MARKING SCHEME

Senior Secondary School Examination TERM-II, 2022

CHEMISTRY (Subject Code-043)

[Paper Code: 56/6/1] [Set-1]

Q. No.	EXPECTED ANSW	VER / VALUE POINTS	Marks
	SECT	TION—A	
	 (a) Alternate current prevents the electrolysis so that the concentration of ions in the solution remains constant / AC current does not change the composition of the solution. (b) The law states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. (c) Mg (s) Mg²+ (aq.) Cu²+ (aq.) Cu (s) 		
		(Any two)	1×2
2.	(a) First order.(b)	Molecularity	1
	The sum of powers of the concentration of the reactants in the rate law expression is called the order of a reaction. Order of a reaction can be zero or	The number of reacting species (atoms, ions or molecules) taking part in an elementary chemical reaction. The Molecularity of a reaction cannot	
2	fraction or negative. (A	be zero or fraction or negative. Any one) or (any other correct difference)	1
J.	Cl – CH ₂ – COOH $<$ Cl – C	H – COOH CCCl ₃ – COOH	1
	(b) Pentane-2,4-dione		1
		ION—B	
4 (a)	 (i) Zero order (ii) -k (iii) mol L⁻¹ s⁻¹ 		1 1 1
		OR	

XII_39_043_56/6/1_Chemistry # Page-**3**

4 (b)	$k = \frac{0.693}{1000} = 0.0288 \text{ min}^{-1}$	1/2
	24 = 2.303	1 /
	$t = \frac{10g}{k} \frac{10g}{a - x}$	1/2
	$t = \frac{2.303}{0.0288} \log \frac{100}{100 - 25}$	
	$t = \frac{2.303}{109} \log \frac{4}{9}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	t = 79.96 (log 4 - log 3) $t = 79.96 \times 0.125$	1
	t = 79.90 x 0.123 $= 9.99 min$	1
	Deduct ½ marks if no or incorrect unit)	1
	OR	
	$k = \frac{0.693}{min^{-1}} min^{-1}$	
	24	1/2
	$\frac{0.693}{24} = \frac{2.303}{t} \log \frac{a}{a - x}$	1/2
	$=\frac{2.303}{100}$	
	t = 105 100-25 $2.303 X 24 1 4$	
	$t = \frac{1000 \text{m} - 1}{0.693} \log \frac{1}{3}$	S 1
	t = 79.75 (log 4 - log 3)	
	$t = 79.75 \times 0.125$	rm
	= 9.97 min	1
	(Deduct ½ marks if no or incorrect unit)	
5 (a)	(i) +3	1
	(ii) Due to the poor shielding effect of d-electrons and increase in effective	4
	nuclear charge. (iii) V^{3+} : 2 unpaired electrons, Ti^{3+} : 1 unpaired electron.	1/2 1/2
	OR	72,72
5 (b)	(i) $Ce^{3+} = [Xe] 4f^{1} = 1$ unpaired electron	
	$\mu = \sqrt{n(n+2)}$	1/2
	$\mu = \sqrt{1(1+2)} = \sqrt{3}$ = 1.73 B M	1/2
	(ii) Copper in +2 oxidation state has incompletely filled d-orbital.	1
	(iii) Sc ³⁺ has no unpaired electrons / no d-d transition / d ⁰ configuration	A-1997
	whereas in Ti ³⁺ with one unpaired electron shows d-d transition.	1
6.	(a) The movement of colloidal particles under an applied electric potential.	1
	(b) Yes. (c) The process of settling colloidel particles is congulation / The process of	1
	(c) The process of settling colloidal particles is coagulation / The process of converting colloidal solution into precipitate.	1
	OR	
	(a) Adsorption: The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed adsorption.	
	(b) Lyophobic sol: The dispersed phase has little or no affinity for the	
	(b) Lyophobic son. The dispersed phase has here of no arithey for the	

XII_39_043_56/6/1_Chemistry # Page-**4**

	(c) Multimolecular colloid: On dissolution, a large number of atoms or smaller	
	molecules of a substance aggregate together to form species having the size in	
	the colloidal range (1–1000 nm).	1 x 3
7.	$\Lambda_m = \frac{\mathbf{K} \times 1000}{}$	1/2
	$\begin{bmatrix} c \\ 3.905 X 10^{-5} X 1000 \end{bmatrix}$	1/2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
	(Deduct ½ marks if no or incorrect unit)	
	Degree of dissociation	
	$\alpha = \frac{\wedge_m}{\wedge_{m^{\circ}}}$	1/2
	$=\frac{39.05}{390.5}=0.1$	1/2
8.	(a) $(C_2H_5)_2CHNH_2$	1
	(b) $A = CH_3CN$,	1
	$B = CH_3CH_2NH_2$	1
9.	(a) Hybridization : sp ³ d ²	0 1
J.	Shape : Octahedral	1/2
	Magnetic behaviour : Paramagnetic	T 1/2
	(b) [Co (NH ₃) ₅ Cl]Cl ₂	1
10	(a) Due to incompletely filled describitely (due to the participation of both (p. 1)	1
10.	(a) Due to incompletely filled d-orbitals / due to the participation of both (n-1) d and ns electrons.	1
	(b) Due to high $\Delta_a H^\circ$ and low $\Delta_{hyd} H^\circ$.	1
	(c) Cr^{3+} is more stable in +3 oxidation state due to t_{2g}^{3} configuration.	1
	OR	
10.	• The steady decrease in the atomic / ionic radii of the lanthanoid series with	
	the increase in atomic number.	1
	• (i) 4d and 5d series elements have almost identical atomic radii.	
	(ii) Difficulty in the separation of Lanthanoids.(iii) Similar physical and chemical properties.	
	(iv) Basic character of the lanthanide hydroxides M(OH) ₃ decreases with	
	an increase in atomic number. (Any two consequences)	1 0
		1 x 2
11.	(a) Aryl halides do not undergo nucleophilic substitution with the anion	1
	formed by phthalimide.	
	(b) In aniline, due to resonance lone pair of electrons on N is less available	
	while it is easily available in alkyl amines due to electron donating nature (+I effect) of alkyl group / Due to electron withdrawing nature of the aryl group in	
	aniline while electron donating nature of alkyl group in alkyl amine.	1
	(c) $C_2H_5NH_2 < (C_2H_5)_3 N < (C_2H_5)_2NH$	1
	(0) 0211311112 \ (02113)311 \ (02113)21111	-
	(a) Ethanal	
12.	(a) Ethanal	1
	<u></u>	

XII_39_043_56/6/1_Chemistry # Page-**5**

(b) On heating with Tollens' reagent, propanal forms a silver mirror whereas	1
propanone does not.	1017-300;
(Or any other suitable chemical test)	
(c) PCC	1
(d) (i)	
OH	
A = / Propan-2-ol,	
B = CH ₃ COCH ₃ / Propanone /Acetone	
CH_3 — C = N — NH_2	
	1, 4
$C = \frac{CH_3}{}$ / Propanone hydrazone	$\frac{1}{2} \times 4$
D = CHI ₃ / Iodoform	
OR	6
(d)(ii) (I)	1
	rm
$C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$	
Review	
(or any other suitable reaction)	
(II)	
(i) X ₂ /Red phosphorus	
$R-CH_2-COOH \xrightarrow{(i) \ M_2/\ Red \ phosphorus} R-CH-COOH$	
X X	
X = Cl, Br	1
(or any other suitable reaction)	
(or any other suitable reaction)	

* * *

collegedunia India's largest Student Review Platform