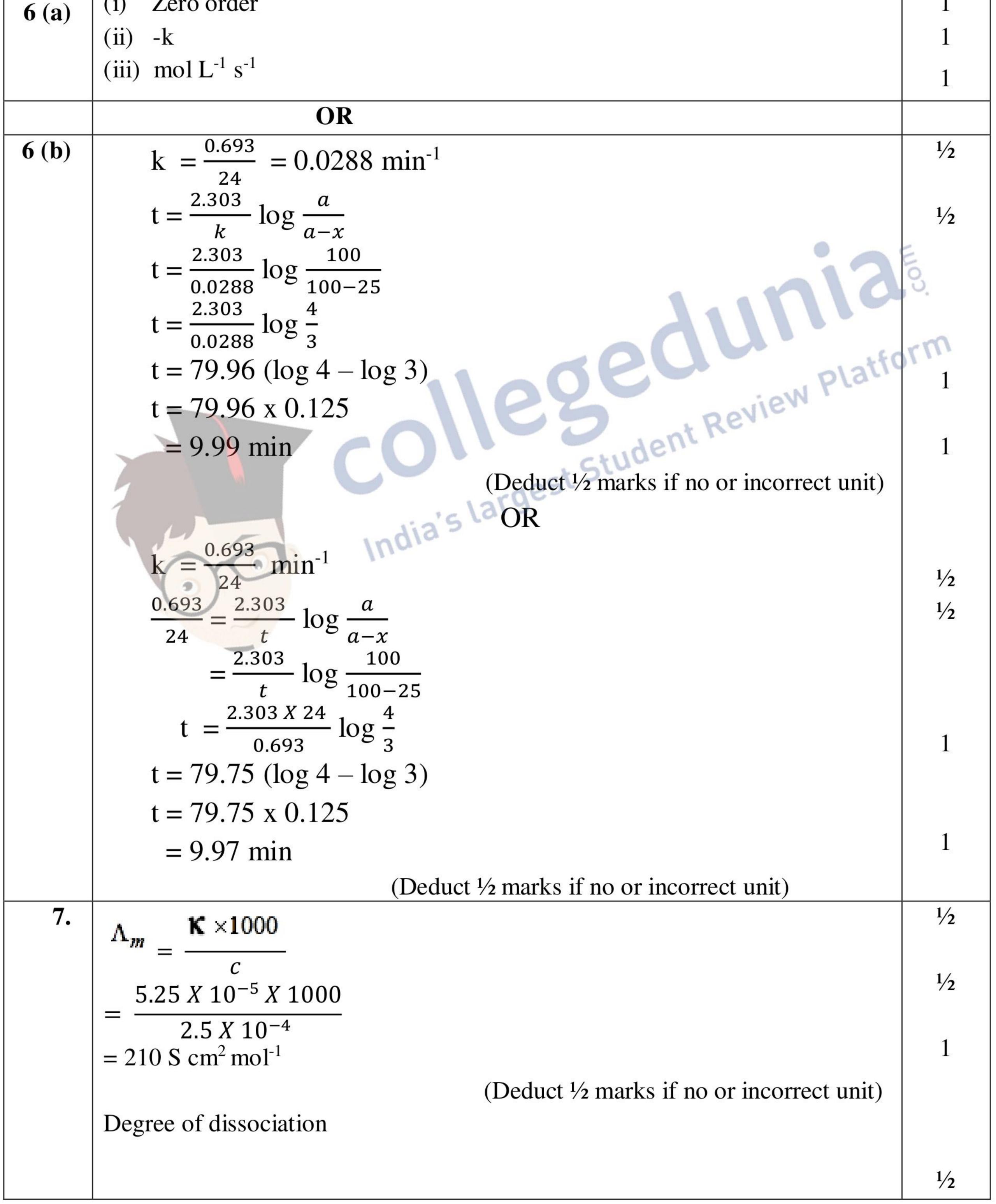
CBSE Class 12 Chemistry Compartment Answer Key 2022 (August 23, Set 3 - 56/6/3)

