1. Consider a sequence $\{a_n; n \ge 1\}$ of real numbers, where

$$a_{n+1} = \frac{3}{2}a_n - \frac{1}{2}a_{n-1}$$
 for all $n > 1$.

- (a) Show that the sequence converges.
- (b) Also find the limiting value of the sequence in terms of a_1 and a_2 . [8+4]
- 2. Let f be a real valued function defined on $[0, \infty)$ such that f is continuous on $[0, \infty)$, f(0) = 0 and f' is non-decreasing on $(0, \infty)$. Define g(x) = f(x)/x for all $x \in (0, \infty)$. Show that g is non-decreasing on $(0, \infty)$. [12]

3. Let
$$\mathbf{A}_{m \times m} = \begin{pmatrix} \frac{1}{\sqrt{m}} & \frac{1}{\sqrt{m}} & \cdots & \frac{1}{\sqrt{m}} \\ \mathbf{P}_{m-1 \times m} \end{pmatrix}$$
 be an orthogonal matrix
and \mathbf{B} be an $m \times m$ symmetric matrix with rank $m-1$ and
 $\mathbf{B1}_m = \mathbf{0}$, where $\mathbf{1}_m = (1, 1, \dots, 1)^T$ denotes the *m*-dimensional
vector with all elements equal to 1. Show that

(a) $\mathbf{P}^T \mathbf{P} = \mathbf{I} - \frac{1}{m} \mathbf{1}_m \mathbf{1}_m^T$, where **I** is the $m \times m$ identity matrix, (b) rank of \mathbf{PBP}^T is m - 1.

Note: For a matrix \mathbf{M} , its transpose is denoted by \mathbf{M}^T . [4+8]

- 4. A fair coin is tossed repeatedly and let \mathcal{T} be the number of tosses till two consecutive tails are observed for the first time.
 - (a) Show that

 $E(\mathcal{T} \mid \text{tail is observed in the first toss}) = 2 + \frac{1}{2}E(\mathcal{T}).$

(b) Find a similar formula for

 $E(\mathcal{T} \mid \text{head is observed in the first toss}).$

(c) Compute
$$E(\mathcal{T})$$
. [6+3+3

5. Consider a population consisting of k classes with proportions p_1, p_2, \ldots, p_k , where $p_i \in (0, 1)$ for every $i = 1, 2, \ldots, k$ and $p_1 + p_2 + \cdots + p_k = 1$. Let N denote the number of classes not represented in a random sample of size n drawn with replacement from the population. Find $E(N^2)$. [12]

- 6. Let U and V be two dependent discrete random variables, each being uniformly distributed on $\{1, 2, ..., k\}$. Let W be another random variable having the same uniform distribution but independent of U and V. Define a random variable X = (V + W) mod k. Show that
 - (a) X is uniformly distributed on $\{0, 1, 2, \dots, k-1\}$,
 - (b) U and X are independent. [6+6]
- 7. Consider a data set $(x_1, y_1), (x_2, y_2), \ldots, (x_{100}, y_{100})$, where $x_i = a$ for all $i \leq 50$ and $x_i = b$ for all i > 50 $(a \neq b)$. Two regression functions

$$y = \alpha_0 + \alpha_1 x$$
 and $y = \beta_0 + \beta_1 x^3$

are fitted to this data set using the method of least squares. Which of these two models will lead to smaller residual sum of squares? Justify your answer. [12]

- 8. Let X_1, X_2, \ldots, X_n be independent and identically distributed normal random variables with mean θ and variance 1, where $\theta \ge 0$. Find
 - (a) the maximum likelihood estimator $\hat{\theta}_n$ of θ ,
 - (b) the asymptotic distribution of $T_n = \sqrt{n}\hat{\theta}_n$ when $\theta = 0$. [4+8]
- 9. Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution. For each $j = 1, 2, \ldots, n$, let

$$R_j = \#\{i: X_i \le X_j, 1 \le i \le n\}.$$

Thus, R_j is the number of random variables X_i (i = 1, 2, ..., n) which are less than or equal to X_j .

- (a) Find the correlation coefficient between R_1 and R_n .
- (b) For any fixed k (1 < k < n), find the correlation coefficient between $Y_1 = \sum_{j=1}^k R_j$ and $Y_2 = \sum_{j=k+1}^n R_j$. [9+3]

10. For $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$, define $\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_d^2}$.

- (a) Show that $f(\mathbf{x}) = \|\mathbf{x}\|$ is a convex function.
- (b) Let **X** be a *d*-dimensional random vector symmetrically distributed about the origin (i.e. **X** and $-\mathbf{X}$ have the same distribution). Show that $\psi(\boldsymbol{\theta}) = E \| \mathbf{X} - \boldsymbol{\theta} \|$ is minimized at $\boldsymbol{\theta} = \mathbf{0}$. [4+8]

