PART-I: PHYSICS

(A)
$$M^1L^{-1}T^{-2}A^{-1}$$
 (B) $M^1L^1T^{-2}A^0$ (C) $M^0L^0T^0A^0$

(C) Ans.

$$\text{Sol.} \qquad v = \frac{1}{\sqrt{\mu_0 \ \in_0 \ \mu_r \epsilon_r}} = \frac{c}{\sqrt{\mu_r \ \in_r}}$$

$$\sqrt{\mu_r \in_r} = \frac{c}{v} = Dimensionless.$$

At large distances from source E and B are in phase and the decrease in their magnitude is comparitively 2. slower with distance r as per__

(A)
$$r^{-1}$$

(C)
$$r^{-3}$$

$$(D) r^2$$

Ans. (A)

For at point source Sol.

$$I = \frac{P}{4\pi r^2} = \frac{1}{2} \epsilon_0 E^2 C$$

$$\Rightarrow$$
 $E \propto \frac{1}{r}$

The angular spread of central maximum, in diffraction pattern, does not depend on_____ 3.

- (A) the distance between the slit and source
- (B) width of slit

(C) wavelength of light

(D) frequency of light

Ans. (A)

Angular spread of central maxima is $\theta = 2\lambda/a$. Sol.

The ratio of resolving power of telescope, when lights of wavelength 4400Å and 5500Å are used, is _____ 4.

Ans. (D)

Resolving power $\propto \frac{1}{\lambda}$ Sol.

$$\frac{\theta_1}{\theta_2} = \frac{\lambda_2}{\lambda_1} = \frac{5500}{4400} = \frac{5}{4}$$

In Young's experiment fourth bright fringe produced by light of 5000Å superposes on the fifth bright fringe 5. of an unknown wavelength. The unknown wavelength is _______A.

(A) 4000

(B) 6000

(C) 5000

(D) 8000

(A) Ans.

Sol. $4\beta_1 = 5\beta_2$

$$4 \times 5000 \frac{D}{d} = 5 \times \lambda \frac{D}{d}$$

$$\lambda = 4000 \text{\AA}$$

6. IN X-ray tube the potential difference between the anode and the cathode is 20 kV and the current flowing is 1.6 mA. The number of electrons striking the anode in 1s is ______.

(Charge of an electron = 1.6×10^{-19} C)

- $(A) 10^{14}$
- (B) 1.25×10^{16}
- (C) 10¹⁶
- (D) 6.25×10^{18}

(C) Ans.

- **Sol.** $1.6 \times 10^{-3} = \frac{q}{t}$
 - \Rightarrow q = 1.6 × 10⁻³C $ne = 1.6 \times 10^{-3}$
 - $n \times 1.6 \times 10^{-19}$
 - $= 1.6 \times 10^{-3}$
 - $n = 10^{16}$
- If the kinetic energy of the electron in the hydrogen atoms is $\frac{e^2}{8\pi \in r}$, then its potential energy is _____. 7.

- (A) $\frac{e^2}{4\pi \in_0 r}$ (B) $-\frac{e^2}{4\pi \in_0 r}$ (C) $\frac{e^2}{8\pi \in_0 r}$ (D) $-\frac{e^2}{8\pi \in_0 r}$
- Ans. (B)
- **Sol.** $\frac{|P.E.|}{2} = K.E.$
 - P.E. = -2K.E.
 - $= -2 \times \frac{e^2}{8\pi\epsilon_0 r} = \frac{-e^2}{4\pi\epsilon_0 r}$
- 8. The wavelength of the first line of Lyman series is λ . The wavelength of the first line in Paschen series is
 - (A) 108/7
- (B) 27/5
- (C) 7/108
- (D) 5/27

- Ans. (A)
- **Sol.** $\frac{1}{\lambda} = R \left(\frac{1}{1^2} \frac{1}{2^2} \right)$
 - $\Rightarrow \frac{1}{\lambda_1} = R\left(\frac{1}{3^2} \frac{1}{4^2}\right)$ $\Rightarrow \frac{\lambda_1}{\lambda} = \frac{4}{7}$

 - $\lambda_1 = \frac{3}{4} \times \frac{16 \times 9}{7} \lambda$
 - $\Rightarrow \lambda_1 = \frac{108}{7}\lambda$

- 9. For a radioactive element, $\tau = \underline{\hspace{1cm}} \tau_{1/2}$.
 - (A) 0.693
- (B) 693
- (C) 144
- (D) 1.44

- Ans. (D)
- $T_{mean} \times \ell n \; 2 = T_{1/2}$ Sol.

