GGSIPU mathmatics 2014

1. For integers m,n,s \geq 0 $\sum_{k}^{n-r+8} C_k^{n+r-s} C_{n-k}^{r+k} C_{m+n}$ is equal to

a 0 b $^{n}C_{m}$ $^{s}C_{\pi}$

(Cm Cn d Cn Cr

2. $\lim_{x\to\infty}\sin x$ is equal to

a 0

b 00

c exists is finite and non -zero

d Does not exist

3. If x = a+b, y = $a\omega + b\omega^2$, z = $a\omega^2 + b\omega$, then xyz equals to where, ω is the cube root of unity

 $a a+b b a ^2+b^2$

 $c a^3+b^3 d a^4+b^4$

4. $\lim_{n\to\infty} \left(\frac{2n^3}{2n^2+3} + \frac{1-5n^2}{5n+1} \right)$ is equal to

a 0 b 1

(c) ./5 d ∞

5. $\lim_{x \to \frac{\pi}{6}} \frac{\sin(x - \frac{\pi}{6})}{\sqrt{3 - 2\cos x}}$ is equal to

0 b 1

(a) 1 d ...

6. $\lim_{x\to\infty} \left(\frac{2x^2+3}{2x^2+5}\right)^{8^{x^2}+3}$ is equal to

a 0 b 1

(ce 8 de -8

7. For y = $\frac{x}{x^2-1}$, $\frac{d^n y}{dx^n}$ is equal to

a
$$\frac{n!}{2} \left[\frac{1}{(x-1)^n} + \frac{1}{(x-1)^n} \right]$$

b
$$\frac{(-1)^n n!}{2} \left[\frac{1}{(x+1)^n} - \frac{1}{(x-1)^n} \right]$$

c
$$\frac{n!}{2} \left[\frac{1}{(x+1)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right]$$

d
$$\frac{-1)^n n!}{2} \left[\frac{1}{x+1)^{n+1}} - \frac{1}{x-1)^{n+1}} \right]$$

- 8. Find the slope of the normal to the curve $4x^3+6x^2-5xy-8y^2+9x+14=0$ T the point -2,3.
 - a ∞ b 11
 - (c) $\frac{9}{2}$ d $\frac{2}{9}$
- 9. $\lim_{x\to 0} \frac{\sin 3x^2}{Ln\cos (2x^2-x)}$ is equal to
 - a 0 b -6
 - (c) 1 (d) ∞
- 10. $\int_{-\pi/2}^{\pi/2} \cos x \ln \left(\frac{1+x}{1-x}\right) dx$ is equal to
 - a 0 b $\frac{\pi^2}{4} \left(-1 + \frac{\pi}{2} \right)$
 - (c) 1 d $\frac{\pi^2}{2}$
- 11. $\lim_{n\to\infty} \left(\frac{\sqrt[3]{n!}}{n}\right)$ is equal to
 - a 0 b 1
 - (c) -1 de -1
- 12. $\int_0^x \sqrt{\frac{1+\cos 2x}{2}} \, dx \text{ equals to}$
 - a 0 b 2 c 4 d -2
- 13. The quadrangle with the vertices A -3,5,6, B1, -5,7,C8, -3,-1 and D4,7, -2 is a
 - a square b rectangle
 - c parallelelogram d trapezoid

- 14. |a| = |b| = 5 and the angle between a and b is $\frac{\pi}{4}$. The area of the triangle constructed on the vectors a-2b and 3a+2b is

 - a 560 b 50 $\sqrt{2}$
 - c $\frac{50}{\sqrt{2}}$ d 100
- 15. In the triangle with vertices A1, -1,2, B5, -6,2 and C(3 -1 find the altitude n = | BD |.
 - (a 5 b 10 c 5 $\sqrt{2}$ d $\frac{10}{\sqrt{2}}$

- 16. If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, then a,b and c are in
 - a AP b HP
 - c GP d Both b and c
- 17. Given lines
 - $L_1: \frac{x}{-2} = \frac{y-1}{0} = \frac{z+2}{1}$
 - $L_2: \frac{x+1}{0} = \frac{y+1}{2} = \frac{z-2}{-1}$
 - Find the distance between the given straight lines.

