ALGEBRAIC EQUATIONS

Algebraic equations are polynomial equations. In examination, generally equations of 1 degree, 2 degree or 3 degrees are asked.

Linear Equation

Polynomial equations with degree 1 i.e., $a x+c=0$ are called as linear equations. Some examples of linear equations are as follows -
$2 x+3 y=4$
$x+y+z=10$

Q1. In this question two equations numbered I and II are given. You have to solve both the equations and find out the relation between x and y.
I. $5 x=7 y+21$
II. $11 x+4 y+109=0$

Solution:

I. $2 x+3 y=13$
II. $3 x+2 y=12$
($3 \times$ Equation 2) $-(2 \times$ Equation 1$)$ gives us
$\Rightarrow 5 \mathrm{x}=10$
$\Rightarrow \mathrm{x}=2$
Putting value of x in equation 1, we get y
$=3$
Hence, $x<y$.
Q2. In the given question, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer-
I. $4 x+5 y=14$
II. $2 x+3 y=5$

Solution:

$4 x+5 y=14$
$2 x+3 y=5$
On multiplying equation (2) by 2 .
$4 x+6 y=10$
Subtracting equation (1) from equation (3),
$y=-4$
$x=1$ (on putting value of y in the above equation)
$\therefore \mathrm{x}>\mathrm{y}$.

Quadratic Equation

Polynomial equations with degree 2 i.e., $a x^{2}+b x+c=0$ are called quadratic equations. Some examples of quadratic equations are as follows -
$x^{2}+2 x+3=0$
$y^{2}-3 y+4=0$

Methods to solve quadratic equation

1) Factorisation method

In it quadratic equation $a x^{2}+b x+c=0$ is factorized as $(x-\alpha)(x-\beta)=0$ and then equation is solved to get $x=\alpha$ or $x=\beta$.

Q3. Solve quadratic equation
$x^{2}-2 x-15=0$

Solution:

$x^{2}-2 x-15=0$
$\Rightarrow x^{2}-5 x+3 x-15=0$
$\Rightarrow x(x-5)+3(x-5)=0$
$\Rightarrow(x+3)(x-5)=0$
$\Rightarrow x+3=0$ or $x-5=0$
$\Rightarrow x=-3$ or $x=5$

2) Sridharachrya's method

In it quadratic equation $a x^{2}+b x+c=0$ is solved by using formula
$=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Which gives us $\mathrm{x}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ or $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

Q4. Solve quadratic equation $x^{2}-2 x-15=0$
Solution:
$\mathrm{X} 1=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=5$
$\mathrm{X} 2=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=-3$

Q5. In the following question two equations are given. You have to solve both the equations and find the relation between x and y.
I. $x^{2}=625$
II. $y=\sqrt{ } 625$

Solution:

We will solve both the equations separately. x^{2}
$=625$
$\Rightarrow x=+25$ or -25 (we will consider two values of x because of x^{2}) $y=$
$\sqrt{625}$
$\Rightarrow y=25$ (The square root is used to refer to only the positive square root i.e.
$\left\{\sqrt{ } x^{2}=|x|\right\}$.)
$\therefore \mathrm{x} \leq \mathrm{y}$

Q6. In the given question, two equations numbered I and II are given. You have to solve both the equations and find the relation between m and n.
I) $\mathbf{m}=\sqrt{ } 324$
II) $n^{2}-16 n-36=0$

Solution:

Value of \mathbf{m}	Value of \mathbf{n}	Result
18	18	$\mathrm{~m}=\mathrm{n}$
18	-2	$\mathrm{~m}>\mathrm{n}$

$m=\sqrt{ } 324$
$\Rightarrow \mathrm{m}=18$
$n^{2}-16 n-36=0$
$\Rightarrow \mathrm{n}^{2}-18 \mathrm{n}+2 \mathrm{n}-36=0$
$\Rightarrow \mathrm{n}(\mathrm{n}-18)+2(\mathrm{n}-18)=0$
$\Rightarrow(\mathrm{n}-18)(\mathrm{n}+2)=0$
$\Rightarrow \mathrm{n}=(18,-2)$
Hence, $\mathrm{m} \geq \mathrm{n}$.

Cubic Equation

Polynomial equations with degree 3 i.e., $a x^{3}+b x^{2}+c x+d=0$ are called as cubic equations. Some examples of cubic equations are as follows -
$x^{3}+2 x^{2}+3 x+4=0$
$2 x^{3}+12 x^{2}+30 x+48=0$
$x=\sqrt[3]{625}$

Q7. In the given question, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer
$X=\sqrt[3]{15625}$
$y^{2}=625$

Solution:

$X=\sqrt[3]{15625}=25$
$Y=625$
$Y=(+25,-25)$
$Y \leq X$