 $T_{mean} = T_{1/2}(1/\ell n2)$

 $=1.44T_{1/2}$

- For the following nuclear disintegration process $^{238}_{92}$ U $\rightarrow ^{206}_{82}$ Pb + $x[^4_2$ He] + $[^0_{-2}$ e] then value of x is _____. 10.
 - (A) 8

(B)6

(C) 4

(D) 10

(A) Ans.

Mass should be conserved Sol.

238 = 206 + 4x + 0

x = 32/4 = 8

- If the radii of $^{64}_{30}$ Zn and $^{27}_{13}$ Al nuclei are R₁ and R₂ respectively then $\frac{R_1}{R_2} =$ _____. 11.
 - (A) $\frac{64}{27}$
- (B) $\frac{4}{3}$ (C) $\frac{3}{4}$

Ans. (B)

 $R \propto A^{1/3}$ Sol.

$$\frac{\mathsf{R}_1}{\mathsf{R}_2} = \left(\frac{64}{27}\right)^{1/3} = \frac{4}{3}$$

For PN junction, the intensity of electric field is 1×10^6 V/m and the width of depletion region is 5000Å. 12.

The value of potential barrier = _____V.

- (A) 0.05
- (B) 0.005
- (C) 0.5
- (D) 5

(C) Ans.

- $V = Ed = 10^6 \times 5 \times 10^{-7} = 0.5V$ Sol.
- 13. The logic circuit in the figure represents characteristics of which logic gate?

- (A) NOR
- (B) OR
- (C) NAND
- (D) NOT

Ans. Sol.

- (D)
- Input | Output
- For PN junction, the width of space charge region is approximately_ 14.
 - (A) 0.5
- (B) 6

(C) 5

(D) 0.05

Ans. (A) Sol.

- 15. A modulating signal of frequency 5 kHz and peak voltage of 8V is used to modulate a carrier of frequency 10 MHz and peak voltage 10V. Then the amplitude of USB is _____V.
 - (A) 3

(B) 4

(C)2

(D)5

(B) Ans.

Sol.
$$\frac{\mu A_C}{2} = \frac{A_m}{A_C} \times \frac{A_C}{2} = \frac{A_m}{2} = \frac{8}{2} = 4V$$

- The propagation of radio waves with frequency 2 MHz to 30 MHz is due to _____. 16.
 - (A) Space wave
- (B) Optical fibre
- (C) Ground wave
- (D) Sky wave

Ans. (D)

Sol.

- 17. When two spheres having 4Q and -2Q charge are placed at a certain distance, the force acting between them is F. Now they are connected by a conducing wire and again separated from each other. Now they are kept at a distance half of the previous one. The force acting between them is _____.
 - (A) F

- (B) F/4
- (C) F/2
- (D) F/8

(C) Ans.

Sol.
$$F = \frac{K(4Q)(2Q)}{r^2} = \frac{8KQ^2}{r^2}$$

$$F' = \frac{K(Q)(Q)}{\left(\frac{r}{2}\right)^2} = \frac{4KQ^2}{r^2}$$

- 18. Charge of 1µC each is placed on the five corners of a regular hexagon of side 1m. The electric field at its centre is _____ N/C
 - (A) $\frac{5}{6} \times 10^{-6} \text{K}$ (B) $5 \times 10^{-6} \text{K}$ (C) $\frac{6}{5} \times 10^{-6} \text{K}$ (D) 10^{-6}K

Ans. (D)

Sol. Electric field at centre due to five charges is equal to E.F due to one charge

$$E = \frac{KQ}{r^2}$$

$$=\frac{K\times(10^{-6})}{1^2}=10^{-6}K$$

- 19. An electric dipole is placed in a non-uniform electric field, then_____
 - (A) The resultant force acting on the dipole is always zero
 - (B) Torque acting on it may be zero
 - (C) The resultant force acting on the dipole may be zero
 - (D) Torque acting on it is always zero.
- Ans. (B)

Sol. (i)

