MARKING SCHEME SET 55/1/RU

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1, Q1 Set2,Q5 Set3,Q4	Self inductance of the coil is numerically equal to magnetic flux linked with it when unit current flows through it. / Self inductance is numerically equal to induced emf in the coil when rate of change of current is unity.	1/2	
	Unit- Henry or / volt-second/ ampere / weber ampere ⁻¹	1/2	1
Set 1, Q2 Set 2,Q3 Set 3,Q1	Scattering of the blue colour is maximum due to its shorter wavelength / As per Rayleigh scattering law, the amount of scattering varies inversely with the fourth power of wavelength.	1	
Set 1, Q3 Set 2,Q4 Set 3,Q5	T_1 Since slope(= $\frac{1}{Resistance}$) of T_1 is greater / Resistance of the wire at T_1 is lower.	1/2	1
Set 1, Q4 Set 2,Q2 Set 3,Q3	Point to Point communication mode Review P	atro	1
Set 1, Q5 Set 2,Q1 Set 3,Q2	Due to conservative nature of electric field / These lines start from the positive charges and terminate at the negative charges. Alternatively, There are two kinds of electric charges (positive and negative) (which acts as the 'source' and 'sink' for the electric field lines.)	1	1
	Section B		
Set 1, Q6 Set 2,Q8 Set 3,Q10	Formula for Energy Formula for de-Broglieg wavelength Calculation Effect on wavelength h h		
	$\lambda = -\frac{1}{p} = \frac{1}{\sqrt{2mK}}$ $\frac{\lambda_1}{\lambda_4} = \sqrt{\frac{K_4}{K_1}}$	1/2	
	But $K_n (= -E_n) \propto \frac{1}{n^2}$	1/2	
	Hence $,\frac{\lambda_1}{\lambda_4} = \sqrt{\frac{1}{16}}$ $ \therefore \frac{\lambda_1}{\lambda_4} = \frac{1}{16}$	1/2	
	$\lambda_4 = 4\lambda_1$ i.e. $\lambda_4 > \lambda_1$	1/2	

Page 1 of 16 Final draft 17/03/15 04:30p.m.

	Altomotivoly		
	Alternatively $h \rightarrow \lambda$		
	$\lambda_n = \frac{\pi}{m} = \frac{\pi}{mnn}$	1/2	
	$p_n mv_n$	/ 2	
	Velocity of electron in n th state $v_n \propto \frac{1}{n}$	1/2	
	$\lambda \propto \frac{1}{2} \cdot \lambda \propto n$	-	
	$\lambda_n \propto \frac{1}{v_n} : \lambda \propto n$	1/2	
	$\cdot \frac{\lambda_4}{\mu} - \frac{n_4}{\mu} - \frac{4}{\mu}$		
		1/2	
			2
Set 1, Q7 Set 2,Q6 Set 3,Q9	Any two Factors		
Set 2,Q6	Any two Factors 1+1		
Set 3,Q9	1. Size of the antenna or aerial or $(L \sim \frac{\lambda}{4})$		
	2. Increase in effective power radiated by an Antenna (OR		
	7. 2	1 + 1	
	Power radiated $\alpha \left(\frac{1}{\lambda}\right)^2$		
	3. To minimize mixing of signals from different transmitters		
	(Any two)	_	
Set1, Q8	Labeling of surrent in different branches of the singuit	3	
Set 2,Q9 Set 3,Q7	Labeling of current in different branches of the circuit Calculation		
Set 3,Q7	Result		
	Result	latfor	
	ileW.		
	3Q + 3R		
	F WW 7 TOUR		
	1		
	dia SR1		
	Man SE		
	2222	1/2	
	A C		
	6 W l_3 B $l_4 \text{ W}$		
	4 V		
	According to Kirchoff's Junction law at B	1/2	
	$i_3 = i_1 + i_2 \therefore i_3 = i_1$	1/2	
	(As $I_2=0$ (given))		
	Applying second law to loop AFEB		
	$i_3 \times 2 + i_3 \times 3 + i_2 R_1 = 1 + 3 + 6$	1/2	
	$\therefore i_3 = i_1 = 2A$, -	
	From A to D along AFD $\therefore V_{AD} = 2i_3 - 1 + 3 \times i_3$	1/2	
	= (4-1+6)V		
	=9V		
	[Alternatively, if the student determine value of V_{AD} by finding the value of		
	R, award full marks.]		
	[Note: If the student just writes Kirchoff's rules, award ½ mark]		

Page 2 of 16 Final draft 17/03/15 04:30p.m.