MARKING SCHEME

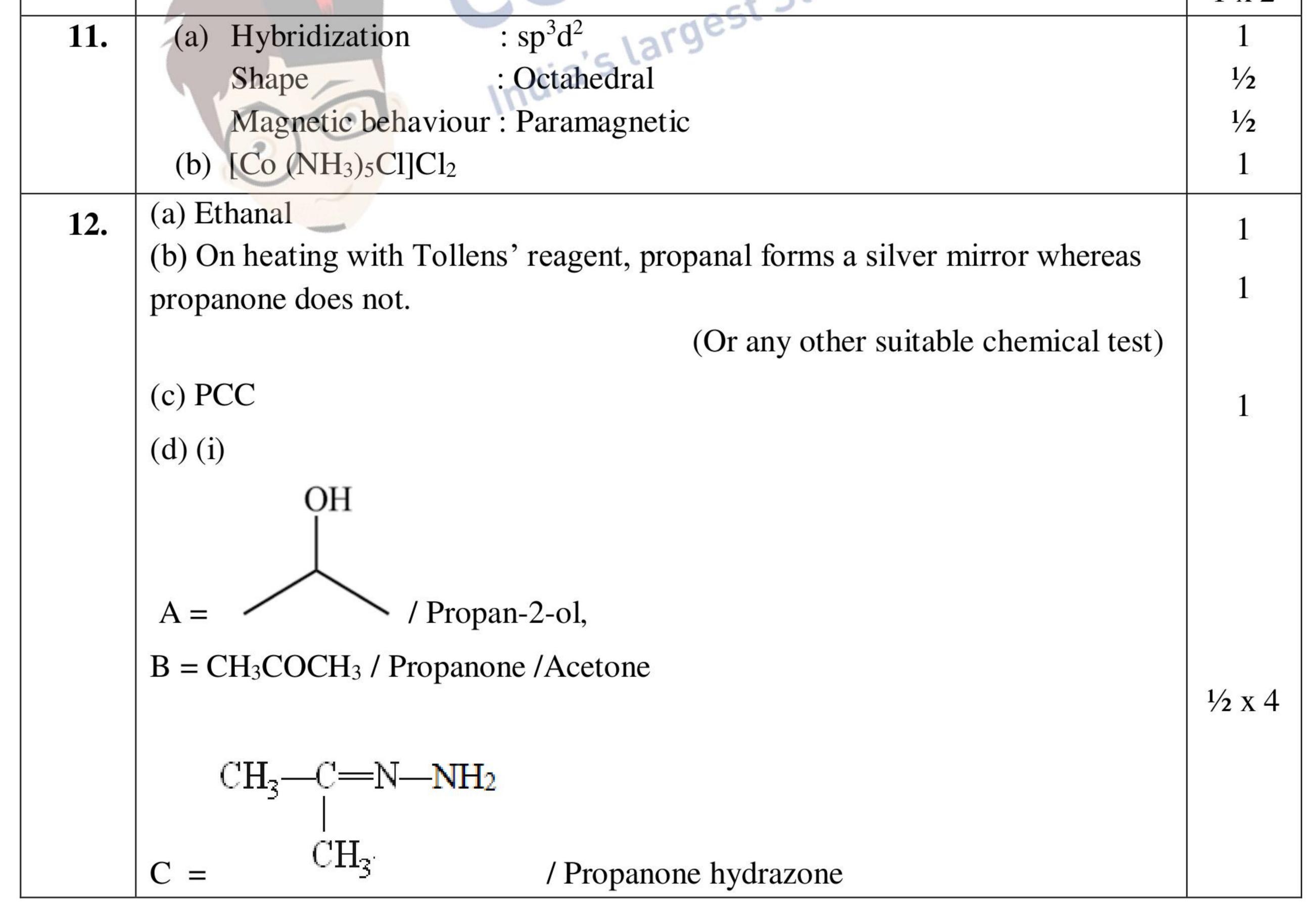
Senior Secondary School Examination TERM-II, 2022

CHEMISTRY (Subject Code-043)