 $F_{net} \neq 0$

 $\tau_{net} \neq 0$

(ii)

 $F_{net} \neq 0$

 $\tau_{\text{net}}=0$

20. The unit of intensity of polarization is_____

(D) m²/C

Ans. (A)

Sol.
$$I = \frac{Dipolemoment}{volume} = \frac{Cm}{m^3} = \frac{C}{m^2}$$

21. In the figure area of each plate is A and the distance between consecutive plates is as shown in the figure. What is the effective capacitance between points A & B

- (A) $\frac{A\epsilon_0}{d}$
- (B) $\frac{3A\epsilon_0}{d}$
- (C) $\frac{2A\epsilon_0}{d}$
- (D) $\frac{4A\epsilon_0}{d}$

Ans. (C)

Sol.

$$C_{eq} = \frac{\epsilon_0 A}{d} + \frac{\epsilon_0 A}{2d} + \frac{\epsilon_0 A}{2d} = \frac{2\epsilon_0 A}{d}$$

- 22. A moving positive charge approaches a negative charge. What will happen to the potential energy of the system?
 - (A) will remain constant (B) will decrease
- (C) will increase
- (D) may increase or decrease

Ans. (B)

Sol.
$$U = \frac{K(q_1)(-q_2)}{r}$$
$$r \downarrow \Rightarrow U \downarrow$$

- 23. The heat produced per unit time, on passing electric current through a conductor at a given temperature, is directly proportional to the_____.
 - (A) Electric current

(B) Reciprocal of electric current

(C) Square of electric current

(D) Reciprocal of square of electric current

Ans. (C)

Sol. $P = I^2R$

- 24. A carbon resistor has three bands as brown, black and green in order. What will be the range of resistance it offers.
 - (A) $7 \times 10^5 \Omega 13 \times 10^5 \Omega$

(B) $9 \times 10^5 \Omega - 11 \times 10^5 \Omega$

(C) $8 \times 10^5 \Omega - 12 \times 10^5 \Omega$

(D) None of these

Ans. (C)

Sol.
$$R = (10 \times 10^5) \pm 20\%$$

$$R_{min}=8\times10^5\Omega$$

$$R_{max} = 12 \times 10^5 \Omega$$

25. In the network shown in the figure the equivalent resistance between points X& Y will be _____ Ω . Value of each resistance is 2Ω .

(A) 2

Ans. (C)

Sol.

 $R_{xy}=\mathbf{1}\Omega$

11 <u></u>						
26.	Shunt wire should be _					
	(A) Thick and long	(B) Thick and short	(C) Thin and long	(D) Thin and short		
Ans.	(B)					
Sol.	Shunt should have low resistance					
	- ρℓ					
	$R = \frac{\rho \ell}{A}$					
	ℓ should be less					
	A should be large					
27.	The dimensional formu	ula of effective torsional of	constant of spring is			
	(A) M ¹ L ² T ⁻³	(B) M ¹ L ² T ⁻² A ⁻²	18 17 4 17 (1) 13 17 17 17 17 17 17 17 17 17 17 17 17 17	 (D) MºLºTº		
Ans.		(D) WET A	(O) IVI L I	(B) W E 1		
	(C)					
Sol.	$\tau = C0$					
	$C = \tau/\theta$					
	$C \equiv [ML^2T^{-2}]$					
28.	There are 50 turns per	r cm length in a very long	g solenoid. It carries a cui	rrent of 2.5A. The magnetic field		
	at its centre on the axis	s is T.				
	(A) $5\pi \times 10^{-3}$		(C) $2\pi \times 10^{-3}$	(D) $4\pi \times 10^{-3}$		
Anc	51 (1) 1 C C C C C C C C C C C C C C C C C C	(b) on x 10	(O) Zit x 10	(B) +11 × 10		
Ans.	(A)					
Sol.	$B=\mu_0 ni=4\pi\times 10^{-7}\times$	$\frac{50}{10^{-2}} \times 2.5$				
	$= 5\pi \times 10^{-3}$					
29.	The avromagnetic ratio	o of an electron =	_ specific charge of an ele	ectron		
20.		(B) 2		(D) 4		
A	(A) 1	(D) Z	(0) 1/2	(D) 4		
Ans.	(C)	120				
Sol.	Ratio = $q/2m = 1/2 \times s$	pecific charge				
30.	Alpico is an alloy of					
30.	Alfileo is all alloy of	(B) Al Ni Cu Co	(C) Al, Ni, As, P	(D) Al As P Pt		
Ans.	(B)	(D) AI, NI, OU, OO	(O) AI, IVI, A3, I	(D) AI, AS, 1 , 1 t		
741101	(5)					
31.	The focal length of a thin lens made from the material of refractive index 1.5 is 15 cm. When it is placed					
	in a liquid of refractive index 4/3, its focal length will be cm.					
	and the control of th			(D) 60		
o <u>u</u> r	(A) 80.31	(B) 50	(C) 78.23	(D) 60		
Ans.	(D)					
Sol.	$\frac{1}{15} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	-]				
	$(R_1 R_2)$)				
	$\frac{1}{f} = \left(\frac{1.5}{4/3} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$					
	f 1/2					
	$\frac{f}{15} = \frac{1/2}{(1/8)}$					
	$f = 4 \times 15 = 60 \text{ cm}$					