G .1 .00		1	
Set1, Q9	Formula for magnification ½		
Set 2,Q10 Set 3,Q8	Substitution and Calculation		
Set 3,Q8	Result		
	ACSUIT		
	$M = m_0 \times m_e$		
	$=\frac{L}{c}\left(1+\frac{D}{c}\right)$	1/2	
	$f_0 \setminus f_e$	1/2	
	$: 30 = \frac{L}{100} \left(1 + \frac{25}{50}\right)$	1/2	
	1.25 \ 5 /	1/2	
	$30 \times 1.25 = L \times 6$	1/2	
	$L=5\times1.25$	1/2	
	$= 6.25 \ cm$	72	2
	Δ D		
	Formula for magnification 1/2		
	Calculation & Result		
	Angular magnification		
	Height of image	A E	
		0.0	
	f_o	1/2	
	$M=\frac{1}{f_c}$	LEOUT	0
	$\therefore M = \frac{150}{100} = 30$	1/2	
	1 1 5 Tolowiew '		
	For objective lens, $\frac{1}{v_o} - \frac{1}{u_o} = \frac{1}{f_o}$		
	$\overline{v_o} = \overline{1.5} - \overline{3000}$		
	3000	1,	
	$\therefore v_o = \frac{1}{1999} \approx 1.5$	1/2	
	h_i v_o		
	$\frac{1}{h_o} = \frac{3}{u_o}$		
		1/	
	$h_i = 100 \times \frac{1.5}{3 \times 10^3} = .05 m$	1/2	
	Alternatively,		
	Angular size of the object= $\frac{100}{3 \times 1000}$ radian = $\frac{1}{30}$ radian	1/2	
	∴ Angular size of image= $(\frac{1}{30} \times 30)$ radian = 1 radian	1/2	
	∴ Height of image= $1 \times \left(\frac{5}{100}\right)$ m = 0.05 m	1	
	(100)		2
Set1, Q10	Eomav1a		
Set 2,Q7	Formula ½ Substitution of correct value in formula ½		
Set 3,Q6			
	Value of λ Region of wavelength		
	Region of wavelength		
	$\left \frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \right $	1/2	
	For shortest wavelength in Balmer series	/ 2	
	$n_1 = 2$ $n_2 = \infty$		
		/15 0/1.30	

Page 3 of 16 Final draft 17/03/15 04:30p.m.

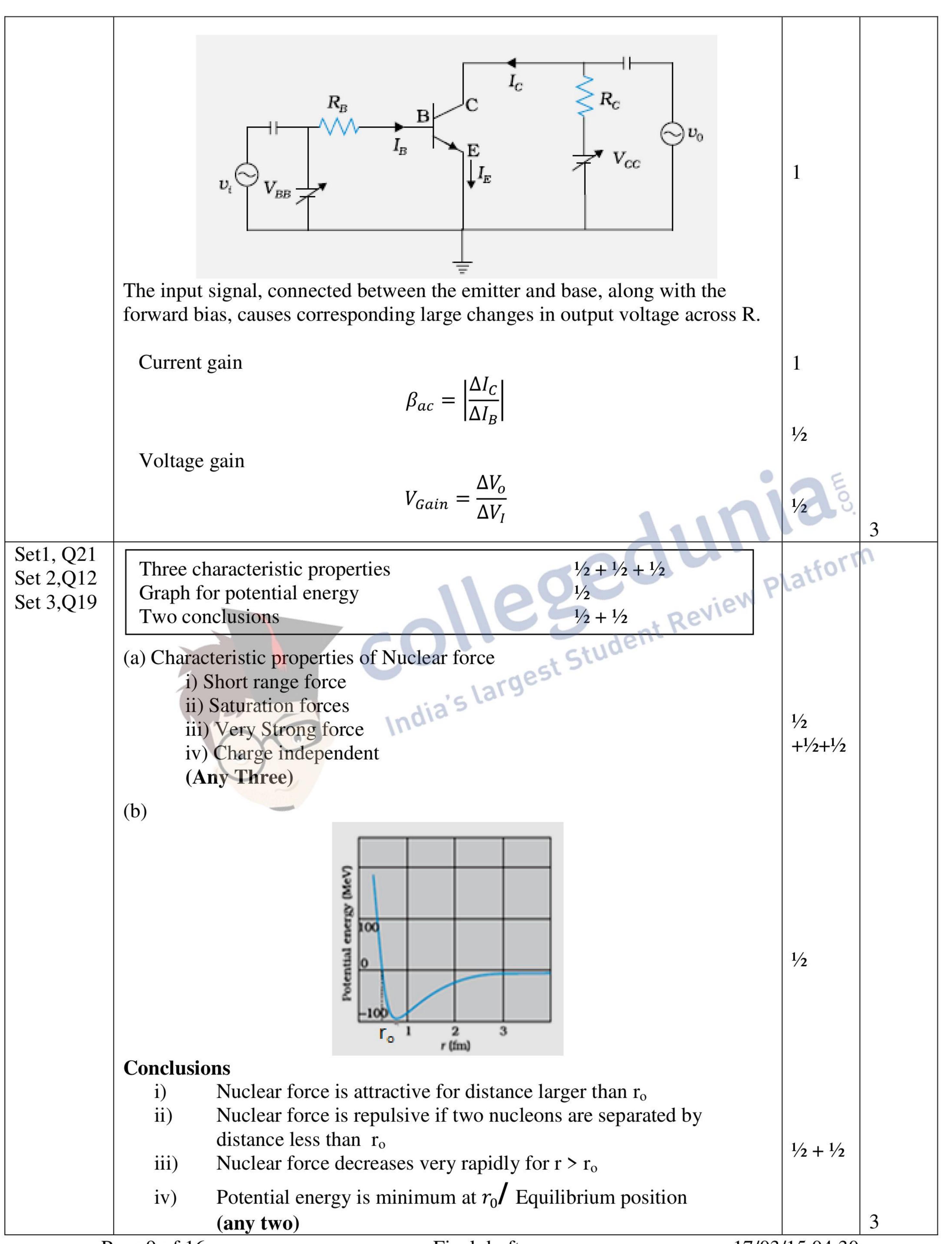
s e s			
	$\therefore \frac{1}{\lambda} = R \left(\frac{1}{4} - \frac{1}{\infty} \right)$ $= \frac{R}{4}$ $1 - 264049$	1/2	
	$\lambda = 3640A^{o}$ $\therefore R = 1.09 \times 10^{7} m^{-1}$ [Note: Since the value of P is not given, exceed full marks to the condidate if	1/2	
	[Note: Since the value of R is not given, award full marks to the candidate if he writes $\lambda = \frac{4}{R}$]		
	It will lie in Ultra Violet region (Give ½ mark if the student just writes, visible region)	1/2	
	Section C		2
Set 1, Q11 Set 2,Q18 Set 3,Q15	Formula for net capacitance and its calculation $\frac{1}{2} + \frac{1}{2}$ Calculation for net charge $\frac{1}{2}$ Formula and calculation for P.d $\frac{1}{2}$ Formula and calculation for energy stored $\frac{1}{2} + \frac{1}{2}$		
	Net Capacitance, $\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$ $\frac{1}{c} = \frac{1}{20} + \frac{1}{30} + \frac{1}{15}$		
	Net Charge on Capacitors $q = CV$ $= \frac{20}{3} \times 10^{-6} \times 90 \text{ C}$ $= 600 \times 10^{-6} \text{ C}$ $= 600 \mu C \text{ (0.6 mC)}$ $\therefore P. d \ across \ C_2 = \frac{q}{C_2}$ $= \frac{600 \times 10^{-6}}{30 \times 10^{-6}} V$	1/2	
	=20 V	1/2	
	Energy stored in capacitoracross $C_2 = \frac{1}{2}C_2V_2^2$ = $\frac{1}{2} \times 30 \times 10^{-6} \times 400$	1/2	
	$= \frac{2}{2} \times 30 \times 10^{-3} \times 400$ $= 6 \times 10^{-3} J (= 6mJ)$	1/2	3
Set 1, Q12 Set 2,Q19 Set 3,Q16	Derivation of the Relation 2 Effect on drift velocity 1		
	There being a random distribution, in the velocities of the charge carriers, their average velocity can be taken to be zero.	1/2	
	We have, $F = ma = e F_E$ ($F_E = electric field$) $\therefore a = \frac{eF_E}{e}$	1/2	
	If τ is the average time between collisions (called 'relaxation time')	1/2	