- a 12 b $\frac{\sqrt{21}}{12}$ c $\frac{21}{\sqrt{12}}$ d $\frac{12}{\sqrt{21}}$
- 18. Compute the shortest distance between the circle $x^2+y^2-10x-14y-151=0$ and the point -7,2.
 - a 0 b 1 c 2 d 4
- 19. On the ellipse $9x^2+25y^2=225$, find the point the distance from which to the our focus F_1 is four times the distance to the other focus F2,
 - a $[-15,\sqrt{63})$ $\left(\frac{-15}{4},\frac{\sqrt{63}}{2}\right)$
 - c $\left(\frac{-15}{4}, \frac{\sqrt{63}}{4}\right)$ d $\left(\frac{-15}{2}, \frac{\sqrt{63}}{2}\right)$
- 20. On the parabola $y^2 = 64x$, find the point nearest to the straight line 4x+3y-14 = 0.
- -24,9 b 9,12
- -9,24 d 9, -24

- 21. The determinant $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$ is divisible by

 - a x-y b x^2-y^2+xy
 - $c x^{2}+xy+y^{2} d x^{2}-xy+y^{2}$
- 22. The curve $5x^2+12xy-22x-12y-19=0$ is
 - a ellipse
- b parabola
- c hypeoola
- d parallel straight lines
- 23. The derivative of $y = x^{2^x}$ w-r.t. x is
 - a $x^{2x} 2^x \left(\frac{1}{x} + \ln x \ln 2 \right)$ (1 $x^{2x} \left(\frac{1}{x} + \ln x \ln 2 \right)$
 - $(x^{2^x}2^x\left(\frac{1}{x}+\ln x\right)) \qquad d \qquad x^{2^x}2^x\left(\frac{1}{x}+\frac{\ln x}{\ln 2}\right)$
- 24. $\lim_{x\to \frac{\pi}{2}}(\pi-2x)^{\cos x}$ is equal to
 - a0 b1 ce de -1
- 25. $\int_0^1 x \tan^{-1} x dx is equal to$

 - a $\frac{\pi}{4}$ b $\frac{\pi}{4} + \frac{1}{2}$
 - $c = \frac{\pi}{4} \frac{1}{2} \quad d = \frac{1}{2}$
- 26. $\int_0^{\pi/3} \frac{\cos \theta}{5-4\sin \theta} \ d\theta \ \text{ equal to}$
 - a $\frac{1}{4}\log\left(\frac{5}{5+2\sqrt{3}}\right)$ (i $\frac{1}{4}\log\left(\frac{5}{5-2\sqrt{3}}\right)$
 - c $\frac{1}{4}\log\left(\frac{5+2\sqrt{3}}{5}\right)$ (c $\frac{1}{4}\log\left(\frac{5-2\sqrt{3}}{5}\right)$
- 27. $\int \frac{x \, dx}{1+x)^{3/2}}$ is equals to
 - a 2 $\frac{(2+x)}{\sqrt{1+x}}$ + C b $\frac{2+x}{\sqrt{1+x}}$ + C
 - c $\frac{3}{2} \frac{x}{\sqrt{1+x}} + C$ d $\frac{3}{2} \frac{2+x}{\sqrt{1+x}} + C$
- 28. $\int a^x dx$ is equal to

a
$$\frac{a^x}{x \log a}$$
 + C b $a^x \log a$ + C

(c)
$$\frac{a^x}{loga}$$
 + C d $\frac{xa^x}{loga}$ + C

29. $\int_{-\pi}^{\pi} (\cos px - \sin qx)^2 dx$, where p and q are integers, is equal to

-π **b 0**

c π **d2** π

30. The solution of the differential equation $x^2-y^2dx + 2xy dy = 0$, is

 $a x^{2}-y^{2} = Cx b x^{2}-y^{2} = Cy$

 $c x^{2}+y^{2} = Cx d x^{2}-y^{2} = Cy$

31. The solution of the differential equation $\frac{d^{2y}}{dx^2}$ + 3y = -2x is

a c $_{1}\cos\sqrt{3x}+c_{2}\sin\sqrt{3x}-\frac{2}{3}x^{2}$

b c $_{1}\cos\sqrt{3x}+c_{2}\sin\sqrt{3x}\cdot\frac{4}{5}$

c c $_{1}\cos\sqrt{3x}+c_{2}\sin\sqrt{3x}-2x^{2}+\frac{4}{9}$

d c $_{1}\cos\sqrt{3x}+c_{2}\sin\sqrt{3x}\cdot\frac{2}{3}x^{2}+\frac{4}{9}$

32. Angles A, B, C of a \triangle ABC are in AP and b:c = $\sqrt{3}+\sqrt{2}$, then the \angle A is given by

a 45 ° b 60 °

c 75 ° d 90 °

33. The angle between the vectors $\mathbf{a} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and $\mathbf{b} = \hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ is

a sin 1/9 b cos 18/9

c sin-1(8/9) d d cos-1(1)

