JEE-Main-26-06-2022-Shift-1 (Memory Based)

Physics

Question: A wave of wavelength = 3Ghz strikes a particle of size $\frac{1}{100}$ th of λ then this

phenomenon is called as

Options:

- (a) Diffraction
- (b) Scattering
- (c) Reflection
- (d) Refraction

Answer: (a)

Solution:

For the given wavelength and obstacle size, diffraction will happen.

Question: A ball of mass 0.5 gm is released from height 10 m from rest. Find height where magnitude of acceleration and velocity is same

Options:

- (a) 7 m
- (b) 5 m
- (c) 3 m
- (d) 2 m

Answer: (b)

Solution:

We need $|\vec{a}| = |\vec{v}|$

$$\Rightarrow g = u + at = 0 + gt$$

$$\Rightarrow t = 1 \sec$$

Distance travelled in 1 sec

$$x = ut + \frac{1}{2}gt^2 = \frac{1}{2}(10)(1)^2$$

=5m

:. Height from the ground

$$= 10 - 5 = 5$$
m

Question: A ring (m, r) rotating at angular speed ω has two point masses (m_1) attached to its circumference. Their find angular speed is?

Options:

(a)
$$\frac{m\omega}{m-2m_1}$$

(b)
$$\frac{m\omega}{m+1m_1}$$

(c)
$$\frac{m\omega}{m-2m}$$

(d)
$$\frac{m\omega}{m+2m_1}$$

Answer: (d)

Solution:

$$I_1\omega_i = I_2\omega_2$$

$$mr^2\omega = \left(mx^2 + m_1r^2 \times 2\right)\omega_f$$

$$m\omega = (m+2m_1)\omega_f$$

$$\omega_f = \frac{m\omega}{m + 2m_1}$$

Question: An ideal Gas having molecular mass m_0 is in a container moving with velocity v. If container is suddenly stopped, then find the rise in m temp of Gas. [r = 1.4]

Options:

(a)
$$\frac{m_0 v^2}{5R}$$

(b)
$$\frac{m_0 v^2}{1R}$$

(c)
$$\frac{m_0 v^2}{3R}$$

(d)
$$\frac{m_0 v^2}{4R}$$

Answer: (a)

Solution:

Since r = 1.4, it is a diatomic gas.

K.E. of n moles of gas = $\frac{1}{2} m n v^2$

Loss in this K.E. = Gain in internal energy

$$=\frac{1}{2}mnv^2=ncv\,\Delta T=n\bigg(\frac{5}{2}R\bigg)\Delta T$$

$$\Rightarrow \Delta T = \frac{m_0 v^2}{5R}$$

Question: An α particle and proton enter magnetic field with same speed. Find ratio of radius of α particle to proton.

Options:

- (a) $\frac{3}{2}$
- (b) $\frac{2}{1}$
- (c) $\frac{1}{2}$
- (d) $\frac{2}{4}$

Answer: (a)

Solution:

$$R = \frac{mv}{qB}$$

$$R_{\alpha} = \frac{m_{\alpha} v}{q_{\alpha} B}$$

$$\vec{R}_{p} = \frac{m_{p}v}{q_{p}B} = \frac{q_{p}m_{\alpha}}{m_{p}q_{\alpha}}$$

$$=\frac{e(4m)}{m(2e)}$$

$$=\frac{2}{1}$$

Question: A ball is thrown vertically upward. At the maximum height. Which of the following is zero?

Options:

- (a) Momentum
- (b) P.E
- (c) Acceleration
- (d) Force

Answer: (a)

Solution:

At max height, ball stops momentarily before changing its direction. Hence momentum i.e. my is zero.

Question: The magnetic flux strength a surface is changing with time as $\phi = 5t^3 + 4t^2 + 2t$.

The resistance of coil is 5Ω . Find current at t = 2 sec.

Options:

- (a) 14.3 A
- (b) 13.2 A
- (c) 15.6 A
- (d) 16.1 A

Solution:

$$\phi = 5t^3 + 4t^2 + 2t$$

$$R = 5\Omega$$

$$\left|\varepsilon\right| = \frac{d\phi}{dt} = 15t^2 + 8t + 2$$

At
$$t = 2 \sec$$

$$|\varepsilon| = 15(2)^2 + 8(2) + 2$$

$$= 78$$

$$\therefore i = \frac{78}{5} = 15.6A$$

Question: Find current delivered by battery

Options:

- (a) 1 Amp
- (b) 3 Amp
- (c) 5 Amp
- (d) 2 Amp

Answer: (a)

Solution:

D₂ is reverse biased, therefore

$$i = \frac{10}{10} = 1 \, Amp.$$

Question: A simple pendulum of length L is oscillating in lift which is Accelerating upwards with Acceleration g/6

1 g/6

Find time period?

Options:

(a)
$$2\pi \sqrt{\frac{5l}{7g}}$$

(b) $2\pi \sqrt{\frac{6l}{7g}}$

(b)
$$2\pi\sqrt{\frac{6l}{7g}}$$

(c)
$$2\pi\sqrt{\frac{6l}{3g}}$$

(d)
$$2\pi \sqrt{\frac{4l}{5g}}$$

Answer: (b)

Solution:

$$2\pi\sqrt{\frac{6L}{7g}}$$

$$T = 2\pi \sqrt{\frac{l}{g_{eff}}} = 2\pi \sqrt{\frac{l}{g + g/6}}$$
$$= 2\pi \sqrt{\frac{6l}{7g}}$$

$$=2\pi\sqrt{\frac{6l}{7g}}$$

Question: Find direction and magnitude of magnetic field if EMW is travelling along +z axis and E is along -x direction.