Page 4 of 16 Final draft 17/03/15 04:30p.m.

		1/-	
	$v_d = \frac{eF_E \tau}{r}$	72	
	m = m		
	Now $F_{-} = \frac{P.D}{P.D}$. For given F, the field becomes $\frac{1}{2}rd$ when the length is		
	Now, $F_E = \frac{P.D}{distance}$: For given E, the field becomes $\frac{1}{3}rd$ when the length is	1/2	
	made 3 times. Hence, $v'_d(New) = \frac{1}{3}v_d$		
	$\therefore \nu_{a'} = \frac{\nu_d}{}$	1/2	
	[Note: If explained by any other enpropriete method expand 1 mark for the		
	[Note: If explained by any other appropriate method award 1 mark for the explanation]		
C-41 O12			3
Set 1, Q13 Set 2,Q20	Explanation of Polarization through polarizer 1		
Set 2,Q20 Set 3,Q17	Variation in I ₁ and I ₂		
500,017	Relation between I ₁ and I ₂		
	Let unpolarized light be incident on a polaroid; its electric vectors, oscillating		
	in a direction perpendicular to that of the alignment of the molecules in the	1	
	polaroid, are able to pass through it while the component of light along the aligned molecules gets blocked. Hence the light gets linearly polarised.		
		3 8	
	[Note : If student gives labelled diagram, award full marks.]	8.	
	I_1 will remain unaffected whereas I_2 will decrease from maximum (= I_0 /2) to	1	
	zero of the incident light. $\left(I_1 = \frac{I_0}{2}\right)$	FOLL	U
		fari	
	$I_2 = I_1 \cos^2 \theta$ $I_2 = (I_0 / 2) \cos^2 \theta$	1	3
	ctude		
Set1, Q14	Definition of Modulation index		
Set 2,Q21	Reason Calculation of USB and LSB		
Set 3,Q18	Calculation of USB and LSB 4/2 +1/2 Amplitude of AM		
	7 Kimphitude on 7 Kivi		
	The ratio of amplitude of modulating signal (E _m) and amplitude of carrier	1	
	wave (E_C) is called modulating index.		
	[Note: Also accept if only the formula $(\mu = \frac{E_m}{E_c})$ is given]		
	To avoid /minimize distortion:	1/2	
	Given:	/ 2	
	$f_c=1.5 M Hz$		
	$f_{\rm m}=10~{\rm kHz}=0.01~{\rm MHz}$		
	$: \mu = \frac{E_m}{r}$		
	E_{c} E_{m}		
	$\frac{30}{100} = \frac{L_m}{50}$		
	$E_m = 25 V$	1/2	
	USB frequency = f_c + f_m		
	=(1.5+0.01)MHz		
	=1.51 MHz	1/2	
	LSB frequency= f_c - f_m -(1.5-0.01)MHz		
	=(1.5-0.01)MHz =1.49 MHz	1/2	
		/ 2	3

Page 5 of 16 Final draft 17/03/15 04:30p.m.