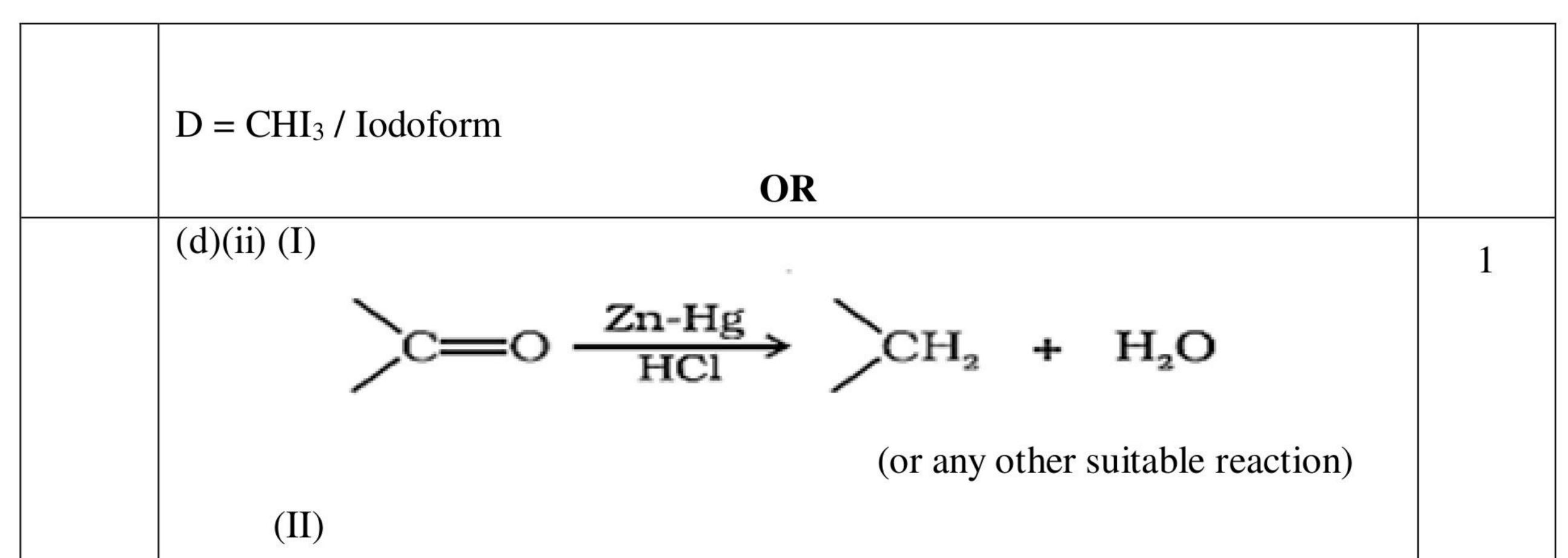

[Paper Code: 56/6/3] [SET-3]

