Sample Paper

ANSWERKEY																			
1	(c)	2	(d)	3	(d)	4	(d)	5	(b)	6	(d)	7	(c)	8	(a)	9	(c)	10	(c)
11	(d)	12	(d)	13	(c)	14	(a)	15	(a)	16	(b)	17	(b)	18	(b)	19	(c)	20	(d)
21	(b)	22	(a)	23	(b)	24	(d)	25	(a)	26	(b)	27	(d)	28	(b)	29	(b)	30	(a)
31	(a)	32	(d)	33	(b)	34	(d)	35	(a)	36	(a)	37	(b)	38	(c)	39	(d)	40	(b)
41	(d)	42	(a)	43	(d)	44	(c)	45	(b)	46	(c)	47	(a)	48	(d)	49	(a)	50	(b)

SOLUTIONS

1. (c) Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{hr}$ and the speed of the stream be $y \mathrm{~km} / \mathrm{hr}$ then speed of boat in downstream is $(x+y) \mathrm{km} / \mathrm{hr}$ and the speed of boat upstream is $(x-y) \mathrm{km} / \mathrm{hr}$.
Ist case : Distance covered upstream $=12 \mathrm{~km}$
\therefore time $=\frac{12}{x-y} \mathrm{hr}$
Distance covered downstream $=40 \mathrm{~km}$
\therefore time $=\frac{40}{x+y} \mathrm{hr}$
Total time is $8 \mathrm{hr} \therefore \frac{12}{x-y}+\frac{40}{x+y}=8$
IInd case :
Distance covered upstream $=16 \mathrm{~km}$
\therefore time $=\frac{16}{x-y} \mathrm{hr}$
Distance covered downstream
$=32 \mathrm{~km} \quad \therefore$ time $=\frac{32}{x+y} \mathrm{hr}$
Total time taken $=8 \mathrm{hr}$
$\therefore \frac{16}{x-y}+\frac{32}{x+y}=8$
Solving (i) and (ii), we get,
$x=$ speed of boat in still water $=6 \mathrm{~km} / \mathrm{hr}$,
$y=$ speed of stream $=2 \mathrm{~km} / \mathrm{hr}$
2. (d) $\mathrm{A}(\sqrt{3}+1, \sqrt{2}-1), \mathrm{B}(\sqrt{3}-1, \sqrt{2}+1)$
$A B=\sqrt{(\sqrt{3}-1-\sqrt{3}-1)^{2}+(\sqrt{2}+1-\sqrt{2}+1)^{2}}$
$=\sqrt{(-2)^{2}+(2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
3. (d) isosceles and similar
4. (d) Let us first find the H.C.F. of 210 and 55.

Applying Euclid's division lemma on 210 and 55, we get
$210=55 \times 3+45$
Since, the remainder $45 \neq 0$. So, we now apply division lemma on the divisor 55 and the remainder 45 to get $55=45 \times 1+10$
We consider the divisor 45 and the remainder 10 and apply division lemma to get
$45=4 \times 10+5$
We consider the divisor 10 and the remainder 5 and apply division lemma to get
$10=5 \times 2+0$
We observe that the remainder at this stage is zero.
So, the last divisor i.e., 5 is the H.C.F of 210 and 55.
$\therefore 5=210 \times 5+55 y \Rightarrow y=\frac{-1045}{55}=-19$
5. (b) There are a total of six digits ($1,2,2,3,4,6$) out of which four are even $(2,2,4,6)$
So, required probility $=\frac{4}{6}=\frac{2}{3}$
6. (d)
(a) It is quadratic polynomial
[\because the graph meets the x-axis in two points]
(b) It is a quadratic polynomial
[\because the graph meets the x-axis in two points]
(c) It is a quadratic polynomial
[\because the graph meets the x-axis in two points]
(d) It is a not quadratic polynomial $[\because$ the graph meets the x-axis in one point]
7. (c) Let ABCD be a square and two opposite vertices of it are $\mathrm{A}(-1,2)$ and $\mathrm{C}(3,2) . \mathrm{ABCD}$ is square.