0.1.015		1	1
Set1, Q15	Trainatory of partials		
Set 2,Q22 Set 3,Q11	Trajectory of particle Descentage developation		
Set 3,Q11	Reason /explanation		
	Expression for distance travelled		
	Trajectory will be a helix		
	\boldsymbol{y}		
	V _{1.4}		
		1	
	\mathbf{B}		
	z'		
	pitch		
	radius		
	Explanation/Reason		
		a E	
	The particle will describe a circle in the y-z plane, due to the component, w_y ,	100.	
	of its velocity. It also moves along the x-axis (parallel to the field), due to the		
	component v_x of its velocity. Hence its trajectory would be helical.	- TY	
		lattoi	
	Distance moved along the magnetic field in one rotation		
	$x = v_x \times T$		
	$T = \frac{2\pi m}{R}$	1/2	
	Bq		
	$\therefore x = \frac{2\pi m v_p}{2\pi m v_p}$	1/2	
	md Bq		
			3
Set1, Q16			
Set 2,Q14	(a) Value of phase difference		
Set 3,Q12	(b) Value of additional Capacitance		
	(a) In LCR circuit		
	$X_L - X_C \qquad wL - \frac{1}{WC}$		
	$\tan \varphi = \frac{X_L - X_C}{D} = \frac{WL - \overline{WC}}{D}$	1 7	
	κ	1/2	
	$Now X_L = wL = (1000 \times 100 \times 10^{-3})\Omega$		
	$= 1000 \Omega$	1/	
		1/2	
	and $\mathbf{v} = 1 = (1)$		
	and $X_C = \frac{1}{wC} = \left(\frac{1}{1000 \times 2 \times 10^{-6}}\right) \Omega$		
	$\therefore X_C = 500 \Omega$	1/2	
		1/2	
	∴ $\tan \varphi = \frac{500 - 100}{400} = 1$		
	$ an arphi = 1$ $arphi = 45^o$	1/-	
	$\gamma - 10$	1/2	


Page 6 of 16 Final draft 17/03/15 04:30p.m.

	(1 \ D \ T \)		1
	(b) Power Factor When power factor=1, we have $X_L=X_C$		
	1		
	$\therefore X_C' = \frac{1}{\omega C'} = 100\Omega$		
	This gives $C' = \frac{1}{100\omega} = 10\mu F$		
	We, therefore, need to add a capacitor of capacitance $(10-2)\mu F=8\mu F$ in	1/2	
	parallel with the given capacitor.		
	Alternatively,	1/2	
	Let addition capacitance C ₁ be connected		
	$X'_{-}=$		
	$X_C' = \frac{1}{1000(2 + C_1) \times 10^{-6}}$	1/2	
		^ _	
	$100 = \frac{1}{1000(2 + C_1) \times 10^{-6}}$		
	$\therefore 2 + C_1 = 10$	1/2	
	$C_1 = 8 \mu F$		
Ca+1 ()17			3
Set 1, Q17 Set 2,Q15	Generalized form of Ampere's Circuital law	=	
Set 2,Q13 Set 3,Q13	Significance	20	
5005,Q15	Explanation 1		
	Generalized form of Ampere Circuital law:	COTT	0
		Attoi.	
	$\oint \overrightarrow{B}. \ \overrightarrow{dl} = \mu_o \left(I_C + \varepsilon_o \frac{d\varphi}{dt} \right)$		
	Jont Re.		
	It signifies that the source of magnetic field is not just due to the conduction	4	
	electric current(ic) due to flow of charge but also due to the time rate of	1	
	change of electric field called displacement current.		
	During charging and discharging of a capacitor the electric field between the		
	plates will change so there will be a change of electric flux (displacement	1	
	current) between the plates.		3
Set1, Q18			
Set 2,Q16	Labelled Diagram Verification of Snell's law 2		
Set 3,Q14	verification of Shen slaw		
	Incident wavefront		
	Medium 1		
	v_1 v_1	1	
	Medium 2 A		
	v_2 r v_2		
	Refracted wavefront		
	$v_2 > v_1$		
	In \triangle ABC		
	BC v_1t	1/2	
	$\sin \iota = \overline{AC} = \overline{AC}$	/ 2	