- 32. Time taken by the sunlight to pass through a slab of 4 cm and refractive index 1.5 is____ sec.
 - (A) 2×10^{-8}
- (B) 2×10^{-11}
- (C) 2×10^{-10}
- (D) 2×10^{11}

- Ans. (C)
- **Sol.** $t = \frac{d}{v} = \frac{dn}{c} = \frac{4 \times 10^{-2}}{3 \times 10^8} \times \frac{3}{2}$
 - $t = 2 \times 10^{-10}$ sec.
- 33. If the tube length of astronomical telescope is 96 cm and magnifying power is 15 for normal setting, then the focal length of the objective is ____ cm.
 - (A) 100
- (B) 90
- (C) 105
- (D) 92

- Ans. (B)
- **Sol.** $|m| = \frac{f_0}{f_e} = 15$

$$f_0 = 15 f_e$$

tube length = $f_0 + f_e = 96$

$$15f_e + f_e = 96$$

$$f_e = 6 \text{ cm}$$

$$f_0 = 15 \times 6 = 90 \text{ cm}$$

- 34. Photons of energy 2eV and 2.5eV successively illuminate a metal whose work function is 0.5 eV. The ratio of maximum speed of emitted electron is ______.
 - (A) $\sqrt{3}:2$
- (B) 2:1
- (C) 1:2
- (D) 2 : √3

- Ans. (A)
- Sol. $K.E_{max} = hv \phi$

$$\frac{1}{2}mv^2 = hv - \phi$$

$$\frac{v_1^2}{v_2^2} = \frac{2 - 0.5}{2.5 - 0.5} = \frac{1.5}{2} = \frac{3}{4}$$

$$\frac{v_1}{v_2} = \frac{\sqrt{3}}{2}$$

- 35. To increase de-Broglie wavelength of an electron from 0.5×10^{-10} m to 10^{-10} m, its energy should be
 - (A) increased to 4 times (B) halved
- (C) doubled
- (D) decreased to fourth part

- Ans. (D)
- $\textbf{Sol.} \qquad \lambda = \frac{h}{p} = \frac{h}{\sqrt{2m\,K}}$

$$\lambda \to 2\lambda.$$
 \Rightarrow $K \to \frac{K}{4}$

- 36. A wheel of radius 2m having 8 conducting concentric spokes is rotating about its geometrical axis with an angular velocity of 10 rad/s in a uniform magnetic field of 0.2T perpendicular to its plane. The value of induced emf between the rim of the wheel and centre is _____V
 - (A) 2

(B) 6

(D) 8

(C) Ans. Sol.

$$\varepsilon = \frac{1}{2} B \omega R^2$$

$$\varepsilon = \frac{1}{2} \times 0.2 \times (10)(2)^2 = 0.1 \times 4 \times 10 = 4V$$

- 37. A coil of surface area 200 cm² having 25 turns is held perpendicular to the magnetic field of intensity 0.02 Wb/m². The resistance of the coil is 1Ω . If it is removed from the magnetic field in 1s, the induced charge in the coil is_____ C.
 - (A) 1

- (B) 0.01
- (C) 0.1
- (D) 0.001

Ans. (B)

Sol.
$$q = \frac{\varphi_i - \varphi_f}{R} = \frac{NBA}{R} = \frac{25 \times 0.02 \times 200 \times 10^{-4}}{1}$$
$$= 25 \times 2 \times 2 \times 10^{-4}$$
$$= 10^{-2}C = 0.01C$$

- The dimensional formula of JWL is _____. Take Q as the dimension of charge. (A) $M^{-1}L^2T^{-1}Q^{-2}$ (B) $M^{-1}L^{-2}T^{-1}Q^{-2}$ (C) $M^1L^2T^{-1}Q^{-2}$ (D) $M^1L^2T^1Q^{-2}$ 38.