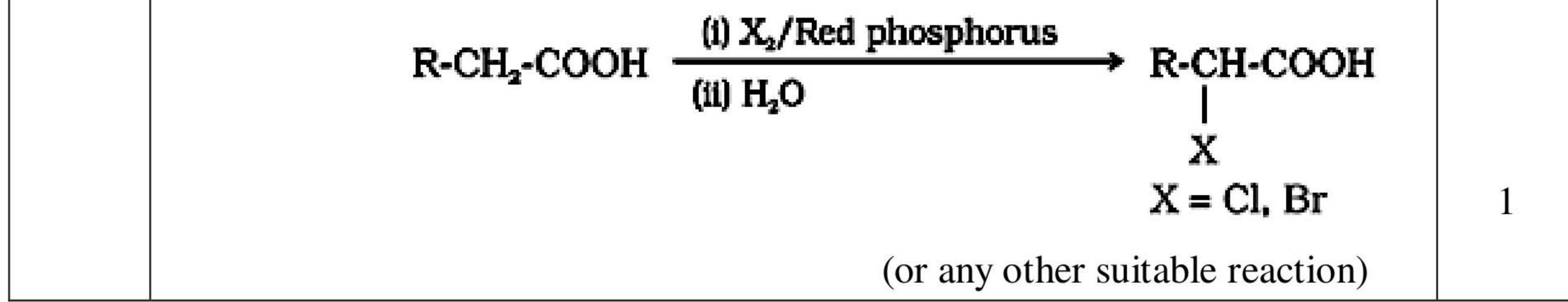
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(a) CH ₃ COCH ₃ < CH ₃ CH ₂ OH < CH ₃ COOH	1
	 (a) CH₃COCH₃ < CH₃CH₂OH < CH₃COOH (b) 2-Hydroxybenzaldehyde / 2-Hydroxybenzenecarbaldehyde 	1
2.	 (a) Alternate current prevents the electrolysis so that the concentration of ions in the solution remains constant / AC current does not change the composition of the solution. (b) The law states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. 	
	(c) $Mg(s) Mg^{2+}(aq.) Cu^{2+}(aq.) Cu(s)$	
	(Any two	o) 1×2
3.	(a) First order.(b)	B. 1
	Order Molecularity	ttorm
	The sum of powers of the The number of reacting species	
	concentration of the reactants (atoms, ions or molecules) taking part	
	in the rate law expression is calledin an elementary chemical reaction.the order of a reaction.	
	Order of a reaction can be zero or The Molecularity of a reaction cannot	
	fraction or negative. be zero or fraction or negative.	
	(Any one) or (any other correct difference	e) 1
4.	(a) The movement of colloidal particles under an applied electric potential.	1
	(b) Yes.	1
	(c) The process of settling colloidal particles is coagulation / The process of	1
	converting colloidal solution into precipitate.	
	OR	
	(a) Adsorption: The accumulation of molecular species at the surface rather	1
	than in the bulk of a solid or liquid is termed adsorption.	
	(b) Lyophobic sol: The dispersed phase has little or no affinity for the	1
	dispersion medium / solvent-repelling sols.	
	(c) Multimolecular colloid: On dissolution, a large number of atoms or small	er
	molecules of a substance aggregate together to form species having the size i the colloidal range $(1-1000 \text{ nm})$.	n I
5 (a)	(i) +3	1
	(ii) Due to the poor shielding effect of d-electrons and increase in effective	
	nuclear charge.	1
	(iii) V^{3+} : 2 unpaired electrons, Ti^{3+} : 1 unpaired electron.	1/2,1/2

XII_39_043_56/6/3_Chemistry # Page-**3**


	OR	
5 (b)	(i) $Ce^{3+} = [Xe] 4f^{1} = 1$ unpaired electron	
	$\mu = \sqrt{n(n+2)}$	1⁄2
	$\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.73 \text{ B M}$	1⁄2
	(ii) Copper in +2 oxidation state has incompletely filled d-orbital.	1
	(iii) Sc^{3+} has no unpaired electrons / no d-d transition / d^0 configuration whereas in Ti^{3+} with one unpaired electron shows d-d transition.	1
		l
$\boldsymbol{\boldsymbol{\ell}}$	(i) Zero order	1

XII_39_043_56/6/3_Chemistry # Page-**4**




a		
	$\alpha = \frac{\wedge_m}{\wedge_m^\circ}$	1⁄2
	$=\frac{210}{400}=0.525$	
8.	(a)	1
	$CH_3 - N - C_2H_5$	
	CH_3	
	(b) $A = CH_3CONH_2$, $B = CH_3NH_2$	1,1
9.	(a) Aryl halides do not undergo nucleophilic substitution with the anion	1
	formed by phthalimide.	
	(b) In aniline, due to resonance lone pair of electrons on N is less available	
	while it is easily available in alkyl amines due to electron donating nature (+I	
	effect) of alkyl group / Due to electron withdrawing nature of the aryl group in	
	aniline while electron donating nature of alkyl group in alkyl amine.	1
	(c) $C_2H_5NH_2 < (C_2H_5)_3N < (C_2H_5)_2NH$	1
10.	(a) Cr, due to half filled t_{2g}^3 configuration / stable d^3 configuration.	1
	(b) Cr, due to maximum number of unpaired electrons.	1
	(c) Zn.	61
	OR	, O,
10	• Transition elements have partially filled or incompletely filled d-orbital in	
	their ground state or in any of their oxidation states.	
	• (i) They show variable oxidation states.	
	(ii) They form complex compounds.	
	(or any other characteristics)	1 x 2

XII_39_043_56/6/3_Chemistry # Page-**5**

XII_39_043_56/6/3_Chemistry # Page-**6**