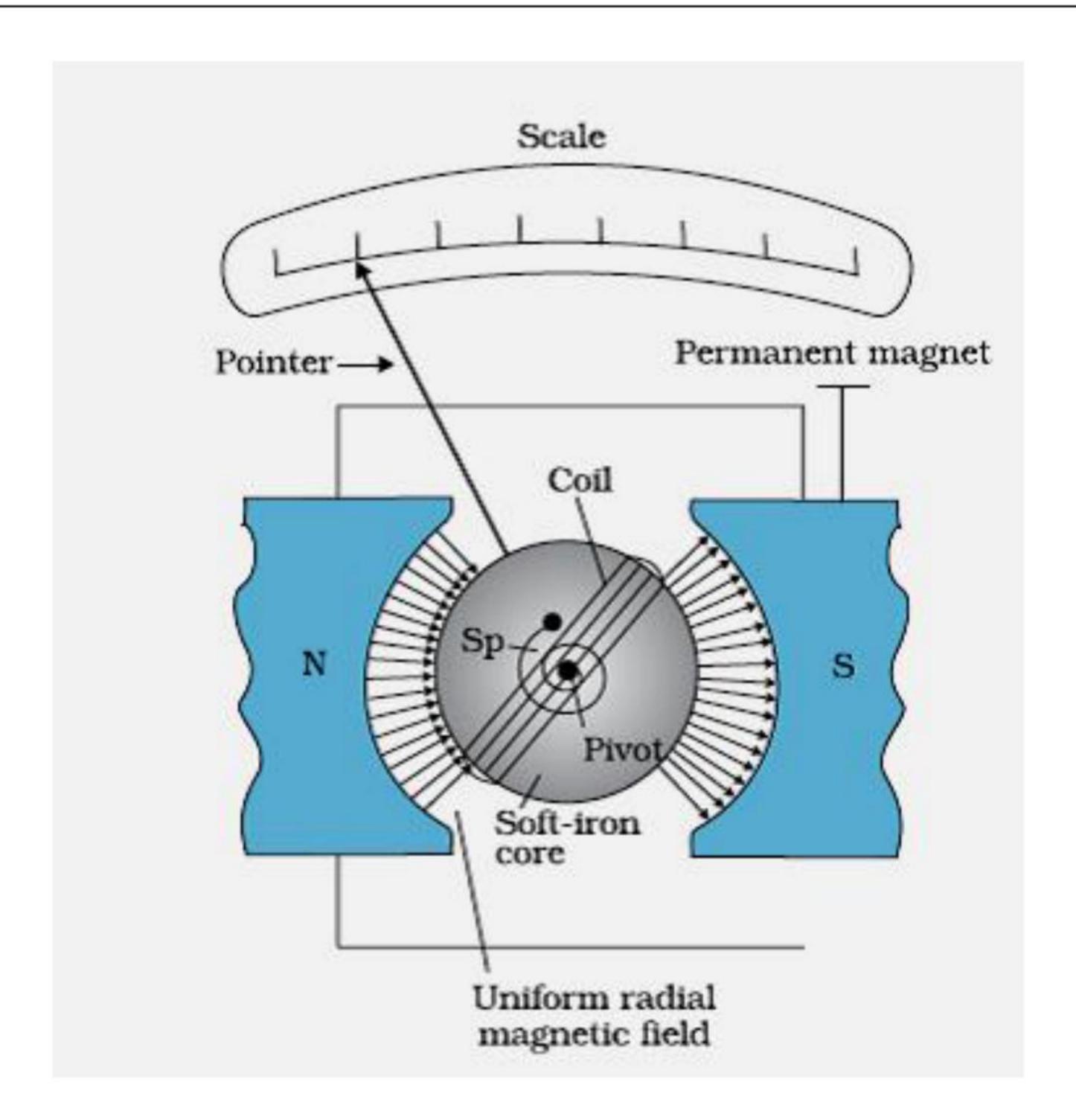
Page 7 of 16 Final draft 17/03/15 04:30p.m.

	In \triangle CEA $\sin r = \frac{AE}{AC} = \frac{v_2 t}{AC}$ $\therefore \frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1 t}{v_2 t} = \frac{v_1}{v_2}$ $\therefore \mu_1 = \frac{c}{a}$	1/2
	$\mu_2 = \frac{c}{v_2}$	1/2
	$\therefore \frac{\mu_2}{\mu_1} = \frac{v_1}{v_2}$ $\sin i \qquad \mu_2$	
Set1 010	$ \frac{\sin r}{\sin r} = \frac{1}{\mu_1} $ or $\mu_2 \sin r = \mu_1 \sin i$ It is Snell's law.	1/2 50. 3
Set 1, Q19 Set 2,Q17 Set 3,Q21	Name of Gates P and Q Truth Table Equivalent Gate Logic symbol of equivalent Gate 1/2 + 1/2 1 1/2 1/2 1/2	Latform
	Gate P : AND Gate Q: NOT Truth table	1/2 1/2
	Input X Y 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0	1
	Equivalent Gate: NAND	1/2
		1/2
Set 1, Q20 Set 2,Q11 Set 3,Q22	Labeled Circuit diagram Working of Amplifier Expression for voltage gain Expression for current gain 1 1 1 1 1 1 1 1 1 1 1 1 1	

Page 8 of 16 Final draft 17/03/15 04:30p.m.

Page 9 of 16 Final draft 17/03/15 04:30p.m.

~			1
Set1, Q22	(a) Three experimental observations $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
Set 2,Q13			
Set 3,Q20	(b) Failure of wave theory 1½		
	(a) 1. There is no emission of photoelectrons i.e. no current if the frequency		
	of the incident radiation is below a certain minimum value however large may		
	be the intensity of the light.		
	2 The current varies directly with the intensity of the incident radiation.		
	3. The current becomes zero at a certain value of negative potential, applied at		
		(9 E)	
	the anode, this is known as stopping potential.	1/2 +	
	4. The value of stopping potential increases with the increase in the frequency	1/2 +	
	of the incident radiation.	1/2	
	5.Maximum kinetic energy of the photo electrons does not depend upon		
	intensity of light		
	6.Maximum kinetic energy of photoelectron increases with the frequency of		
	the incident radiation.		
	7. The process of photoelectric emission is instantaneous.		
	(Any three)		
	(b) It fails to explain why	E	
	1. The photo electric emmission is instantaneous.	3	
	2. There exists a threshold frequency for a given metal.	1 1/2	
	3. The maximim KE of photoelectrons is independent of the intensity of	1 /2	3
	incident radiation.	atfor !	
	meraent radiation.	rar.	
	Deview Deview		
	OR		
	(a) Two properties of photon $\frac{1}{2} + \frac{1}{2}$		
	(b) Eienstein equation 1		
	Explanation of threshold frequency 1/2		
	Stopping potential 1/2		
	(a)		
	i) The energy of a photon is $h\nu$		
	ii)Each photon is completely absorbed by a single electron.	$\frac{1}{2} + \frac{1}{2}$	
	(b) $E_K = h\nu - W$		
	Alternatively, $h\nu = h\nu_0 + \frac{1}{2}m\nu_{max}^2$ or $h\nu = h\nu_0 + eV_0$		
		1	
	$\operatorname{or} E_k = h(\nu - \nu_o)$		
	(Any one)		
	· • • • • • • • • • • • • • • • • • • •		
	i. When Incident frequency < Threshold frequency, there will be no		
	emission of electrons. Hence, frequency of incident radiation should	1/2	
	be greater than threshold frequency. $\left(\nu_o = \frac{W}{h}\right)$, , , , _ ,	
	$h = \frac{1}{2} \left(\frac{1}{$		
	$E = \alpha V = h $ M		
	$E_K - ev_0 = nv - vv$		
	$E_K = eV_0 = h\nu - W$ $\therefore V_0 = \frac{h}{e}\nu - \frac{W}{e}$		
	$^{\circ}$ e e		
	ii. At $\nu = \nu_0$, $E_k = eV_0 = 0$	1/	
200 A	V _o is called stopping potential.	1/2	5


Page 10 of 16 Final draft 17/03/15 04:30p.m.

