MARKING SCHEME

Capacitive Reactance = $\frac{1}{\omega c}$ Alternatively: Impedance offered by a capacitor to the flow of current. SI Unit: ohm (Ω) Parallel / (along) to the direction of electron's velocity Alternatively: Anti parallel / opposite to the direction of electron's velocity $ \frac{\overline{T} = \frac{1}{\lambda}}{\frac{1}{\text{decay constant}}} $ Emf is greater than the terminal voltage when the cell is supplying a current. Alternatively: Emf equals terminal voltage only when the cell is on an open circuit (not supplying any current) Alternatively: Emf = $I(R + r)$	1/2 1/2 1	1 1 1 1 1 1
Alternatively: Impedance offered by a capacitor to the flow of current. SI Unit: ohm (Ω) Parallel / (along) to the direction of electron's velocity Alternatively: Anti parallel / opposite to the direction of electron's velocity $ \frac{\overline{T} = \frac{1}{\lambda}}{\frac{1}{\text{decay constant}}} $ Emf is greater than the terminal voltage when the cell is supplying a current. Alternatively: Emf equals terminal voltage only when the cell is on an open circuit (not supplying any current) Alternatively: Emf = $I(R + r)$	V 4000	1 1 1 iorm
Parallel / (along) to the direction of electron's velocity Alternatively: Anti parallel / opposite to the direction of electron's velocity $ \frac{\overline{T} = \frac{1}{\lambda}}{\lambda} $ Alternatively: mean life = $\frac{1}{\text{decay constant}}$ Emf is greater than the terminal voltage when the cell is supplying a current. Alternatively: Emf equals terminal voltage only when the cell is on an open circuit (not supplying any current) Alternatively: Emf = $I(R + r)$	1 1 Platiew	1 1 orm
Alternatively: mean life = $\frac{1}{\text{decay constant}}$ Emf is greater than the terminal voltage when the cell is supplying a current. Alternatively: Emf equals terminal voltage only when the cell is on an open circuit (not supplying any current) Alternatively: Emf = $I(R + r)$	1 Platies	1 orm
Emf is greater than the terminal voltage when the cell is supplying a current. Alternatively: Emf equals terminal voltage only when the cell is on an open circuit (not supplying any current) Alternatively: Emf = $I(R + r)$	ew Plat	iorm
Terminal Voltage = IR Alternatively: $V = \varepsilon - Ir$		
Photoelectric current increases with increase in intensity		
(Alternatively: It increases)	1	1
SECTION B		
Expression for capacitance 2 We have, in the absence of dielectric, $C_o = \frac{Q}{V_o} = \frac{Q}{E_o d}$ In the dielectric, the field goes down by a factor k $E = \frac{E_o}{k}$ $\therefore \text{ In the second case,}$ $V = \frac{E_o}{k} \cdot \frac{d}{2} + E_o \cdot \frac{d}{2}$	1/2	
	Alternatively: $V = \varepsilon - Ir$ Photoelectric current increases with increase in intensity (Alternatively: It increases) SECTION B Expression for capacitance 2 We have, in the absence of dielectric, $C_o = \frac{Q}{V_o} = \frac{Q}{E_o d}$ In the dielectric, the field goes down by a factor k $E = \frac{E_o}{k}$ \therefore In the second case,	Alternatively: $V = \varepsilon - Ir$ Photoelectric current increases with increase in intensity (Alternatively: It increases) 1 SECTION B Expression for capacitance 2 We have, in the absence of dielectric, $C_o = \frac{Q}{V_o} = \frac{Q}{E_o d}$ In the dielectric, the field goes down by a factor k $E = \frac{E_o}{k}$ \therefore In the second case,

Page 1 of 14 Final(Blind) Final(Blind)