$\Rightarrow \mathrm{AB}=\mathrm{BC}$
$\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}$
$\Rightarrow(x+1)^{2}+(y-2)^{2}=(x-3)^{2}+(y-2)^{2}$
$\Rightarrow x^{2}+2 x+1=x^{2}-6 x+9$
$\Rightarrow \quad 2 x+6 x=9-1=8$
$\Rightarrow 8 \mathrm{x}=8 \Rightarrow \mathrm{x}=1$
ABC is right Δ at B , then
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ (Pythagoras theorem)
$\Rightarrow \quad(3+1)^{2}+(2-2)^{2}$
$=(x+1)^{2}+(y-2)^{2}+(x-3)^{2}+(y-2)^{2}$
$\Rightarrow \quad 16=2(y-2)^{2}+(1+1)^{2}+(1-3)^{2}$
$\Rightarrow \quad 16=2(y-2)^{2}+4+4$
$\Rightarrow(\mathrm{y}-2)^{2}=4 \Rightarrow \mathrm{y}-2= \pm 2$
$\Rightarrow \quad y=4$ and 0
i.e., when $\mathrm{x}=1$ then $\mathrm{y}=4$ and 0

Coordinates of the opposite vertices are :
$\mathrm{B}(1,0)$ or $\mathrm{D}(1,4)$
8. (a)
9. (c) In right angled triangle POR
$\mathrm{PR}^{2}=\mathrm{PO}^{2}+\mathrm{OR}^{2}=(6)^{2}+(8)^{2}=36+64=100$
$\therefore \quad \mathrm{PR}=10 \mathrm{~cm}$
Again in right angled triangle
$\mathrm{PQR}, \mathrm{QR}^{2}=(26)^{2}=676$
$\mathrm{PQ}^{2}+\mathrm{PR}^{2}=(24)^{2}+(10)^{2}=576+100=676$
$\therefore \quad \mathrm{QR}^{2}=\mathrm{PQ}^{2}+\mathrm{PR}^{2}$
$\therefore \quad \triangle \mathrm{PQR}$ is a right angled triangle with right angle at P .
i.e., $\angle \mathrm{QPR}=90^{\circ}$
10. (c) $\frac{\pi r_{1}^{2}}{\pi r_{2}^{2}}=\frac{25}{16}$

$$
\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}
$$

$$
\Rightarrow \frac{2 \pi r_{1}}{2 \pi r_{2}}=\frac{5}{4}=\frac{5 \times 125}{4 \times 125}=\frac{625}{500}
$$

11. (d) For any rational number $\frac{p}{q}$, where prime factorization
of q is of the form $2^{n} \cdot 5^{m}$, where n and m are nonnegative integers, the decimal representation is terminating.
12. (d) Let the y-axis divides the line segment joining $(4,5)$ and $(-10,2)$ in the ratio $\mathrm{k}: 1$. x coordinate will be zero on y -axis.
We know that the coordinates of the point dividing the line segment joining $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in the
ratio $\mathrm{m}: \mathrm{n}$ are given by $\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{my} \mathrm{y}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Here, x coordinate of the point
dividing the line segment joining $(4,5)$ and $(-10,2)$ is equal to zero.
So, $\frac{\mathrm{k} \times(-10)+1 \times 4}{\mathrm{k}+1}=0$
$\Rightarrow-10 \mathrm{k}=-4 \Rightarrow \mathrm{k}=\frac{2}{5}$
Therefore, the line segment joining $(4,5)$ and $(-10,2)$ is cut by the y-axis in the ratio $2: 5$.
13. (c) There are 4 cards of king and 4 cards of Jack $n(S)=$ $52, \mathrm{n}(\mathrm{E})=4+4=8$
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{8}{52}=\frac{2}{13}$
14. (a) The graph of $y=a x^{2}+b x+c$ is a parabola open upward if $a>0$. So, for $y=x^{2}-6 x+9, a=1>0$, the graph is a parabola open upward.
15. (a) If 1,1 and 2 are sides of a right triangle then sum of squares of any two sides is equal to square of third side.
Case $1(1)^{2}+(1)^{2}=2 \neq(2)^{2}$
Case $2(1)^{2}+(2)^{2}=1+4=5 \neq(1)^{2}$
Case $3(2)^{2}+(1)^{2}=5 \neq(1)^{2}$
16. (b) $n(S)=6 \times 6=36$
$\mathrm{E}=\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5)$, $(5,4),(5,6),(6,5)\}$
$\mathrm{n}(\mathrm{E})=10$
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{10}{36}=\frac{5}{18}$
17. (a) $\sqrt{2}$ is not a rational number. It can't be expressed in the fractional form.
18. (b) Area $=\frac{\theta}{360^{\circ}} \times \pi r^{2}=\frac{30^{\circ}}{360^{\circ}} \times \pi(7)^{2}=\frac{49 \pi}{12}$
19. (c) Inconsistent system
20. (d) $\mathrm{S}=\{1,2,3,4 \ldots \ldots, 25\}$
$\mathrm{n}(\mathrm{S})=25$
$\mathrm{E}=\{2,3,5,7,11,13,17,19,23\}$
$n(E)=9$

$$
\therefore \quad P(E)=\frac{9}{25}
$$

21. (b) $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{3}}=\frac{\frac{3 a b c-b^{3}}{a^{3}}}{\left(\frac{c}{a}\right)^{3}}$

$$
\Rightarrow \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{3 a b c-b^{3}}{c^{3}}
$$