- () Ans.
- If in an A.C., L-C series circuit X_C > X_L. Hence potential___ 39.
 - (A) lags behind the current by $\pi/2$
- (B) leads the current by π in phase se (D) lags behind the current by π in
 - (C) leads the current by $\pi/2$ in phase
- (D) lags behind the current by π in phase.

- Ans.
- Phasor diagram Sol.

Potential lags by $\pi/2$ phase

- In L-C-R, A.C. series circuit, L = 9 H, R = 10Ω & C = 100μ F. Hence Q-factor of the circuit is _____. (A) 25 (B) 45 (C) 35 (D) 30 (D) 40.
- Ans.
- $Q = \frac{1}{B} \sqrt{\frac{L}{C}} = \frac{\omega_0 L}{B}$ Sol.

$$Q = \frac{1}{10} \sqrt{\frac{9}{100 \times 10^{-6}}} = \frac{3}{10 \times 10^{-2}} = 30$$

SUBJECT: CHEMISTRY

Test Booklet Set No.

GUJARAT COMMON ENTRANCE TEST (GUJCET) 2019

Date: 26 April, 2019 | Duration: 2 Hours | Max. Marks: 80

Paper 1: Physics and Chemistry

:: IMPORTANT INSTRUCTIONS ::

- There will be 40 questions for Physics and 40 questions for Chemistry. The questions will be of Objective type (Multiple Choice Questions) for both the subjects (Physics and Chemistry). Each question carries 1 mark. The maximum marks for Paper 1 is 80.
- 2. This test is of 1 hr. duration.
- 3. Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answer by darkening the circle '*'.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The Set No. for this Booklet is 05. Make sure that the Set No. printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately.
- 7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- Do not write you Seat No. anywhere else, except in the specified space in the Test Booklet/Answer Sheet.
- 9. Use of White fluid for correction is not permissible on the Answer Sheet.
- Each candidate must show on demand his/her Admission Card to the Invigilator.
- 11. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her sent.
- Use of Manual Calculator is permissible.
- 13. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
- 14. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16. The candidates will write the Correct Test Booklet Set No. As given in the Test Booklet/Answer Sheet in the Attendance Sheet. (Patrak 01)

Candidate's Name :	
Exam. Seat No. (in figures)	(in words)
Name of Exam. Centre :	Exam. Centre No.:
Test Booklet Set No.:	Test Booklet No.:
Candidate's Sign	Block Supervisor Sign

CHEMISTRY

 Element A and B do not form an alloy becau 	41.	Element A	and B do	not form	an alloy	because
--	-----	-----------	----------	----------	----------	---------

- (A) Both elements have similar crystal structures
- (B) Radius of A is 115 pm while radius of B is 187 pm
- (C) Both are the members of same group
- (D) Both have similar electronic configuration in valence shell

Ans.

Sol. For alloy formation radius of components should be almost same.

42. What is the correct order for energy of d orbitals during splitting in Tetra Chlorido Nickelate(II) complex ion?

(A)
$$d_{xy} \cong d_{yz} \cong d_{xz} < d_{x^2-y^2} \cong d_{z^2}$$
 (B) $d_{xy} \cong d_{yz} \cong d_{xz} \cong d_{x^2-y^2} \cong d_{z^2}$

(B)
$$d_{xy} \cong d_{yz} \cong d_{xz} \cong d_{x^2-y^2} \cong d_{z^2}$$

(C)
$$d_{xy} \cong d_{yz} \cong d_{xz} > d_{x^2-v^2} \cong d_{z^2}$$
 (D) $d_{x^2-v^2} > d_{z^2} > d_{xy} \cong d_{yz} \cong d_{xz}$

(D)
$$d_{v^2-v^2} > d_{z^2} > d_{xy} \cong d_{yz} \cong d_{xz}$$

Ans. (C)

Ligands are coming off axis. Sol.