	$= \frac{E_o d}{2} \left(\frac{1+k}{k} \right) = \frac{E_o d}{2k} (1+k)$ $\therefore \text{Capacitance} = C$ $C = \frac{Q}{V} = \frac{Q}{E_o d} \cdot \left(\frac{2k}{k+1} \right)$ $= C_o \left(\frac{2k}{k+1} \right)$ $= C_o \left(\frac{2k}{k+1} \right)$	1/2	2
Q7	Function of i. Transmitter ii. Transducer 1 Transmitter: To process the incoming message signal and to transmit it. Transducer: To convert other forms of signals into an electrical signal.	1	2
Q8	Meaning of Universal Gates 1 Truth table for NAND Gate 1 Universal Gates: These are gates that can be suitably combined to realize any of the other basic logic gates.(i.e., the AND, OR, NOT Gates) Truth table for NAND Gate	ew Plati	orm
	O O I O I I O I I O I I O I I O I I O I I O I I O I I O I O		2
	Intrinsic Semiconductor: A pure semiconductor Alternatively: A semiconductor having equal number of electrons and holes as charge carriers. Extrinsic Semiconductor: A pure semiconductor: A pure semiconductor that has been suitably doped with a 3 rd group or 5 th group element.	1	Inly 2017

Page 2 of 14 Final(Blind) 20th July, 2017

Q9 Identification 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Alternatively: A semiconductor in which the either the electrons (or the holes) are the majority charge carriers; the holes (or the electrons) are the minority charge carriers. Alternatively: A semiconductor in which there is a large difference in the number of electrons and holes, as charge carriers.	1	2
Derivation of the Expression for r_n 2 We have, for the hydrogen atom $m v_n r_n = n \frac{h}{2\pi}$ and $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\epsilon_o} \cdot \frac{e^2}{v_n^2}$ squaring the first equation, we get $m^2 v_n^2 r_n^2 = \frac{n^2 h^2}{4\pi^2}$ From the second equation, we get $mv_n^2 r_n = \frac{e^2}{4\pi\epsilon_o}$ Dividing, we get $mr_n = \frac{n^2 h^2}{4\pi^2} \cdot \frac{4\pi\epsilon_o}{e^2}$ $\therefore r_n = \frac{\epsilon_o h^2}{m\pi e^2} \cdot n^2$ $\therefore r_n \propto n^2$ V2 SECTION C Q11 (a) Working Principle 1 (b) Answers to each part 1+1 (a) The Working Principle of a meter bridge is the same as that	Q9	Two Properties ''2 + 1/2 The magnetic material is a diamagnetic material Two Properties i. Gets repelled by a magnet ii. Moves away from the region of stronger magnetic field. iii. Moves towards the region of weaker magnetic field. iv. Expels out the field lines of magnetic field.	$\frac{1}{2} + \frac{1}{2}$	2
$mr_n = \frac{n^2h^2}{4\pi^2} \cdot \frac{4\pi\epsilon_o}{e^2}$ $\therefore r_n = \frac{\epsilon_o h^2}{m\pi e^2} \cdot n^2$ $\therefore r_n \propto n^2$ SECTION C Q11 (a) Working Principle (b) Answers to each part 1-1 (a) The Working Principle of a meter bridge is the same as that		We have , for the hydrogen atom $m \ v_n r_n = n \ \frac{h}{2\pi}$ and $\frac{m v_n^2}{r_n} = \frac{1}{4\pi\epsilon_o} \cdot \frac{e^2}{r_n^2}$ squaring the first equation, we get $m^2 v_n^2 r_n^2 = \frac{n^2 h^2}{4\pi^2}$ From the second equation, we get $m v_n^2 r_n = \frac{e^2}{4\pi\epsilon_o}$	1/2\at	les.
Q11 (a) Working Principle (b) Answers to each part (a) The Working Principle of a meter bridge is the same as that		$mr_n = \frac{n^2 h^2}{4\pi^2} \cdot \frac{4\pi\epsilon_o}{e^2}$ $\therefore r_n = \frac{\epsilon_o h^2}{m\pi e^2} \cdot n^2$	1/2	2
Q11 (a) Working Principle (b) Answers to each part (a) The Working Principle of a meter bridge is the same as that		SECTION C		
of a balanced Wheatstone Bridge. i.e.,	Q11	(a) Working Principle 1 (b) Answers to each part 1+1 (a) The Working Principle of a meter bridge is the same as that	1	