22. (a) $S=\{S, M, T, W, T h, F, S a\}$ $n(S)=7$
A non-leap year contains 365 days,
i.e., 52 weeks +1 day.
$\mathrm{E}=\{\mathrm{Sa}\}$
$\mathrm{n}(\mathrm{E})=1$
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{1}{7}$
23. (b) Let the given points be $A(4,3)$ and $B(x, 5)$

Since A and B lies on the circumference of a circle with centre $\mathrm{O}(2,3)$, we have

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB} \\
& \Rightarrow \quad \mathrm{OA}^{2}=\mathrm{OB}^{2} \\
& \Rightarrow \quad(4-2)^{2}+(3-3)^{2}=(\mathrm{x}-2)^{2}+(5-3)^{2} \\
& \Rightarrow \quad 4+0=(\mathrm{x}-2)^{2}+4 \\
& \Rightarrow \quad(\mathrm{x}-2)^{2}=0 \Rightarrow \mathrm{x}=2
\end{aligned}
$$

24. (d) Since
$\frac{13}{125}=\frac{13}{53}=\frac{132^{3}}{(2)^{3}(5)^{3}}=\frac{104}{1000}=0.104$
25. (a)

Given: A $\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=90^{\circ}$ and D is the midpoint of $B C$.
Join AD.
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$.

$$
\begin{equation*}
\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \tag{i}
\end{equation*}
$$

[by Pythagoras' theorem]
In $\triangle \mathrm{ABD}, \angle \mathrm{B}=90^{\circ}$
$\therefore \quad \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \quad A B^{2}=\left(A D^{2}-B D^{2}\right)$.
$\therefore \quad \mathrm{AC}^{2}=\left(\mathrm{AD}^{2}-\mathrm{BD}^{2}\right)+\mathrm{BC}^{2} \quad$ [using (i)]
$\Rightarrow \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}-\mathrm{CD}^{2}+(2 \mathrm{CD})^{2}$

$$
[\because \mathrm{BD}=\mathrm{CD} \text { and } \mathrm{BC}=2 \mathrm{CD}]
$$

$\Rightarrow \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+3 \mathrm{CD}^{2}$
Hence, $\mathrm{AC}^{2}=\mathrm{AD}^{2}+3 \mathrm{CD}^{2}$
26. (b) $\frac{3}{x}+\frac{4}{y}=1 \quad$ (i) $\frac{4}{x}+\frac{2}{y}=\frac{11}{12}$

Multiplying (ii) by 2
$\Rightarrow \frac{8}{x}+\frac{4}{y}=\frac{22}{12}$

$\therefore \quad x=\frac{5 \times 12}{10}=6$
Substituting $\mathrm{x}=6$ in (i)
$\Rightarrow \frac{3}{6}+\frac{4}{y}=1 \Rightarrow \frac{4}{y}=1-\frac{1}{2}=\frac{1}{2} \quad \therefore \mathrm{y}=8$.
Hence, $x=6$ and $y=8$
27. (d)
28. (b) $n(S)=6 \times 6=36, E=\{(1,5),(2,5),(3,5),(4,5),(5$,
5), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\}
$\mathrm{n}(\mathrm{E})=12$
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{12}{36}=\frac{1}{3}$
29. (b) Put $x+1=0$ or $x=-1$ and $x+2=0$ or
$\mathrm{x}=-2$ in $\mathrm{p}(\mathrm{x})$
Then, $\mathrm{p}(-1)=0$ and $\mathrm{p}(-2)=0$

$$
\begin{align*}
\Rightarrow & \mathrm{p}(-1)= \\
\Rightarrow & -1+3+2 \alpha+\beta=0 \Rightarrow \beta=-2 \alpha-2 \ldots . \\
& p(-2)=(-2)^{3}+3(-2)^{2}-2 \alpha(-2)+\beta=0 \\
\Rightarrow & -8+12+4 \alpha+\beta=0 \Rightarrow \beta=-4 \alpha-4 \tag{ii}
\end{align*}
$$