34. The straight line $\mathbf{r} = \hat{\imath} - \hat{\jmath} + \hat{k} + \lambda 2 \hat{\imath} + \hat{\jmath} - \hat{k} = 4$ are

a perpendicular to each other

b parallel

c inclined at an angle 60 °

- d inclined at an angle 45 °
- 35. If two cards are drawn simultaneously from the same set, the probability that atleast one of them will be the ace of hearts is

a
$$\frac{1}{13}$$
 b $\frac{1}{26}$ c $\frac{1}{52}$ d $\frac{3}{13}$

- 36. In a class there are 10 boys and 8 girls. When 3 students are selected at random, the probability that 2 girls and 1 boy are selected is
 - a $\frac{35}{102}$ b $\frac{15}{102}$
 - c $\frac{55}{102}$ d $\frac{25}{102}$
- 37. If M and N are any two events, the probability that exactly one of them occurs is for an event set A, the complement is A⁰

a PM + PN
$$-2PM \cup N$$

b PM + PN
$$-$$
 PM \cup N

d PM
$$\cup N^0 + PM$$
 $^0 \cup N$

38. If three squares are chosen an a chess board, the chance that they should be in a diagonal line is

a
$$\frac{7}{144}$$
 b $\frac{5}{744}$

(c)
$$\frac{7}{544}$$
 d $\frac{11}{744}$

39. Let A = $\binom{3}{-1} \binom{1}{2}$, then

a A
$$^{2}+7A-5/=0$$
 b A $^{2}-7A+5/=0$

$$c A^{2}+5A-7/=0 d A^{2}-5A+7/=0$$

40. $\int_0^1 \frac{dx}{1+x+x^2}$ is equal to

a
$$\frac{\pi}{\sqrt{3}}$$
 b $\frac{\pi}{2\sqrt{3}}$ c $\frac{2\pi}{3\sqrt{3}}$ d $\frac{\pi}{3\sqrt{3}}$

41. A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product. A and 420 consumers like product B. Then, the least number of consumers that must have liked both the products is

42. The polar

number z =

X _	_ 5	2	1	4	3	(-1
Υ	5	8	4	2	10	$cos\frac{\pi}{3} + isin\frac{\pi}{3}$

form of complex

$$a \quad \frac{1}{\sqrt{2}} \left(\cos \frac{3\pi}{12} + i \sin \frac{3\pi}{12} \right)$$

b
$$\sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$$

c
$$\sqrt{2}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$$

d
$$\frac{1}{\sqrt{2}} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$$

43. The equation of the plane passing through the points 2,2,1, 9,3,6 and perpendicular to the plane 2x+6y+6z=1 is

c
$$3x+4y -5z-9 = 0$$
 d $x+4y -9z-3 = 0$

44. The line of regression of y on x for the following data

Is given by

a
$$Y+0.4x = 1$$
 b $y+0.5x = 5$

c
$$y+0.4x = 7$$
 d $y+1.4x = 7$

45. The measure of the chord intercepted by circle $x^2+y^2=9$ and the line x-y+2 = 0 is

a
$$\sqrt{28}$$
 b 2 $\sqrt{5}$ c 7 d 5

46.
$$\tan^{-1} \sqrt{3} - \cot^{-1} - \sqrt{3}$$
 equals to

a 0 b 2
$$\sqrt{3}$$
 c $-\frac{\pi}{2}$ d π

47. The sum of the deviations of the variates from the arithmetic mean is always

- 48. A single letter is selected at random from the word "PROBABILITY". The probability that it is a vowel is
 - $a \quad \frac{8}{11} \qquad \qquad b \quad \frac{4}{11}$
- 49. An object is observed from three points A,B and C in the same horizontal line passing through the base of the object. The angle of elevation at B is twice and at C thrice that at A. If AB = a, BC = b, then the height of the object is
 - $a \quad \frac{a}{2b} \sqrt{(a+b)(3b-a)}$
 - b $\frac{a}{2b}\sqrt{(a-b) 3b-a}$
 - c $\frac{a}{2b}\sqrt{(a-b)(3b+a)}$
 - d $\frac{a}{2b}\sqrt{(a+b)(3b+a)}$
- 50. The angle between the lines whose direction ratios are 1,1,2, $\sqrt{3}$ -1, $\sqrt{3}$ -1,4 is
 - a cos $\left(\frac{1}{65}\right)$ o $\frac{\pi}{6}$
 - c $\frac{\pi}{3}$ d $\frac{\pi}{2}$