Page 3 of 14 Final(Blind) 20th July, 2017

	$\frac{P}{Q} = \frac{R}{S}$ (b) (i) Thick Copper strips have (almost) zero resistance. Alternatively Thick Copper strips do not add additional resistance to the resistors being used. (ii) This results in a better accuracy in the measurements.	1	
Q12	Formulae for energy stored in the two cases $\frac{1}{2} + \frac{1}{2}$ Calculation of C_1 and C_2 1+1		3
	For the series combination $C_s = \frac{C_1 C_2}{C_1 + C_2}$		
	$\therefore \text{ Energy stored} = \frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) (200)^2 = 0.04 \text{J}$ For the parallel combination $C_p = C_1 + C_2$ $\therefore \text{ Energy stored} = \frac{1}{2} (C_1 + C_2)(200)^2 = 0.18 \text{J}$ $\therefore C_1 + C_2 = 9 \times 10^{-6} \text{F}$	1/2 1/2	J.S.
	Now, $C_1 C_2 = \frac{288}{16} \times 10^{-12} = 18 \times 10^{-12}$ Now, $(C_1 - C_2)^2 = (C_1 + C_2)^2 - 4C_1C_2$ $= (81 - 72) \times 10^{-12} = 9 \times 10^{-12}$	1/2	
	$\therefore C_1 - C_2 = 3 \times 10^{-6} \mathrm{F}$	1/2	
	$\therefore C_1 = 6\mu F \text{ and } C_2 = 3\mu F$	1/2 +1/2	3
Q13	Working of astronomical telescope 1 Writing the two formulae $\frac{1}{2} + \frac{1}{2}$ Calculating the two focal lengths $\frac{1}{2} + \frac{1}{2}$		

Page 4 of 14 Final(Blind) 20th July, 2017

Working:			
distant object in its focal pla	ronomical telescope forms an image of a ne. of the eye piece (normal adjustment) or	1/2	
within the focus of the eye p		1/2	
	$\frac{f_0}{f_e} \text{ and } L = f_0 + f_e$ $\therefore \frac{f_0}{f_e} = 20$ $f_0 + f_e = 105 \text{ cm}$	1/2 +1/2	
These give $f_e = 5$	cm and $f_0 = 100$ cm	1/2 +1/2	3
(a) Statement of the law (b) Formula Calculation of time	1/2		LES.
	number of radioactive atoms decay	ew Plat	
exponentially with the state of the exponentially with the state of the exponentially with the state of the exponentially with the exponential exponent	India's largest Stude	1/2	
The number of atoms left over $t = $	ver after a time $ \left(1 - \frac{7}{8}\right) N_0 = \frac{1}{8} N_0 $ $ = \frac{1}{8} N_0 $	1/2	
	$(2)^{3}$ $t = 3 \times \text{half life}$ $50 \text{ days} = 150 \text{ days}$	1/2 1/2	3
Q15 Names of three modes	1/2 +1/2+1/2		
Explanation of ionospheric re	eflection of radio waves 1½		
Three modes of propagation (i) Ground wave propagation (ii) Space wave propagation (iii) Sky wave propagation	opagation pagation	1/ ₂ 1/ ₂ 1/ ₂	
<u>Ionospheric Reflection</u>			

Page 5 of 14 Final(Blind) 20th July, 2017

The ionosphere contains a large number of ions or charged particles.	1/2	
The electric field of the incoming radio waves makes these charged particles oscillate at its own frequency. The oscillating charged particles then reradiate radio waves of the same frequencie back towards the earth.	1/2 S	
This phenomenon of bending of e.m. waves is similar to the phenomenon of total internal reflection in optics.	1/2	3
Q16 (i) Finding Power (ii) Stating lensmaker's formula $\frac{1}{2}$ Calculation of μ 1 $\frac{1}{2}$ (i) Power = $\frac{1}{\text{Focal length(in metre)}}$ $=\frac{1}{0.25}D = 4D$	1/2	
(i) We have $\frac{1}{f} = (\mu - 1)(\frac{1}{r_1} - \frac{1}{r_2})$ $\therefore \qquad \frac{1}{20} = (\mu - 1)(\frac{1}{20} - \frac{1}{(-25)})$ $= \frac{(\mu - 1)}{100} \times 9$	1/2	J.S.
$\therefore \mu - 1 = \frac{5}{9}$ $\therefore \mu = \left(1 + \frac{5}{9}\right) = \frac{14}{9} \approx 1.55$	1/2	3
Identification of each part $ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} $ One use of each part $ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} $		
(i) Microwaves	1/2 1/2 1/2 1/2 1/2 1/2 1/2	3