Options:

(a)
$$B_0 = \frac{E_0}{C}$$

(b)
$$B_0 = \frac{C}{E_0}$$

(c)
$$B_0 = C$$

(d)
$$B_0 = CE_0$$

Answer: (a)

Solution:

$$B_0 = \frac{E_0}{C}$$

Question: De Broglie wavelength of photon and electron are same, then the ratio of their energy is?

Options:

- (a) $\frac{C}{V}$
- (b) CV
- (c) $\frac{2C}{V}$
- (d) $\frac{2V}{C}$

Answer: (c)

Solution: $\lambda_P = \lambda_e$

$$P_p = P_e$$

$$\frac{E_{p}}{E_{e}} = \frac{h_{C} / \lambda_{p}}{P_{e}^{2}} = \frac{P_{p}.C}{P_{e}^{2}} 2m$$

$$=\frac{C.2m}{m.V}$$

$$\frac{E_p}{E} = \frac{2C}{V}$$

Question: Carnot cycle works on steam temperature and ice temperature. Find efficiency **Options:**

- (a) 0.2
- (b) 0.16
- (c) 0.06
- (d) 0.26

Answer: (d)

Solution: $\eta = 1 - \frac{T_c}{T_H}$

$$=1-\frac{273}{373}$$

$$=\frac{100}{373}=0.26$$

Question: A capacitor C_1 is charged to a potential difference V. The charging battery is then removed and the capacitor is connected to an uncharged capacitor C_2 . The potential difference across the combination is

Options:

(a)
$$V \frac{C_1}{C_1 + C_2}$$

(b)
$$V \frac{C_2}{C_1 + C_2}$$

(c)
$$V \frac{C_1 C_2}{C_1 + C_2}$$

(d)
$$\frac{V}{C_1 + C_2}$$

Answer: (a)

Solution:

Initial the charge $Q = C_1 V$

After removing the battery the both capacitors are in parallel.

So total capacitance $C = C_1 + C_2$

Let the potential difference across the combination is V'

Now charge $Q' = CV' = (C_1 + C_2)V'$

As the total charge is conserved so Q = Q'

$$\Rightarrow C_1V = (C_1 + C_2)V'$$

$$\therefore V' = \frac{C_1 V}{C_1 + C_2}$$

Question: Find the ratio of dynamic resistance at 2V and 4V for a semiconductor device?

Options:

- (a) 4: 1
- (b) 2:1
- (c) 1:1
- (d) 3: 2

Answer: (a)

Solution:

Dynamic
$$R = \frac{\Delta V}{\Delta i}$$

$$\frac{R_1}{R_2} = \frac{0.1/50}{0.1/200} = \frac{200}{50} = \frac{4}{1}$$

Question: How many α and β particles are emitted when uranium $^{238}_{92}$ U decays to lead $^{306}_{82}$ Pb?

Options:

- (a) $\alpha = 4$ and $\beta = 2$
- (b) $\alpha = 6$ and $\beta = 4$
- (c) $\alpha = 6$ and $\beta = 8$
- (d) $\alpha = 4$ and $\beta = 8$

Answer: (c)

Solution:

$$_{92}^{238}U \xrightarrow{-6\alpha}_{74}^{206}X \xrightarrow{-8\beta}_{82}^{206}Pb$$

(X is a hypothetical element)

So, 6α particles and 8β particles should decay

Question: If the time period of simple pendulum is T, then find its time period inside a lift moving upward with an acceleration of gm/s^2

Options:

- (a) T
- (b) 2T
- (c) $\frac{T}{2}$
- (d) $\frac{T}{\sqrt{2}}$

Answer: (d)

Solution:

Time period of the pendulum $T = 2\pi \sqrt{\frac{\ell}{g}}$

So if the pendulum is in the lift and moving toward then net acceleration will be $a_{\text{\tiny net}} = g + g = 2g$

So, new time period
$$T' = 2\pi \sqrt{\frac{\ell}{a_{net}}}$$

$$T'=2\pi\sqrt{\frac{\ell}{2g}}$$

$$T'=2\pi\sqrt{\frac{\ell}{g}}\times\frac{1}{\sqrt{2}}$$

$$T' = \frac{T}{\sqrt{2}}$$

Question: Find the net deviation in the given figure.

Options:

- (a) 210°
- (b) 10°
- (c) 110°
- (d) 100°

Answer: (a)

Solution:

$$\delta_1=\pi\!-\!2i$$

$$\delta_{_2}=\pi-2i'$$

$$\delta_{\text{net}} = 2\pi - 2\theta$$

$$=360-2(75^{\circ})$$

$$=360-150^{\circ}=210^{\circ}$$

Question: In what condition apparent weight of man is lesser than actual weight. **Options:**

- (a) N = Mg
- (b) N < Mg
- (c) N > Mg
- (d) $N \neq Mg$

Answer: (b)

Solution:

Mans accelerates downwards

$$Mg - N = Ma$$

$$N = Mg - Ma$$

Question: If length of wire increased by 0.4 % s it is stretched, change in resistance = ? **Options:**

- (a) 0.4%
- (b) 0.2%
- (c) 0.6%
- (d) 0.8%

Answer: (d)

Solution:

We know

$$R = \frac{\rho \ell}{A}$$

Also,
$$V = A\ell$$

$$A = \frac{V}{\ell} \ (V = constant)$$

$$\Rightarrow R = \frac{\rho \ell^2}{V}$$

So,
$$\left(\frac{\Delta R}{R} \times 100\right) = 2\left(\frac{\Delta \ell}{\ell} \times 100\right)$$

$$\left(\frac{\Delta R}{R} \times 100\right) = 2 \times 0.4\%$$

$$= 0.8\%$$