	Section D		
Set 1, Q23 Set 2,Q23 Set 3,Q23	Value of voltage and frequency in India Reason of A.C being used more Use of transformer with D.C Two qualities of Anil 1/2 +1/2 1/2 1/2 1+1		
	(i) voltage = 220 V frequency = 50 Hz	1/2 1/2	
	(ii) a) It can be stepped up / stepped down b)It can be converted into d.c c)Line losses can be minimised	1/2	
	 (any one) (iii) No (iv) Helping / Brave / Kind / Knowledge about AC or DC / Knowledge about insulator & conductors/ Awareness about safety precautions. 	1/ ₂ 1+1	
	(any two)		3
Set1, Q24	Section E	0 E	
Set 2,Q25 Set 3,Q26	(a) Definition of electric flux and unit 1 + ½ Justification (b) Proof 1+1	de S.	
	a) Total number of electric lines of force passing perpendicular through a given surface. Unit – newton m² / coulomb (or V-m)	1/2	
	According to Gauss theorem, the electric flux through a closed surface depends only on the net charge enclosed by the surface and not upon the shape or size of the surface.	1/2	
	For any closed arbitrary slope of the surface enclosing a charge the outward flux is the same as that due to a spherical Gaussian surface enclosing the same charge. Justification: This is due to the fact (i) electric field is radial and (ii) the electric field $E \propto \frac{1}{R^2}$	1	
	b) (ii) the electric field $L \propto_{R^2}$		
	Surface charge Gaussian surface density o		
	∴According to Gauss theorem,	1 1 1	5
	E = 0	1 + 1	

Page 11 of 16 Final draft 17/03/15 04:30p.m.

	OR		
	(a) Derivation for energy stored Derivation for energy density 1 (b) Required Proof 2		
	(a)		
	$dU = dW = \int_0^q V dq$	1/2	
	$U = \int_0^q \frac{q}{C} dq$ $1 \left a^2 \right ^q$	1/2	
	$=\frac{1}{C}\left \frac{4}{2}\right _{0}$	1/2	
	$U = \frac{1}{C} \frac{q^2}{2} or \frac{1}{2} CV^2$	1/2	
	Energy Density $U = \frac{Energy}{Volume} = \frac{1}{2} \frac{CV^2}{A.d}$	1/2	
	$U = \frac{\frac{1}{2}CV^2}{A. d}$ But $C = \frac{\epsilon_0 A}{d}$ and $V = Ed$	aso.	
	$\therefore U = \frac{1}{2} \varepsilon_0 E^2$	1/2tforr	
	(b) Energy before connecting $U = \frac{1}{2} C_1 V_1^2$	1/2	
	After connecting $Common potential = \frac{q_1 + q_2}{c_1 + c_2}$ $= \frac{c_1 v_1}{c_1 + c_2}$	1/2	
	Energy Stored $U' = \frac{1}{2}(c_1 + c_2) \frac{c_1^2 v_1^2}{(c_1 + c_2)^2}$		
	$U' = \frac{1}{2} \frac{c_1^2 v_1^2}{(c_1 + c_2)}$	1/2	
	$= \frac{1}{2} \frac{C_1}{(c_1 + c_2)} U$		
	$\therefore U' < U$	1/2	5
Set 1, Q25 Set 2,Q26	Labelled diagram 1		
Set 2,Q20 Set 3,Q24	Principle and working \(\frac{1}{2} + 1\)		
	Function of radial magnetic field and soft iron core ½ + ½ Current sensitivity		
	Voltage sensitivity ½		
	Explanation ½		
	age 12 of 16 Final draft 17/0°	3/15 DA-30	

Page 12 of 16 Final draft 17/03/15 04:30p.m.

Principle: "Whenever a current carrying coil is placed in magnetic field, it experiences a deflecting torque."

Working: When current is passed through a coil , free to rotate in a magnetic field , a deflecting torque (=NiABsin θ) act on it. The coil starts to rotate . The rotation of coil is opposed, by spring S_p by providing a restoring torque (=K φ). When the two torque becomes equal , coil comes to rest.

$$\therefore N \iota AB = K \phi$$

$$i = \frac{C \phi}{NAB} \text{ , Hence } i \bowtie \phi$$

Functions of (1) Radial field; It keeps magnetic field lines normal to the area vector of the coil

