatic molecules
*	(3)	Unsaturated fats	(4)	Carbohydrates
72.	Cryc	ophytic algae grow on :		
	(1)	Rocks	(2)	Water
	(3)	Soil	(4)	Ice and snow
73.	An	animal which is unicellular, n	nicros	scopic with no tissues is called
	as:			<u>E</u>
	(1)	Metazoa	(2)	Protozoa
	(3)	Chordata	(4)	Virus
74	. The	e organism which contains bo	th th	e chloroplast and flagella is?
	(1)	Paramecium	(2)	
	(3)	Euglena ,	(4)	Trypanosoma

75.	Wh	ich one is commonly known a	s Po	nd Silk'?	
	(1)	Ulothrix	(2)	Spirogyra	
	(3)	Chara	(4)	Batrachospermum	
76.	Litz	nus is a natural dye obtained	from		
	(1)	Algae	(2)	Fungi	
	(3)	Lichens	(4)	Corals	
77.	Bor	deaux mixture consists of :			
		Lime and Calcium sulphate	(*)		
	(2)	Sulphur and lime			
	(3)	Copper sulphate and lime		III.	
	(4)	Copper sulphate and sulphu	r ·		
78.	The	nurse cells are present in the	spor	rogonium of :	
	(1)	Riccia	(2)	Marchantia	
	(3)	Angiosperms	(4)	Gymnosperms	
79.	Whi	ch of the following is classified	l as a	in eastern event ?	*
	(1)	Dioon	(2)	Stangeria	
	(3)	Ceratozamia	(4)	Zamia	

80.	Whi	ch of the followin	g cells are p	resen	t only in sponges?	
	(1)	Erythrocytes		(2)	Blastocytes	
	(3)	Neurons		(4)	Funnel Cells	
81.	Whi	ch of the followin	g is called T	he La	antern of Aristotle'?	
	(1)	Star fish		(2)	Sea Anemon	
	(3)	Sea Archin	27	(4)	Hydra	
82.	Hip	notoxin' is found	in:			
	(1)	Nematocysts		(2)	Sponges	
	(3)	Ascaris		(4)	Protozoans	
83.	The	common feature	of rennin, ar	nylas	e and trypsin is that	they are :
	(1)	Proteins		(2)	Vitamins	
	(3)	Nucleic acids		(4)	Carbohydrates	
84.	The	vitamin needed	for maturation	on of	erythrocytes is :	
	(1)					K
85.	Ligh	ht reaction in pho	otosynthesis	prod	uces :	
	(1)			(2)	_ ,	
	(3)	CO ₂		(4)	Glucose	

86	. Ru	DP carboxylase can u	tilise followin	g as a substrate :
	(1)	CO ₂	(2)	0,
	(3)	O ₂ and CO ₂	(4)	Water
87.	The	molecule which bind	s to the activ	e site in an enzyme is called :
	(1)	Substrate	(2)	Activator
ū	(3)	Inactivator	(4)	Non-competitive inhibitor
88.	The	genetic material of S	imion Virus 4	0 (SV40) is :
	(1)	DNA	(2)	RNA
	(3)	RNA-DNA hybrid	(4)	Peptidonucleic acid
89.	The	fibronectin is a :		
	(1)	Nucleoprotein	(2)	Glycoprotein
	(3)	Lipoprotein	(4)	Phosphoprotein
90.	The	red pigment found in	the ripe toma	atoes are called :
	(1)	Lycopene	(2)	Leukoplast
	(3)	Chloroplast	(4)	Carotene
		19 W		

91.	Repl	ication takes place in:		
	(1)	Cytoplasm	(2)	Nucleus
	(3)	Golgi body	(4)	Endoplasmic reticulun
92.	The	transcription in prokaryote	s is cata	alyzed by:
	(1)	RNA polymerase I	(2)	DNA polymerase II
	(3)	RNA polymerase II	(4)	DNA polymerase III
93.	Nuc	eleoli are rich in :		
	(1)	RNA	(2)	Carbohydrates
	(3)	DNA	(4)	Fatty acids
94.	EFC	3 factor is also called as:		
	(1)	Aminoacyltransferase	(2)	Oxidase
	(3)	Hydrolase	(4)	Thanslocase
95	. Lac	Operon is:		
	(1)	Inducible-repressible sys	tem	
	(2)	Repressible system		
	(3)	Inducible system		
	(4)	Sluggish system		

