JEE-Main-25-06-2022-Shift-2 (Memory Based)

Chemistry

Question: Dettol has 2 structure one has 6 and other has 2 pi electrons. What is name of structure with 2 pi electrons?

Options:

- (a) Chloroxylenol
- (b) Terpineol
- (c) Bithionol
- (d) Salvarsan

Answer: (b)

Solution: Dettol is a mixture of chloroxylenol and terpineol. Chloroxylenol has 6 pi electrons and terpineol has 2 pi electrons

$$\begin{array}{c|c} OH & CH_3 \\ H_3C & CH_3 \\ \hline \\ Cl & H_3C & CH_3 \\ \hline \\ Chloroxylenol & Terpineol \\ \end{array}$$

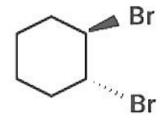
Question: Assertion: Water with BOD value 17 is considered polluted

Reason: The amount of oxygen required by the bacteria to break down the inorganic and organic matter in certain volume of water

Options:

- (a) Both assertion and reason are true, reason is correct explanation of assertion.
- (b) Both assertion and reason are true, but reason is not a correct explanation the assertion.
- (c) Assertion is true, but reason is false.
- (d) Assertion is false, but reason is true.

Answer: (c)


Solution: The amount of oxygen required by bacteria to break down the organic matter present in a certain volume of a sample of water, is called Biochemical Oxygen Demand (BOD). Highly polluted water could have a BOD value of 17 ppm or more.

Question:

Options:

(a)

(b)

(c)

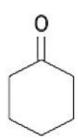
(d)

Answer: (b)

Solution:

Question: Which of following does not give enamine on reaction with 2° amine?

Options:


(a)

$$C_2H_5-C-C_2H_5$$

(b)

(c)

(d)

Answer: (b)

Solution: Due to absence of alpha hydrogens in this molecule, it will not form enamine on reaction with 2° amine.

Question: Assertion: The amphoteric behavior of H₂O is explained by Lewis's acid base theory

Reason: H₂O acts as acid with NH₃ and base with H₂S

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion.

(b) Both assertion and reason are true, but reason is not a correct explanation the assertion.

(c) Assertion is true, but reason is false.

(d) Assertion is false, but reason is true.

Answer: (d)

Solution: The amphoteric behavior of H_2O is explained by Bronsted acid base theory and H_2O acts as acid with NH_3 & as a base with H_2S

Question: Which of the following has the least spin only magnetic moment?

Options:

- (a) Fe^{3+}
- (b) Fe^{2+}
- (c) Cu²⁺
- (d) Ni²⁺

Answer: (c)

Solution: The ion having least number of unpaired electrons will have least spin only magnetic moment. Fe³⁺ has 5 unpaired electrons, Fe²⁺ has 4 unpaired electrons, Cu²⁺ has 1 and Ni²⁺ has 2 unpaired electrons.

Question: What is the correct order of electron gain enthalpy of Cl, F, Te, Po

Options:

- (a) C1 > F > Te > Po
- (b) F > Cl > Te > Po
- (c) $F \le Cl \le Te \le Po$
- (d) $Cl \le F \le Te \le Po$

Answer: (a)

Solution:

Electron gain enthalpy

 $F \Rightarrow -333$

 $Cl \Rightarrow -349$

 $Te \Rightarrow -190$

 $Po \Rightarrow -174$

Cl > F > Te > Po

Question: Order of reduction potential of Cl₂, I₂, Ag⁺, Na⁺, Li⁺

- (a) $Cl_2 > Li^+ > I_2 > Na^+ > Ag^+$
- (b) $I_2 > Li^+ > Cl_2 > Na^+ > Ag^+$

(c)
$$Na^+ > Li^+ > I_2 > Ag^+ > Cl_2$$

(d)
$$Cl_2 > Ag^+ > I_2 > Na^+ > Li^+$$

Answer: (d)

Solution:

Question: Heat of combustion of benzene and acetylene is given as ΔH_1 , and ΔH_2 , What is the expression for ΔH when acetylene is isomerized to benzene

Options:

(a)
$$\Delta H_2 - \Delta H_1$$

(b)
$$3\Delta H_2 - \Delta H_1$$

(c)
$$\Delta H_2 - 3\Delta H_1$$

(d)
$$3\Delta H_2 + \Delta H_1$$

Answer: (b)

Solution:

$$C_{6}H_{6}+rac{15}{2}O_{2}
ightarrow 6CO_{2}+3H_{2}O\ \Delta H_{1}\ Rxn\left(1
ight) \ rac{C_{2}H_{2}+rac{5}{2}O_{2}
ightarrow 2CO_{2}+H_{2}O\ \Delta H_{2}\ Rxn\left(2
ight)}{3C_{2}H_{2}
ightarrow C_{6}H_{6}\ \Delta H_{3}\ Rxn\left(3
ight) \ (3)=3 imes(2)-(1) \ \therefore \Delta H_{3}=3.\left(\Delta H_{2}
ight)-\Delta H_{1}$$

Question: Given K_{sp} of Bi_2S_3 . What is formula for S?