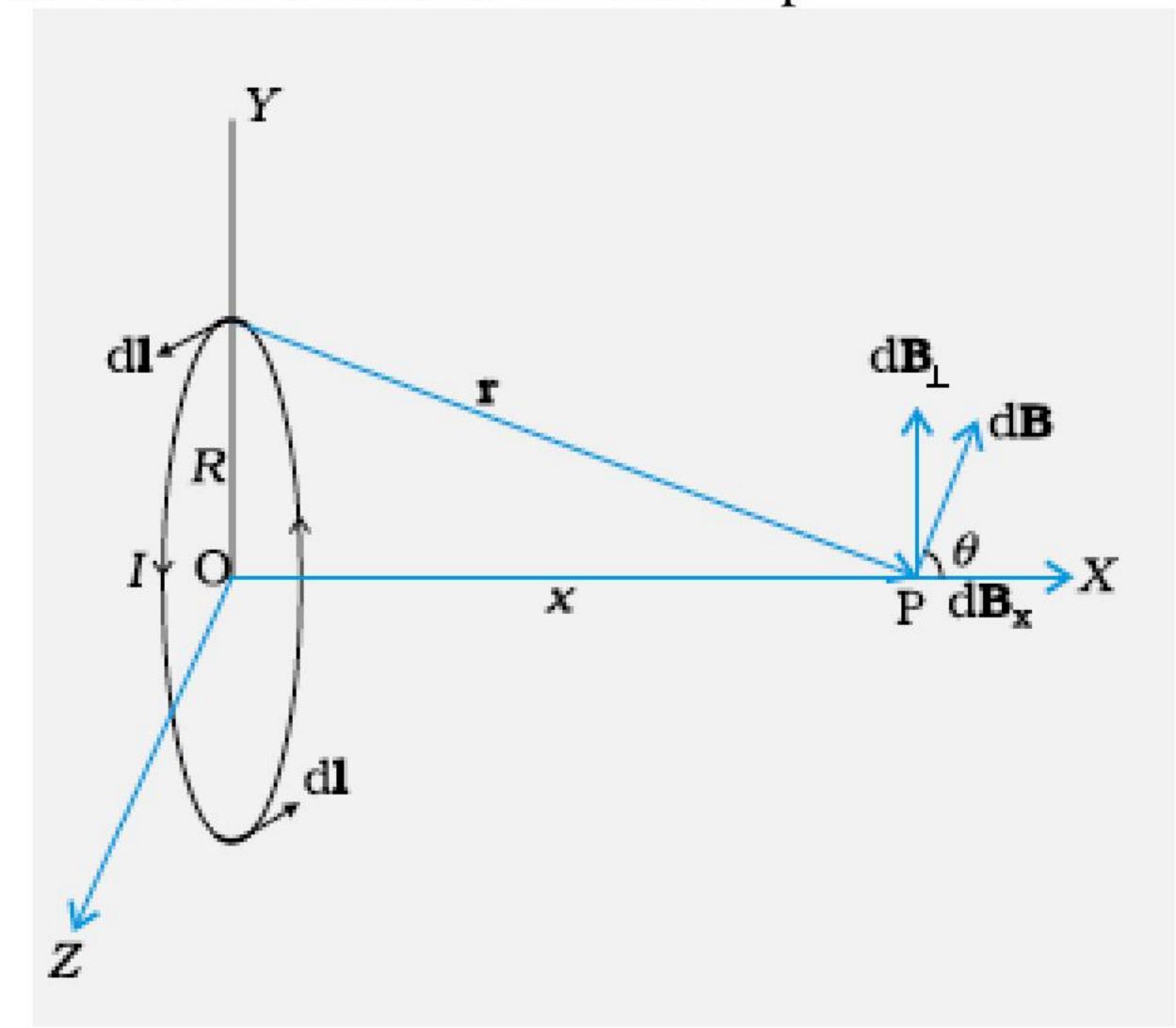
(2) **Soft iron core**; It increases the strength of magnetic field. $\frac{1}{2}$

Current sensitivity = deflection per unit current $I\left(\frac{\phi}{\iota} = \frac{NAB}{K}\right)$

Voltage sensitivity: deflection per unit voltage $I\left(\frac{\phi}{V} = \frac{NAB}{KR}\right)$

If $N \rightarrow 2N$, then by increasing number of turns, current sensitivity increases but voltage sensitivity remains same because resistance increases proportionally.

OR


(a) Expression for vector form of Biot-Savart law	1
Expression for magnetic field due to loop	3
(b) Biot-Savart law and Ampere's Circuital law	1

Page 13 of 16 Final draft 17/03/15 04:30p.m.

1/2

$$\overrightarrow{dB} = \frac{\mu_o}{4\pi} I\left(\frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}\right)$$

Magnetic field on the axis of a circular current loop

The net magnetic field is along the x-axis only.

Net contribution along X-axis

$$B = \int dB \cos\theta$$

$$B = \int dB \cos \theta$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{I|dl \times r|}{r^3}$$

$$\therefore r^2 = x^2 + R^2$$

$$r^2 = x^2 + R^2$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{I \, dl}{(x^2 + R^2)}$$

$$\therefore B = \int \frac{\mu_0}{4\pi} \frac{I \, dl}{(x^2 + R^2)} \cdot \cos\theta$$