Page 6 of 14 Final(Blind) 20th July, 2017

Q18			
	(a) Definition 1 Nature 1 (b) Statement of the required expression for electric field 1		
	(a) Electric dipole moment $\vec{p} = (2aq)\hat{a}$ It is vector quantity (b) We have $\vec{E} = \frac{-\vec{p}}{(4\pi\epsilon_0)(r^2 + a^2)^{3/2}}$	1 1	3
010	[Alternatively: $\vec{E} = \frac{-\vec{p}}{4\pi\epsilon_0 r^3} (for r \gg a)$]		
Q19	Finding current drawn from the cell 2		
	Finding terminal p.d. of the cell	2	180.
	(i) Let R be the equivalent resistance of the parallel combination. We then have $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1/2	orm
	$\frac{1}{R} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} = \frac{1}{20}$ $= \frac{16}{20} = \frac{4}{5}$ $= \frac{1}{5} + \frac{1}{10} = \frac{1}{20} = \frac{1}{20} = \frac{1}{5} = 1$	6AA	
	$\therefore R = \frac{5}{4}\Omega = 1.25\Omega$	1/2	
	$Total\ Resistance = (1.25 + 0.25)\Omega$ $= 1.5\Omega$	1/2	
	$\therefore \text{Current drawn} = \frac{6V}{1.5\Omega} = 4A$	1/2	
	(ii) Terminal p. d. = $\varepsilon - Ir$	1/2	
	$= (6 - 4 \times 0.25)V$ $= 5V$	1/2	3
Q20			
	Obtaining the expression for the current in the circuit 2		
	Inductive Reactance ½		
	Phase ½		
	When an AC voltage $(V = V_0 \sin \omega t)$ is applied to an inductor (of self inductance L), we have		
	$V - L\frac{dI}{dt} = 0$	1/2	
	Where <i>I</i> is the instantaneous current.	1/2	
Dogo 7 of 14	Final(Plind)	1882	Inly 2017

Page 7 of 14 Final(Blind) 20th July, 2017

	1	
$\therefore L \frac{dI}{dt} = V = V_0 \sin \omega t$ $\therefore \frac{dI}{dt} = \frac{V_0}{L} \sin \omega t$ Integrating, we get $I = \frac{-V_0}{\omega L} \cos \omega t$ $= \frac{V_0}{\omega L} \sin \left(\omega t - \frac{\pi}{2}\right)$ $= I_0 \sin \left(\omega t - \frac{\pi}{2}\right)$	1/2	
$\mathbf{V}_{\mathbf{v}}^{\mathbf{z}}$		
where $I_0 = \frac{v_0}{\omega L}$		
This expression shows that (i) Inductive reactance = ωL (ii) The current lags the applied voltage, in phase, by $\frac{\pi}{2}$	1/2 1/2	3
(a) Definition of mutual inductance 1 Its SI unit ½ (b) Derivation of the expression for M 1½	A Plat	JES.
 (a) Mutual Inductance, of a pair of coils, equals the magnetic flux linked with one due to a unit current in the other. Alternatively, Mutual inductance of a pair of coils, equals the magnitude of the emf induced in one when the current in the other is changing at a unit rate. 		
The SI unit of mutual inductance is henry (H)		
 (b) Let n₁ and n₂ be the number of turns, per unit length, of the primary and secondary coils respectively. Let a current <i>I</i> flow through the primary. Then magnetic field, B = μ₀n₁I 	1/2	
The magnetic flux linked with each turn of the secondary = $(\pi r^2)B$ (r = (nearly)equal to the radius of each coil)	1/2	
∴ Total magnetic flux linked with its secondary coil $ \varphi = (n_2 l)(\pi r^2)B = MI $ $ (l = length \ of \ each \ coil) $ $ ∴ M = (\mu_0 n_1 n_2. \pi r^2 l) $	1/2	3