96.	Po	lytene cells are destin	ed to die bec	ause they are :
	(1)			
	(2)	Unable to undergo	meiosis	• ,
	(3)	Unable to undergo	maturation	
	(4)	Short lived		•
97.	Wh	nich one from the follo	wing is an al	caloid ?
	(1)	Menthol	(2)	Morphine
	(3)	Antocyanin	(4)	Benzoquinone
98.	Art	emisin, a plant produ	ct, is used ag	ainst:
	(1)	Filariasis	(2)	Ascariasis
	(3)	Melaria	(4)	Cancer
9.	The	chemical nature of p	enicillin is :	
	(1)	Polyene	(2)	Peptide
((3)	Aminoglycoside	(4)	Spirolactone
1.00	Vitro	ogenase is protected f	rom O ₂ by :	
(1)	N ₂	(2)	Hemoglobin
(3)	Myoglobin	(4)	Leghemoglobin

101. Satellite DNA is made up of:

- (1) Tandemly repeated sequences
- (2) Unique sequences of DNA
- (3) Minichromosomes
- (4) Interspersed repeated sequences

102. Protein transport into mitrochondria takes place :

- (1) Co-translationally
- (2) Post-translationally
- (3) Via peroxisomes
- (4) Through ER-Golgi pathway

103. Collagen is rich in:

(1) Histidine

(2) Hydroxyproline

(3) Tryptophan

(4) Alanine

104. Measles is caused by :

(1) Bacteria

(2) Puccinia virus

- (3) Rubeola virus
- (4) Fungi

105.W	nat would be a likely e	xplana	tion for the existen	ice of
pse	eudogenes ?			
(1)	Gene duplication		•	
(2)	Gene duplication and mu	tation e	vents	
(3)	Evolutionary pressure	•		
(4)	Unequal crossing over			
106.W	nich of the following modifica	ation lea	ds to protein degradation	on?
(1)	Acetylation	(2)	Phosphorylation	**
(3)	Uniquitination	(4)	Methylation	
107. Du	ring mismatch repair in E.	coli, the	parental strand is reco	gnized
by	:			
(1)	single stranded breaks			
(2)	glycosylated adenines			
(3)	double stranded breaks		50 SA	
(4)	methylated adenines			

108. Which of the following is a role of gRNA?

	(1)	Self splicing		
	(2)	Polyadenylation .		
	(3)	RNA splicing		
	(4)	Chemical modification of rRN	Α	
109	. Mos	t protection against viral disea	se in	the body takes place through
		activities of :		
	(1)	Interferon molecules		
	(2)	penicillin molecules		
	(3)	antigen molecules		
	(4)	Antibody molecules		
110	.Skir	cancer is induced by which	typ	e of DNA damage caused by
	exp	osure to harmful UV rays in su	ınligl	nt:
	(1)	Depurination	(2)	Deamination
	(3)	Pyrimidine dimer formation	(4)	Alkylation
111	. Ces	ium (Cs) belongs to :		
	(1)	s1-block	(2)	s2-block
	(3)	p2-block	(4)	p5-block
		26	0	

112. One	of the following reaction into	rme	liates does not have a planar		
stru	acture:				
(1)	Alkyl carbocation	(2)	Alkyl carbanion		
(3)	Alkyl free redical	(4)	Singlet Carbene		
113. În g	lobal warming the dangerous	gas I	next to CO ₂ is:		
. (1)	CH ₄	(2)	SO ₂		
(3)	NO ₂	(4)	Water vapour		
114.The	master brake of the cell cycle	is :	•		
(1)	Cyclin proteins	(2)	p21		
(3)	Rb protein,	(4)	p 7.		
115. Monopolin is a :					
(1)	Complex carbohydrate	¥**.			
(2)	Mitosis specific protein comp	olex			
(3)	Lipid				
(4)	Meiosis specific protein com	plex			
	27	ri .	Р.Т.О.		

16. Which of the following enzymes is responsible for the transfer of amino							
	groups from an amino acid to an alpha keto acid?						
	(1)	Transaminase	(2)	Transketolase			
	(3)	Deaminase	(4)	Lyase			
117. Germ-line cells give rise to :							
	(1)	Eggs	(2)	Sperms			
	(3)	Eggs or sperms	(4)	Somatic cells			
118. Which of the following is most stable ecosystem?							
	(1)	Forest	(2)	Grass land			
	(3)	Ocean	(4)	Desert			
119	. Max	dmum biodiversity occurs at :					
	(1)	Poles	(2)	Equator			
	(3)	Temperate	(4)	Tropics			

120. The innate immune systems include:

- (1) Macrophages, neutrophils and dendrites
- (2) Macrophages, neutrophils and RBCs
- (3) RBCs, Chief cells and dendrites
- (4) Master cells, β-cells and dendrites

2700

ROUGH WORK एफ कार्य

ROUGH WORK एक कार्य

31

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्याइंट पेन से ही लिखे)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-यत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
 - उत्तर-पत्र के प्रथम पृथ्ठ पर पेन से अपना अमुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
 - ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (बदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
 - उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
 - 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के बार बैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये यृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
 - प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
 - 10. व्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिवें गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
 - रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
 - 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
 - 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
 - 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