43. Which of the following complex ion is the most stable?

- (A) $[Co(NH_3)_6]^{3+}$
- (B) [CoCl₆]³-
- (C) $[CoF_6]^{3-}$
- (D) [Co(H₂O)₆]³⁺

Ans. (A)

NH₃ is strongest ligand amongs the following Co⁺³ complexes. Sol.

44. The primary valency and secondary valency of central metal ion and the no. of total ions produced in aqueous solution for K[Co(OX)₂(NH₃)₂] complex respectively is ______(A) 3, 4, 2 (B) 4, 4, 2 (C) 3, 6, 2

- __· (D) 3, 6, 1

Ans. (C)

Sol.
$$(1) + (x) + 2(-2) + 2(0) = 0$$

x = 3Or

45. Which of the following complexes possess meridional isomer?

- (A) [Co(NH₃)₃Cl₃]
 - (B) [Co(NH₃)₄Cl₂]
- (C) [Co(NH₃)₂Cl₄]
- (D) $[Co(NH_3)_5Cl]$

Ans. (A)

Sol. [Ma₃b₃] exhibits fac & mer isomerism.

Which of the following compound undergoes aldol condensation? 46.

(A) Formaldehyde

(B) Trichloro acetaldehyde

(C) Trimethyl acetaldehyde

(D) Acetaldehyde

Ans. (D)

Only aldehyde and ketones with B α H as $_{\text{CH}_3-\text{C}}$ $^{\circ}$ (acetaldehyde) undergoes Aldol condensation. Sol.

Benzoyl chloride + Sodium benzoate —^A→ ____.

(B) Benzyl alcohol 47.

(C) Benzyl benzoate

(D) Benzoic anhydride

Ans. (D)

48. If P and S are toluene, Q & R are _ and respectively. (A) Benzaldehyde, Benzoic acid (B) Benzaldehyde, Sodium benzoate (C) Benzoic acid, Benzene (D) Benzene, Benzoic acid Ans. (C) COOH CH₃ CH₃ KMnO₄ CH₃CI Sodalime Sol. An.AICI3 Type of Hybridisation of N and C-N-C bond angle in (CH₃)₃N are _ 49. respectively. (B) sp², 120⁹ (C) sp³, 109⁹28' (D) sp², 117.5⁹ (A) sp^3 , 108^9 Ans. (A) Steric number= 4(sp3) & 3BP+1LP Sol. 50. Identify X and Y in following reaction. N=N•CI 473 K, 60 bar NO_2 NH_2 NH•NH₂ (A) Ans. N₂CI NH_2

51. Why glucose is called gluco-pyranose?

Cu powder

- (A) glucose is aldohexose.
- (B) glucose is a cyclic compound containing five carbon atoms and one oxygen atom.
- (C) glucose is ketohexose.
- (D) glucose is a cyclic compound containing six carbon atoms.

2NH₃

Cu₂O

Ans. (B)

Sol.

Sol. CH₂OH OH

α-D-gluco-pyranose

52. Ans. Sol.	Which protein present in (A) Carotene (D) Mysin is found in muscle	(B) Insulin	water? (C) Albumin	(D) Myosin	
53.	Giving 'T' symbol for true statement and 'F' symbol for false statement, select suitable option from given options for following statements. i) Cytosine base is the derivative of pyrimidine. ii) β-D Ribose sugar is present in DNA. iii) The message for the synthesis of a specific protein is present in RNA. iv) DNA is responsible for maintaining the identify of different species of organisms for one century				
Ans.	(A) TFFT (A) NH ₂ 人	(B) FFFT O CH₃	(C) FTFF	(D) FFTF	
Sol.	Cutosine and H (i) Thymine are pyrinidin	O N	hymine are pyrimidines	bone.	
54.	Terylene is a condensat	ion polymer of	and COOCH₃		
	(A) COOH and OH	CH ₂ -CH-CH ₂ OH OH OH	(B) and COOCH₃ COOH	CH ₂ -CH ₂ OH OH	
	(C) COOH and	CH ₂ -CH ₂ OH OH	(D) and	CH ₂ -CH ₂ OH OH	
Ans. Sol.	(A) None is correct Terylene is a condenoation polymers of and Ethyle slyod.				
55.	Which of the following acid has property of flex (A) HO-CH-CH ₂ -COOH CH ₂ -CH ₃		ibility? (B) HOOC-(CH2)4-COOH		
	(C) HO-CH-CH ₂ -COOI I CH ₃	1	(D) HOOC-(CH ₂) ₂ -CO	OOH	
Ans. Sol.	(C) Polymers derved from 3-hydroxy butyricial has the property of flexibility.				
56. Ans. Sol.	What is cellulose diacet (A) Semisynthetic polym (C) Natural polymer (A) Cellulose of semisynthe	ner	(B) Plasticizer (D) Synthetic polymer		