By equalising both of the above equations, we get

$$
\begin{aligned}
& \quad-2 \alpha-2=-4 \alpha-4 \\
& \Rightarrow \quad 2 \alpha=-2 \quad \Rightarrow \alpha=-1 \\
& \text { put } \alpha \text { in eq. (i) } \\
& \Rightarrow \quad \beta=-2(-1)-2=2-2=0 \\
& \text { Hence, } \alpha=-1, \beta=0
\end{aligned}
$$

30. (a) Let D be the window at a height of 9 m on one side of the street and E be the another window at a height of 12 m on the other side.
In $\triangle \mathrm{ADC}$
$\mathrm{AC}^{2}=152-92$
$=225-81$
$\mathrm{AC}=12 \mathrm{~m}$
In $\triangle \mathrm{ECB}$
$\mathrm{CB}^{2}=15^{2}-12^{2}$
$=225-144$
$C B=9 \mathrm{~m}$
Width of the street $=(12+9) \mathrm{m}=21 \mathrm{~m}$
31. (a)
32. (d) All equilateral triangles are similar
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{EBD}$
$\Rightarrow \quad \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDE}}=\frac{\mathrm{BC}^{2}}{\mathrm{BD}^{2}}$

$$
\begin{aligned}
& =\frac{2 \mathrm{BD}^{2}}{\mathrm{BD}^{2}}=\frac{4}{1} \\
& \Rightarrow \quad \begin{array}{l}
\text { Area }(\mathrm{DABC}): \text { Area }(\mathrm{DBDE})_{\mathrm{B}} \\
=4: 1
\end{array}
\end{aligned}
$$

33. (b) As A lies on x-axis and B lies on y-axis, so their coordinates are $(x, 0)$ and $(0, y)$, respectively. Then,
$\frac{x+0}{2}=4$ and $\frac{0+y}{2}=-3 \Rightarrow x=8$ and $y=-6$
Hence, the points A and B are $(8,0)$ and $(0,-6)$.
34. (d) If 6^{x} ends with 5 , then 6^{x} would contain the prime 5 . But $6^{x}=(2 \times 3)^{x}=2^{x} \times 3^{x}$.
\Rightarrow The only prime numbers in the factorization of $6 x$ are 2 and 3 .
\therefore By uniqueness of fundamental theorem, there are no primes other than $2 \& 3$ in 6^{x}. So, 6^{x} will never end with 5 .
35. (a) (a) Area $=\frac{\theta}{360^{\circ}} \times \pi r^{2}=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(6)^{2}=\frac{132}{7} \mathrm{~cm}^{2}$
(b) Area of minor sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14=102.57 \mathrm{~cm}^{2}$
Area of major sector
$=$ Area of circle - Area of minor sector
$=\frac{22}{7}(14)^{2}-102.57$
$=615.44-102.57=512.87 \mathrm{~cm}^{2}$
(c) $\frac{C}{A}=\frac{2 \pi(5)}{\pi(5)^{2}}=\frac{2}{5}$
(d) Given, $\left(\frac{\theta}{360^{\circ}}\right) 2 \pi r=22$
\therefore Area of sector $=\left(\frac{\theta}{360^{\circ}}\right) \pi r^{2}=\left(\frac{\theta}{360^{\circ}}\right) \frac{\pi r}{2}(2 r)$
$=\left(\frac{\theta}{360^{\circ}}\right) 2 \pi r\left(\frac{r}{2}\right)=\frac{22 \times 6}{2}=66 \mathrm{~cm}^{2}$
36. (a) Let $\mathrm{AD}=5 \mathrm{x} \mathrm{cm}$ and $\mathrm{DB}=4 \mathrm{x} \mathrm{cm}$.

Then,
$\mathrm{AB}=(\mathrm{AD}+\mathrm{DB})=(5 \mathrm{x}+4 \mathrm{x}) \mathrm{cm}=9 \mathrm{x} \mathrm{cm}$.
In $\triangle A D E$ and $\triangle A B C$, we have
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
$\angle \mathrm{AED}=\angle \mathrm{ACB}$
$\therefore \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
(corres. $\angle \mathrm{s}$)
(corres, $\angle \mathrm{s}$)
[by AA-similarity]
$\Rightarrow \quad \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{5 \mathrm{x}}{9 \mathrm{x}}=\frac{5}{9}$
$\Rightarrow \quad \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{5}{9}$
In $\triangle \mathrm{DFE}$ and $\triangle \mathrm{CFB}$, we have $\angle \mathrm{EDF}=\angle \mathrm{BCF}$
(alt. int. \angle s)