Q21			
21	Naming the three important features $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
	Finding the expression for work function 1½		
	Three features are		
	 (i) Independence of maximum kinetic energy from the intensity of incident radiation (ii) Existence of a threshold frequency (iii) Proportionality of maximum kinetic energy and frequency 		
	of incident light. (iv) Instantaneous nature of photoelectrons		
	(any three)	1/2 +1/2+1/2	
	We have $K_{max} = \frac{hc}{\lambda} - \phi_0$	1/2	
	$\therefore K = \frac{hc}{\lambda_1} - \phi_0$		E
	And $2K = \frac{hc}{\lambda_2} - \phi_0$ $\frac{hc}{\lambda_2} - \phi_0 - 2\left(\frac{hc}{\lambda_2} - \phi_0\right)$	1/2	
	$\lambda_{2} = \lambda_{0} - 2(\lambda_{1} + \lambda_{0})$ $\lambda_{0} = hc(\frac{2}{\lambda_{1}} - \frac{1}{\lambda_{2}})$ $\lambda_{0} = hc(\frac{2}{\lambda_{1}} - \frac{1}{\lambda_{2}})$	ew Plat	
	$=\frac{hc}{\lambda_1\lambda_2}(2\lambda_2-\lambda_1)$	1/2	3
Q22	Polarization by a polaroid 1		
	Explanation of 2 maxima and 2 minima in one complete rotation		
	The electric field vector of the unpolarized light can vibrate along either of the two directions perpendicular to its direction of propagation.	1/2	
	The Polaroid allows only one of these(perpendicular) vibrations to pass through it. Hence umpolarized light gets linearly polarized when passed through a Polaroid.	1/2	
	Let the pass axis of the second Polaroid be inclined at an angle θ to pass axis of the first Polaroid.		
	The intensity of light coming out of the second Polaroid $= I_0 \cos^2 \theta \text{ (Malus' law)}$ Where I_0 is the intensity of light incident on the second polaroid.	1/2	
Page 9 of 14	Final(Blind)	20th	Inly 2017

Page 9 of 14 Final(Blind) 20th July, 2017

	$\theta = 0^{\circ}$, $I = I_0 (\text{maxima})$		
	and when $\theta = \pi$, $I = I_0$ (maxima)	1/2	
	Also when	1/2	
	σ		
	$\theta = \frac{1}{2}$, $I = 0$ (minima)		
	and when	1/2	
	3π	/ 2	
	$\theta = \frac{1}{2}$, $I = 0$ (minima)		
	Z	1/	
	Hongo one would coe two movims and two minims when the cocond	1/2	
	Hence, one would see two maxima and two minima when the second		
	Polaroid is rotated through 2π	1/2	3
	SECTION D		
Q23	i. Names of the device		
	Principle of its working ½		
	ii. Possibility or not		E
	Explanation ½		13
	iii. Values displayed by the students and the teacher $1+1$		
	i. The transformer is used to bring high voltage ac down to low	1/2	
	values.	-101	OLII,
	It works on the basis of the phenomenon of electromagnetic	- N 1/2	
	induction.	64417	
	ii. No, not possible in case of dc. There would be no induced emf in	1/2	
		000 170	
	the secondary coil as the magnetic flux, linked with it, would not	1/2	
	be changing with time.		
	iii. Students:		
	Inquisitive, eager to learn (any one)	1	
	Teacher:		
	Helpful; knowledgeable, ready to share knowledge (any one)	1	4
	SECTION E	10	
Q24	a) Fabrication of npn transistors.		
	a) A npn transistor is fabricated by having a (thin) segment of a	1	
	p-type semiconductor between two segment of n type		
	semiconductors.		
	[The student has to write the answer for any two devices.]		
	b) -		
	i. Full Wave Rectifier:		
	A full wave rectifier uses two p-n junction diodes and a	1	
	transformer having a centre tapping in its secondary coil.		
	The circuit is set up in such a way that each diode sends the		
	current through the load in the same direction for both	1	
		1	
	directions of the input current in the primary coil.		
	ii. Transistor Amplifier: The amplifier uses the active region of		