57. Ans. Sol.	What is the packing efficient (A) 53.26% (C) Packing praction =0.68	ciency of arrangement in (B) 74.00%	a body centred unit cell. (C) 68.00%	(D) 64.00%
58. Ans. Sol.	Which one of the following (A) AgCI (B) Theory based.	ing compounds show bot (B) AgBr	th Schottky and Frenkel (C) Agl	defects? (D) KCI
59. Ans. Sol.	Calculate Van't Hoff fac equal to 0.778. (A) 4.334 (B) $i_{diss} = 1 + (n - 1)\alpha$ $= 1 + (4 - 1)\alpha$ = 3.334	tor (i) for an aqueous sol (B) 3.334	lution of K₃[Fe(CN)6] hav	ing a degree of dissociation (α) (D) 2.334
60. Ans. Sol.	If molality of a solution constant of the solvent? (A) 3.2 (A) $\Delta T_b = K_b m$ or $0.16 = K_b \times 0.05$	(B) 1.6	boiling point is 0.16 K th	en, what is the molal elevation (D) 2.3
61. Ans. Sol.			ntration will not change w (C) Normality	vith the change in temperature? (D) Formality
62. Ans. Sol.	Zn _(s) / Zn ²⁺ _(aq) (1M) // Ni ²⁺ _(aq) Which is incorrect for th (A) Electrochemical cell (D) Cell reaction in Daniel of Zn(s) + Cu ⁺² (aq)	e above given cell? (B) Voltaic cell	(C) Galvanic cell	(D) Daniel cell
63. Ans. Sol.	If one mole electrons is and Mg will be deposite (A) $3:6:2$ (B) eqAI = eqAg = eqMg eq = moles × n-factor Al+3 + 3e- \longrightarrow Al Ag+ + e- \longrightarrow Ag Mg+2 + 2e- \longrightarrow Mg $\frac{1}{3}$ mol Al : 1 mol Ag : $\frac{1}{2}$ or $2:6:3$	d at the electrodes? (B) 2:6:3	utions of AICI ₃ , AgNO ₃ a	nd MgSO ₄ , in what ratio AI, Ag (D) 3:2:1
64. Ans. Sol.	At which temperature, c (A) 0 K (D) Theory based	eramic materials behave (B) 15 K	as super conductors? (C) 200 K	(D) 150 K

