1. Consider a sequence $\left\{a_{n} ; n \geq 1\right\}$ of real numbers, where

$$
a_{n+1}=\frac{3}{2} a_{n}-\frac{1}{2} a_{n-1} \text { for all } n>1 .
$$

(a) Show that the sequence converges.
(b) Also find the limiting value of the sequence in terms of a_{1} and a_{2}.
2. Let f be a real valued function defined on $[0, \infty)$ such that f is continuous on $[0, \infty), f(0)=0$ and f^{\prime} is non-decreasing on $(0, \infty)$. Define $g(x)=f(x) / x$ for all $x \in(0, \infty)$. Show that g is non-decreasing on $(0, \infty)$.
3. Let $\mathbf{A}_{m \times m}=\left(\begin{array}{ccccc}\frac{1}{\sqrt{m}} & \frac{1}{\sqrt{m}} & \cdots \cdots & \frac{1}{\sqrt{m}} \\ & \mathbf{P}_{m-1 \times m} & \end{array}\right)$ be an orthogonal matrix and \mathbf{B} be an $m \times m$ symmetric matrix with rank $m-1$ and $\mathbf{B} \mathbf{1}_{m}=\mathbf{0}$, where $\mathbf{1}_{m}=(1,1, \ldots, 1)^{T}$ denotes the m-dimensional vector with all elements equal to 1 . Show that
(a) $\mathbf{P}^{T} \mathbf{P}=\mathbf{I}-\frac{1}{m} \mathbf{1}_{m} \mathbf{1}_{m}^{T}$, where \mathbf{I} is the $m \times m$ identity matrix, (b) rank of $\mathbf{P B P}{ }^{T}$ is $m-1$.

Note: For a matrix \mathbf{M}, its transpose is denoted by \mathbf{M}^{T}. $\quad[4+8]$
4. A fair coin is tossed repeatedly and let \mathcal{T} be the number of tosses till two consecutive tails are observed for the first time.
(a) Show that

$$
E(\mathcal{T} \mid \text { tail is observed in the first toss })=2+\frac{1}{2} E(\mathcal{T})
$$

(b) Find a similar formula for $E(\mathcal{T} \mid$ head is observed in the first toss $)$.
(c) Compute $E(\mathcal{T})$.
5. Consider a population consisting of k classes with proportions $p_{1}, p_{2}, \ldots, p_{k}$, where $p_{i} \in(0,1)$ for every $i=1,2, \ldots, k$ and $p_{1}+p_{2}+\cdots+p_{k}=1$. Let N denote the number of classes not represented in a random sample of size n drawn with replacement from the population. Find $E\left(N^{2}\right)$.
6. Let U and V be two dependent discrete random variables, each being uniformly distributed on $\{1,2, \ldots, k\}$. Let W be another random variable having the same uniform distribution but independent of U and V. Define a random variable $X=(V+W)$ $\bmod k$. Show that
(a) X is uniformly distributed on $\{0,1,2, \ldots, k-1\}$,
(b) U and X are independent.

$$
[6+6]
$$

7. Consider a data set $\left(x_{1}, y_{1}\right),\left(x_{2},, y_{2}\right), \ldots,\left(x_{100}, y_{100}\right)$, where $x_{i}=$ a for all $i \leq 50$ and $x_{i}=b$ for all $i>50(a \neq b)$. Two regression functions

$$
y=\alpha_{0}+\alpha_{1} x \text { and } y=\beta_{0}+\beta_{1} x^{3}
$$

are fitted to this data set using the method of least squares. Which of these two models will lead to smaller residual sum of squares? Justify your answer.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed normal random variables with mean θ and variance 1 , where $\theta \geq 0$. Find
(a) the maximum likelihood estimator $\hat{\theta}_{n}$ of θ,
(b) the asymptotic distribution of $T_{n}=\sqrt{n} \hat{\theta}_{n}$ when $\theta=0$. [4+8]
9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a continuous distribution. For each $j=1,2, \ldots, n$, let

$$
R_{j}=\#\left\{i: X_{i} \leq X_{j}, 1 \leq i \leq n\right\}
$$

Thus, R_{j} is the number of random variables $X_{i}(i=1,2, \ldots, n)$ which are less than or equal to X_{j}.
(a) Find the correlation coefficient between R_{1} and R_{n}.
(b) For any fixed $k(1<k<n)$, find the correlation coefficient between $Y_{1}=\sum_{j=1}^{k} R_{j}$ and $Y_{2}=\sum_{j=k+1}^{n} R_{j} . \quad[9+3]$
10. For $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, define $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$.
(a) Show that $f(\mathbf{x})=\|\mathbf{x}\|$ is a convex function.
(b) Let \mathbf{X} be a d-dimensional random vector symmetrically distributed about the origin (i.e. \mathbf{X} and $-\mathbf{X}$ have the same distribution). Show that $\psi(\boldsymbol{\theta})=E\|\mathbf{X}-\boldsymbol{\theta}\|$ is minimized at $\theta=0$. $[4+8]$