$$
\begin{aligned}
& \angle \mathrm{DEF}=\angle \mathrm{CBF} \\
\therefore \quad & \triangle \mathrm{DFE} \sim \triangle \mathrm{CBF} \\
\Rightarrow \quad & \frac{\operatorname{ar}(\triangle \mathrm{DFE})}{\operatorname{ar}(\triangle \mathrm{CFB})}=\frac{\mathrm{DE}^{2}}{\mathrm{CB}^{2}}=\frac{\mathrm{DE}^{2}}{\mathrm{BC}^{2}} \\
& \quad=\left(\frac{\mathrm{DE}}{\mathrm{BC}}\right)^{2}=\left(\frac{5}{9}\right)^{2}=\frac{25}{81} \\
\Rightarrow \quad & \operatorname{ar}(\triangle \mathrm{DFE}): \text { ar }(\triangle \mathrm{CFB})=25: 81
\end{aligned}
$$

(alt. int. $\angle \mathrm{s}$)
37. (b) Let $f(x)=6 x^{3}-11 x^{2}+k x-20$
$f\left(\frac{4}{3}\right)=6\left(\frac{4}{3}\right)^{3}-11\left(\frac{4}{3}\right)^{2}+k\left(\frac{4}{3}\right)-20=0$
$\Rightarrow 6 \cdot \frac{64}{27}-11 \cdot \frac{16}{9}+\frac{4 k}{3}-20=0$
$\Rightarrow 128-176+12 \mathrm{k}-180=0$
$\Rightarrow 12 \mathrm{k}+128-356=0 \quad 12 \mathrm{k}=228$
$\Rightarrow \mathrm{k}=19$
38. (c) For coincident lines, $\frac{3}{6}=\frac{-1}{-k}=\frac{8}{16}$ $\frac{1}{2}=\frac{1}{k} \Rightarrow k=2$
39. (d) Let the line $\frac{x}{a}+\frac{y}{b}=1$ meet x-axis at $P(a, 0)$ and y-axis at $Q(0, b)$. Since R is mid point at $P Q$.

$$
\therefore \quad \frac{a+0}{2}=2, \frac{0+b}{2}=-5
$$

$\therefore \quad a=4, b=-10$
$\therefore \quad \mathrm{P}$ is $(4,0), \mathrm{Q}$ is $(0,-10)$
40. (b) $\frac{21}{45}=\frac{21}{9 \times 5}=\frac{21}{3^{2} \times 5}$

Clearly, 45 is not of the form $2 \mathrm{~m} \times 5 \mathrm{n}$. So the decimal expansion of $\frac{21}{45}$ is non-terminating and repeating.
41. (d) Sample space $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Total number of elementary events $=4$
Favourable event E = HH
$n(E)=1$
$P(E)=\frac{1}{4}$
42. (a) Favourable event $\mathrm{E}=\{\mathrm{TH}, \mathrm{HT}\}$
$\mathrm{n}(\mathrm{E})=2$
$\mathrm{P}(\mathrm{E})=\frac{2}{4}=\frac{1}{2}$
43. (d) Favourable event $\mathrm{E}=\{\mathrm{TT}\}$
$\mathrm{n}(\mathrm{E})=1$
$\mathrm{P}(\mathrm{E})=\frac{1}{4}$
44. (c) At most one head
$=\{\mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$\mathrm{P}=\frac{3}{4}$
45. (b) At least one head
\{HH, HT, TH\}
$\mathrm{P}=\frac{3}{4}$
46. (c) Area of minor sector OAPB
$=\frac{\theta}{360} \times \pi r^{2}=\frac{90}{360} \times 3.14 \times(10)^{2}$
$=78.5 \mathrm{~cm}^{2}$
47. (a) Area of minor segment APB

$$
\begin{aligned}
& =\left(\frac{\pi \theta}{360}-\sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) r^{2} \\
& =\left(3.14 \times \frac{90}{360}-\sin 45^{\circ} \cos 45^{\circ}\right)(10)^{2} \\
& =28.5 \mathrm{~cm}^{2}
\end{aligned}
$$

48. (d) Area of the major sector OAQB
= Area of circle - Area of minor sector OAPB.
$=(314-78.5) \mathrm{cm}^{2}=235.5 \mathrm{~cm}^{2}$
49. (a) Area of major segment AQB
$=$ Area of the circle - Area of the minor segment APB
$=(3.14 \times 10 \times 10-28.5) \mathrm{cm}^{2}$
$=285.5 \mathrm{~cm}^{2}$
50. (b) Length of arc APB
$=\frac{90}{360} \times 2 \times \frac{22}{7} \times 10$
$=15.71 \mathrm{~cm}$