$$cos\theta = \frac{R}{(x^2 + R^2)^{1/2}}$$

$$B = \int \frac{\mu_0}{4\pi} \frac{R I dl}{(x^2 + R^2)^{3/2}}$$

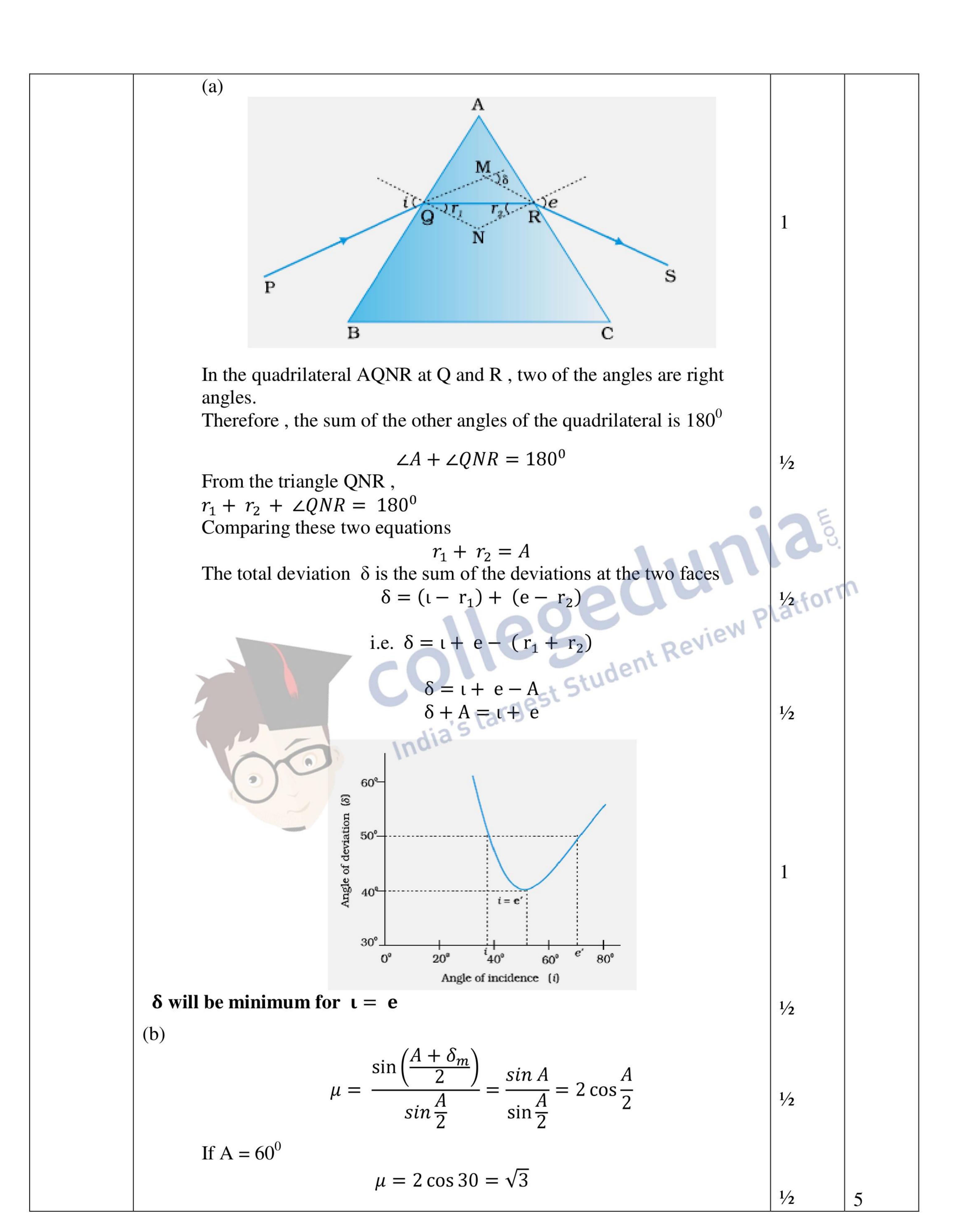
$$B = \frac{\mu_0}{4\pi} \frac{IR}{(x^2 + R^2)^{3/2}} \int dl$$

$$\therefore \int dl = 2 \pi R$$

$$\therefore B = \frac{\mu_0}{2} \frac{IR^2}{(x^2 + R^2)^{3/2}}$$

1/2

1/2


Page 14 of 16

Final draft

17/03/15 04:30p.m.

	(b) Biot-Savart law can be expressed as Ampere's circuital law by considering the surface to be made up a large number of loops. The sum of the tangential components of the magnetic field multiplied by the length of all such elements, gives the result $\oint \vec{B} \cdot \vec{dl} = \mu_0 I$ Alternatively, Ampere Circuital law and Biot-Savart law, both relate the magnetic field and the current, and both express the same physical consequences of a steady current.	1	5
Set 1, Q26 Set 2,Q24 Set 3,Q25	(a) Expression for the Amplitude and the conditions (b) Effect on Interference fringes $1+1$ (a) The resultant displacement will be $\vec{y} = \vec{y_1} + \vec{y_2} = a[\cos \omega t + \cos(\omega t + \phi)] = 2a\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$ The amplitude of the resultant displacement is $A = 2a\cos\frac{\phi}{2}$ \therefore Intensity $A^2 = 4a^2\cos^2\frac{\phi}{2}$ If $\phi = 0$, $\pm 2\pi$, $\pm 4\pi$, the intensity will be maximum. i.e. $\phi = 2n\pi$ $= n\lambda$ where $n = 1, 2, 3$ Hence interference will be constructive. If $\phi = \pm \pi$, $\pm 3\pi$, $\pm 5\pi$,, the intensity will be zero, i.e. $\phi = (2n+1)\frac{\lambda}{2}$ where $n=1, 2, 3$ Hence interference will be destructive. (b)(i)Pattern will become less and less sharp. (ii) At the centre there will be white fringe followed by red colour fringes on either side. OR (a) Diagram Mathematical Proof Graph for δ Conditions 1 Conditions	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1	5
	(b) Relation to μ Value of μ 1/2 1/2		

Page 15 of 16 Final draft 17/03/15 04:30p.m.

Page 16 of 16 Final draft 17/03/15 04:30p.m.