Page 10 of 14 Final(Blind) 20th July, 2017

the V_o versus V_i curve of the transistor. A small change in the input signal (in the forward biased BE	1/2	
junction.) appears as a large change in the output signal (in the reverse biased CE junction).		
The energy, for amplification, is derived from the biasing batteries.	1/2	
iii. Zener diode:		
The Zener diode has a heavy doping in both its p and n	1/2	
region. The depletion layer is very thin. Hence even a small reverse		
voltage can cause a very strong electric field across the	1	
junction. This can cause a breakdown, resulting in a large		
reverse current. This feature helps the Zener down to work as a voltage	1/2	5
regulator.	7 2	
OR		
a) Reason for diffusion of holes.		
b) Effect of forward biasing on i. Barrier potential	012	3
ii. Depletion region ½	1 1 1	
with explanation $\frac{1}{2} + \frac{1}{2}$	- 1 - 1	form
c) Photodiode operation 2	iew Plac	
a) The holes diffuse from the p-side to n-side due to the presence of		
a) The holes diffuse from the p-side to n-side due to the presence of a concentration gradient (of the holes) on the two sides.	1	
b) 1 is a large		
i. Barrier Potential decreases The applied potential, during forward biasing, opposes the	1/2 1/2	
barrier potential.	/ 2	
ii. The width of the depletion layer decreases.	1/2	
The applied voltage mostly drops across the depletion region. The width of the depletion layer, therefore,	1/2	
decreases.	/ 2	
	4	
c) When light is made to fall on a photodiode, electron hole pairs get generated due to the absorption of photons.	1	
The photodiode is generally operated under reverse bias as that		
makes it easier to observe changes in current due to changes in	1	5
Q25 light intensity.		
Underlying principle 1 Working and explanation 1		
Cyclotron frequency expression 2		
Two uses $\frac{1}{2} + \frac{1}{2}$		
The cyclotron uses crossed electric and magnetic fields to accelerate	1/2	
charged particles, or ions, to high energies.		
The fields are so arranged, and adjusted, as to make the charged particles get continuously and repeatedly accelerated by the 'correct	1/2	
Description of 14		th T-1 2017