65. Ans. Sol.	Which of the following n (A) Haematite (B) Siderite : FeCO ₃	nineral of Iron is in the fo (B) Siderite	rm of carbonate? (C) Magnetite	(D) Iron Pyrites
66. Ans. Sol.	Which of the following h (A) PH ₃ (C) Less size difference.	ydride is the most stable (B) SbH3	?? (C) NH₃	(D) AsH ₃
67. Ans. Sol.	In which of the following (A) H ₃ PO ₄ and H ₄ P ₂ O ₇ (C) H ₄ P ₂ O ₇ and H ₅ P ₃ O ₁ (D) H ₄ P ₂ O ₇ and H ₃ PO ₃		ohorous, oxidation states (B) H ₃ PO ₄ and H ₅ P ₃ O ₁₀ (D) H ₄ P ₂ O ₇ and H ₃ PO ₃	
68. Ans. Sol.	Which of the following of (A) HCIO > HCIO ₂ > HCIO ₂ > HCIO > HCIO ₃ HCIO ₄ > HCIO ₃ > HCIO ₄ > HCIO ₃ > HCIO ₄	CIO ₄ > HCIO ₃	correct? (B) HCIO ₄ > HCIO ₂ > H(D) HCIO ₄ > HCIO ₃ > H	
69. Ans. Sol.	1,2-dichloro ethane is w (A) Geminal halide (B) Dihalides with halogen a	(B) Vicinal halide	(C) Alkylidene halide 1, 2-dichlose ethane is a	(D) Allylic halide alsocalled vicinal haldies.
70. Ans.	Polarimeter is used to d (A) D and L configuration (C) R and S configuration (B)		f compounds. (B) d and I configuration (D) Both D and L as we	
71. Ans. Sol.	respectively? (A) CHCl ₃ , CHl ₃ , DDT, C(C) CCl ₄ , CHl ₃ , DDT, C(C)	CCI4 HCI3	(B) DDT, CHCl ₃ , CCl ₄ , (D) CCl ₄ , CHl ₃ , CHCl ₃ , I	
72. Ans. Sol.	(A) Butan-2-ol (C) Propan-2-ol (B)	llcohol has the highest be	(B) 2-Methylpropan-2-ol (D) Butan-1-ol	e branching, lesser the boiling.
73. Ans.	formaldehyde and ethyl (A) Ethan-1-ol (C)	magnesium bromide? (B) Propan-2-ol	WEV 10	formed by reaction between (D) 2-Methyl-propan-2-ol
Sol.	C	C ₂ H ₅ –CH ₂ –OH		

- 74. Give the IUPAC name for methyl salicylate.
 - (A) Methoxy benzoic acid
 - (C) Methyl-2'-hydroxy benzoate
- (B) 2'-Hydroxy benzoic acid

(D) Methyl-3-hydroxy benzoate

Ans.

Sol.

Merthyl-2'-Hydrocarbon benzoate.

75.

Instantaneous rate of reaction for the reaction
$$3A + 2B \longrightarrow 5C$$
 is _____.

$$(A) + \frac{1}{3} \frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt} = +\frac{1}{5} \frac{d[C]}{dt} \qquad \qquad (B) -\frac{1}{3} \frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt} = +\frac{1}{5} \frac{d[C]}{dt}$$

(B)
$$-\frac{1}{3}\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = +\frac{1}{5}\frac{d[C]}{dt}$$

(C)
$$-\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[C]}{dt}$$

(C)
$$-\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[C]}{dt}$$
 (D) $+\frac{1}{3}\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[C]}{dt}$

- Ans.
- $r = \pm \frac{1}{sc} \frac{dc}{dt}$ Sol.
- In a reactdion A ---- B, if the concentration of reactant is increased by 9 times then rate of reaction 76. increases 3 times. What is the order of reaction?
 - (A) 2

or

(B) 3

(D) $\frac{1}{3}$

Ans. (C)

Sol.

$$r = K[A]^n$$

 $r' = 3r = k[9A]^{1/2}$

- 77. Which statement is incorrect for collision theory?
 - (A) The collision between the reacting molecules is essential
 - (B) The collision of the reactant molecules should be from any direction
 - (C) There must be certain minimum energy for the reactant experiencing collision.
 - (D) The reactant experiencing fruitful collisions are converted to products
- Ans. (B)
- Theory based Sol.
- 78. The formation of association of colloidal particles by addition of electrolyte to form an insoluble precipitate is called
 - (A) Flocculation
- (B) Emulsification
- (C) Coagulation
- (D) Micelle

- Ans. (C)
- Sol. Theory based
- 79. Which of the following reaction is used to prepare colloidal sol by double decomposition?
 - (A) $As_2O_3 + 3H_2S \rightarrow As_2S_3 + 3H_2O$
- (B) 2AuCl₃.3HCHO + 3H₂O → 2Au + 3HCOOH + 6HCl

(C) $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$

(D) FeCl₃ + $3H_2O \rightarrow Fe(OH)_3 + 3HCI$

- Ans. (A)
- Sol. Theory based.
- 80. Which of the following pair has similar magnetic moment?
 - (A) Cr³⁺, Mn³⁺
- (B) Fe³⁺, Mn²⁺
- (C) Fe2+, Mn2+
- (D) Ni²⁺, Co²⁺

- Ans. (B)
- Sol. 5 unpaired electrons in both.