(a)
$$\left(\frac{K_{sp}}{4}\right)^{\frac{1}{2}}$$

- (b) $\left(\frac{K_{sp}}{27}\right)^{\frac{1}{3}}$ (c) $\left(K_{sp}\right)^{\frac{1}{5}}$ (d) $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$

Answer: (d)

Solution:

Question: Why sodium extract of Halide is boiled with HNO₃ before testing for halogen?

Options:

- (a) To remove other ions which may interfere in the test
- (b) To make solution acidic
- (c) To remove turbidity
- (d) To convert Fe²⁺ to Fe³⁺

Answer: (a)

Solution: If nitrogen or sulphur is also present in the compound, the sodium fusion extract is first boiled with concentrated nitric acid to decompose cyanide or sulphide of sodium formed during Lassaigne's test. These ions would otherwise interfere with silver nitrate test for halogens.

Question: Compare Debroglie Wavelength of proton, neutron, electron and alpha particle

(a)
$$\lambda_{\alpha} \leq \lambda_{p} \simeq \lambda_{n} \leq \lambda_{e}$$

(b)
$$\lambda_e \le \lambda_h \simeq \lambda_p \le \lambda_\alpha$$

(c)
$$\lambda_p \le \lambda_n \simeq \lambda_\alpha \le \lambda_e$$

(d)
$$\lambda_n \le \lambda_p \simeq \lambda_c \le \lambda_\alpha$$

Answer: (a)

Solution:

$$\lambda = \frac{h}{mv}$$

Proton, neutron, Electron, α – particle

$$m_{\alpha-\,particle} \geq m_p \simeq n_n \geq m_e$$

$$\lambda_{\alpha-\,particle} \leq \lambda_p \simeq \lambda_n \leq \lambda_e$$

Question:

A

(i) 2 moles Mg/THF (ii) Methyl benzoate (iii) H₂O/H'

2 mole

What is A?

Options:

- (a) Bromobenzene
- (b) Benzylbromide
- (c) Diphenylbromide
- (d) Methylbromide

Answer: (a)

Solution:

Question: The minimum energy needed to eject an electron from Pt where threshold frequency was given

Options:

- (a) Work function
- (b) Kinetic energy
- (c) Atomic energy
- (d) Mechanical energy

Answer: (a)

Solution:

 w_o (minimum energy to eject electron is work function) = hv_o (Threshold frequency)

 $h = 6.6 \times 10^{-34} \text{ J/s}$

Question: Which of the following give biuret test?

- (a) Glycine
- (b) Alanine
- (c) both (a) and (b)

(d) None of these

Answer: (d)

Solution: The name of the test comes from the name of the compound, biuret, which gives this test. The reaction is not absolutely specific for peptide bond because many compounds containing two carbonyl groups linked through nitrogen or carbon atoms give a positive result.

Question: $PCl_5 + H_2O \rightarrow A + HCl$

 $A + 3H_2O \rightarrow B + HCI$

Find the number of ionizable hydrogen in B

Answer: 3.00

Solution:

 $PCl_5 + H_2O \rightarrow POCl_3 + HCl$

 $POCl_3 + H_2O \rightarrow H_3PO_4 + HCl$

Question: How many of the following species have zero dipole moment?

BF₃, BeCl₂, NH₃, H₂O, CCl₄, HCl

Answer: 3.00

Solution: BF3, BeCl2, CCl4

$$F \Longrightarrow B \nearrow F$$

Question: Novalac has molar mass 393. Find no of monomers in it.

Answer: 3.00

Solution:

Question: Lead nitrate on heating gives PbO, O2 and an unknown gas A which dimerises to form B. Find number of bridged O atoms in B

Answer: 0.00

Solution:

$$Pb(NO_3)_2 \xrightarrow{\Delta} PbO + O_2 + NO_2 + NO_2$$

$$\underset{(A)}{2\mathrm{NO_2}} \rightarrow \underset{(B)}{\mathrm{N_2O_4}}$$

$$N_{2}O_{4}$$
 $N_{2}O_{4}$
 $N_{2}O_{5}$
 $N_{2}O_{5}$
 $N_{2}O_{5}$
 $N_{2}O_{5}$

Number of bridged oxygen atoms in N₂O₄ is 0 (zero)