Page 11 of 14 Final(Blind) 20th July, 2017

Working: The particles are made to move inside two semicircular discs – called "dees" by a 'normal' magnetic field. The alternating electric field, applied between the "dees", accelerates them (in correct phase) when they cross the gap between the "dees". Many such repeated accelerations make the charged particles acquire high energies. Cyclotron Frequency: For a charged particle of mass m , charge q , moving with a velocity ν_i in a 'normal' magnetic field(B) we have $\frac{m\nu^2}{r} = q\nu B$ $\therefore \nu = \frac{q}{m}$ The time period, T , is given by $T = \frac{2\pi rm}{rqB} = \frac{2\pi m}{qB}$ $\therefore T = \frac{qB}{2\pi m}$ We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to ν_c . This makes the charged particle get accelerated every time it crosses the "dees". Two uses: Two uses: Two uses: A Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another 1 Expression for the force a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B$ if $q = 1$, $\nu = 1$ and $\theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			<u> </u>
discs — called "dees" by a 'normal' magnetic field. The alternating electric field, applied between the "dees", accelerates them (in correct phase) when they cross the gap between the "dees". Many such repeated accelerations make the charged particles acquire high energies. Cyclotron Frequency: For a charged particle of mass m , charge q , moving with a velocity v , in a 'normal' magnetic field(B) we have $\frac{mv^2}{r} = qvB$ $\therefore v = \frac{rqB}{m}$ The time period, T , is given by $T = \frac{2\pi rm}{rqB} = \frac{2\pi m}{qB}$ $\therefore T$ frequency v_c is given by $v_c = \frac{1}{T} = \frac{qB}{2\pi m}$ We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the "dees" and the content of the properties. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force 1 Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSIm\theta$) Now, $ \vec{F} = qvBSIm\theta$ $\therefore \vec{F} = B$ if $q = 1$, $v = 1$ and $\theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	half cycle' of the applied alternating electric field.		
Cyclotron Frequency: For a charged particle of mass m , charge q , moving with a velocity v , in a 'normal' magnetic field(B) we have $\frac{mv^2}{r} = qvB$ $\therefore v = \frac{rqB}{m}$ The time period, T , is given by $T = \frac{2\pi rm}{rqB} = \frac{2\pi m}{qB}$ $\therefore T = \frac{2\pi rm}{rqB} = \frac{2\pi m}{qB}$ $\therefore The frequency v_c is given by v_c = \frac{1}{T} = \frac{qB}{2\pi m} We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c. This makes the charged particle get accelerated every time it crosses the 'dees' \frac{1}{2} Two uses: i. Fo accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another Expression for the force 2 a) The required expression is \vec{F} = q\vec{v} \times \vec{B} (Also, accept F = qvBSin\theta) Now, \vec{F} = qvBSin\theta \therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2} We may, therefore, define the unit of magnetic field (the tesla) as$	discs – called "dees" by a 'normal' magnetic field. The alternating electric field, applied between the "dees", accelerates them (in correct phase) when they cross the gap between the "dees". Many	V-1	
moving with a velocity v , in a 'normal' magnetic field(B) we have $\frac{mv^2}{r} = qvB$ $\frac{rqB}{m}$ $\frac{rqB}{r}$ $\frac{rqB}{m}$ $\frac{2\pi r}{rqB} = \frac{2\pi m}{qB}$ $\frac{rqB}{rqB} = \frac{rqB}{rqB}$ $\frac{rqB}{rqB} = $			
	moving with a velocity v , in a 'normal' magnetic field(B) we have		
The time period, T , is given by $T = \frac{2\pi r}{v}$ $\therefore T = \frac{2\pi rm}{rqB} = \frac{2\pi m}{qB}$ $\therefore \text{The frequency } v_c \text{ is given by}$ $v_c = \frac{1}{T} = \frac{qB}{2\pi m}$ We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the 'dees' Two uses: i. To accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another 1 Expression for the force a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	$\therefore v = \frac{rqB}{}$		
	The time period, T , is given by $2\pi r$	1/2	
$v_c = \frac{1}{T} = \frac{qB}{2\pi m}$ We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the "dees" Two uses: i. To accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another Expression for the force a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	:T==	1/2	E
We call this frequency as the cyclotron frequency. It is seen to be independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the "dees" Two uses: i. Fo accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			1 8.
independent of the velocity and hence the energy of the charged particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the "dees" Two uses: i. To accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another Expression for the force a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $ \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as		1/2 lat	orm
particle. The frequency of the applied alternating electric field is kept equal to v_c . This makes the charged particle get accelerated every time it crosses the "dees" Two uses: i. To accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force 1 Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B$ if $q = 1$, $v = 1$ and $\theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	independent of the velocity and hence the energy of the charged	341	
v_c . This makes the charged particle get accelerated every time it crosses the "dees" Two uses:i. To accelerate charged particles for nuclear reactions.ii. To implant ions into solids to modify their properties.iii. To synthesise new materials.iv. To produce appropriate radioactive substances [Any two]ORa) Working the expression for force 1 Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B$ if $q = 1$, $v = 1$ and $\theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	particle.	1/2	
i. To accelerate charged particles for nuclear reactions. ii. To implant ions into solids to modify their properties. iii. To synthesise new materials. iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another Expression for the force 2 a) The required expression is $ \vec{F} = q\vec{v} \times \vec{B} $ (Also, accept $ F = qvBSin\theta $ Now, $ \vec{F} = qvBSin\theta$ $ \therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2} $ We may, therefore, define the unit of magnetic field (the tesla) as	v_c . This makes the charged particle get accelerated every time it crosses the "dees"		
iv. To produce appropriate radioactive substances [Any two] OR a) Working the expression for force 1 Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	i. To accelerate charged particles for nuclear reactions.ii. To implant ions into solids to modify their properties.	1/2 + 1/2	5
a) Working the expression for force Defining the unit of magnetic field. b) Action of 'magnetic field' on one – another Expression for the force a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B$ if $q = 1, v = 1$ and $\theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			
a) Working the expression for force Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			
Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1 Expression for the force 2 a) The required expression is $\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			
$\vec{F} = q\vec{v} \times \vec{B}$ (Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	Defining the unit of magnetic field. 1 b) Action of 'magnetic field' on one – another 1		
(Also, accept $F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			
$F = qvBSin\theta$) Now, $ \vec{F} = qvBSin\theta$ $\therefore \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as	. ■		
$ \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$ We may, therefore, define the unit of magnetic field (the tesla) as			
We may, therefore, define the unit of magnetic field (the tesla) as			
	$ \vec{F} = B \text{ if } q = 1, v = 1 \text{ and } \theta = \frac{\pi}{2}$		
	We may, therefore, define the unit of magnetic field (the tesla)	as	_

Page 12 of 14 Final(Blind) 20th July, 2017

	follows. The magnetic field, at a point, equals one tesla, if a charge of one coulomb, moving with a speed of 1 m/s, along a direction normal	1	
	to the direction of the magnetic field, experiences a force of one		
	newton. [Also accept if the student says that $B=1$ tesla if for $q=1$ C,		
	$v = 1$ m/s, $\theta = \pi/2$, the force $F = 1$ N		
	$ec{F} = q ec{v} imes ec{B}$	4.7	
	b) For two long straight parallel conductors, carrying currents, i. The current, in one of the wires produces a ('normal to the current') magnetic field at all points on the second wire.	1/2	
	ii. The second current carrying wire then experiences a force due to this (normal) field.	1/2	
	Expression: The current I_1 , in the first wire, produces a (normal) magnetic field, B_1 , at any point on the second wire. We have		
	$B_1 = \frac{\mu_0 I_1}{2\pi d}$	1/2	E
	The force, F_{12} , on a length ℓ of the second wire, carrying a current I_2 , is given by		S.
	$F_{12} = \mu_0 I_2 \ell B_1$ $\mu_0 I_1 I_2$	1/2	OLW
	$==\frac{\mu_0 r_1 r_2}{2\pi d} \ell$	ew Pro	
	Hence the force per unit length, of either wire, is given by	1/2	
	$F = \frac{\mu_0 r_1 r_2}{2\pi d}$, -	
	This is the required expression	1/2	5
026	India		
Q26	a) Secondary wavelets		
	Formation of diffraction pattern 2		
	b) Relation between angular widths 1½		
	c) Explanation of maxima becoming weaker and weaker 1		
	a) Huygen's theory of secondary wavelets tells us that each		
	point, on a wavefront, can be regarded as a 'power of	1/2	
	secondary wavelets'.		
	Let a beam of monochromatic light be incident normally on a		
	narrow slit of width a.	Saa IIS a	
	We can imagine the incident plane wavefront, on the slit, to	1/2	
	be subdivided into an appropriate number of equal parts.		
	We get maxima at these points on the slit where there is some	1/	
	'in-phase' contribution of the secondary wavelets from the whole slit or a odd numbered fractional part of the slit.	1/2	
	We get minima at those points on the slit where the overall		
	contributions of the secondary wavelets (from different even	1/2	
	numbered parts of the slit) are in opposite phase.	/ 2	
	The combination, of the points of maxima and minima,	1/2	
	appears as a diffraction pattern on the screen.		

Page 13 of 14 Final(Blind) Final(Blind)

b) The angular width of the central maxima is $\theta_0 \simeq \frac{2\lambda}{a}$	1/2	
The first minima occurs at $\theta_1 = \frac{\lambda}{a}$		
The first secondary maxima occurs at $\theta_2 = \frac{1}{2} \frac{\lambda}{a}$	1/2	
Hence the angular width of the first diffraction fringe is		
$2\left[\frac{\lambda}{-} - \frac{1}{2}\lambda\right] = \frac{\lambda}{-}$	1/2	
a a a a a a a a a a		
central fringe.		
c) The maxima are given by $(1) \lambda$		
$\theta = \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$		
With increasing n, the (odd fractional) part of the slit,		
contributing to the maxima, keeps on decreasing. (Alternatively:		
The parts of the slit, contributing to the maxima, are the		
fractions $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{5}$, of the whole width of the slit)	1/2	E
Hence, the maxima became weaker and weaker with	1/2	1 50.
increasing <i>n</i> . OR		
a) The required writing relation 2	plat	OIII
b) Writing the similar relation Obtaining the long malver's formula	en,	
Obtaining the lens maker's formula 2		
a) Let <i>u</i> and <i>v</i> denote the 'positions' of the object and the image. The relation between the different quantities is		
n_1 n_2 n_1 n_2 n_1		
b) A similar relation for the second conceys spherical surface	2	
b) A similar relation for the second concave spherical surface, having a radius of curvature R' is		
$(n_1 n_2) - (n_1 n_2)$		
$(\overline{v'} - \overline{v}) - (\overline{(R')})$ Adding the two expressions, we get	1	
Adding the two expressions, we get		
$\frac{n_1}{v'} - \frac{n_1}{u} = (n_2 - n_1) \left(\frac{1}{R} - \frac{1}{R'} \right)$	5 and 175 per	
v' u R'	1/2	
When $u \to \infty$, we have $v' = f$.	1/2	
Hence, for this case, we have		
$\frac{n_1}{f} - 0 = (n_2 - n_1) \left(\frac{1}{R} - \frac{1}{R'} \right)$		
$\frac{1}{2} = \frac{1}{2} = \frac{(n_2 - n_1)}{(\frac{1}{2} - \frac{1}{2})}$		
$ or \frac{1}{f} - 0 = \frac{1}{(n_1)} \left(\frac{1}{R} - \frac{1}{R'} \right) $	1/2	
$\therefore \frac{1}{f} = (n-1)\left(\frac{1}{R} - \frac{1}{R'}\right)$	/ 4	
This is the lens maker's formula	1/2	5

Page 14 of 14 Final(Blind) Final(Blind)

