- 1. The area bounded by the curve $y = 2x x^2$ and the line y = -2 is given by
 - (A) $\frac{32}{3}$
- (B)3
- (C) $\frac{16}{2}$
- (D) none of these

- 2. The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin^2 x \ dx$ is
 - (A) 0
- $(B)\frac{\pi}{4} \qquad (C)\frac{\pi}{2}$
- (D) π

- 3. $\int \frac{dx}{x^2+36}$ is equal to

 - (A) $\frac{1}{6}cot^{-1}\frac{x}{6} + c$ (B) $\frac{1}{6}tan^{-1}\frac{x}{6} + c$ (C) $\frac{1}{6}sin^{-1}\frac{x}{6} + c$
- (D) none of these

- 4. $\int \cos x \cdot \ln \tan \frac{x}{2} dx$ is equal to
 - (A) $\sin x \cdot \ln \tan \frac{x}{2} + x + c$
- (B) $\sin x$. $\ln \tan \frac{x}{2} x + c$
- (C) $-\sin x$. $\ln \tan \frac{x}{2} 1 + c$
- (D) none of these
- 5. The value of the integral $\frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1+2\cos x}{(2+\cos x)^2}$ is
 - (A) $\frac{1}{2}$
- (B) $-\frac{1}{8}$ (C) $-\frac{1}{4}$
- $(D)^{\frac{1}{4}}$

- 6. $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ is equal to

 - (A) $\frac{\pi}{4}$ (B) $\frac{\pi^2}{32}$
- (C) 1
- (D) none of these
- 7. The solution of the differential equation $\frac{d^2y}{dx^2} = 6x 4$ satisfying y(0) = 1, y'(0) = 1 is

(A)
$$y = x^3 - 2x^2 + 1$$
 (B) $y = 1 - x^3 + 2x^2$

(C)
$$y = x^3 + 2x^2 - x$$
 (D) $y = x^3 - 2x^2 + x$

8 . A differential equation which represents the family of curves $y=e^{\alpha x}$ is

(A)
$$y' = \alpha y$$

(B)
$$xy' - \ln y = 0$$
 (C) $x \ln y = yy'$ (D) $y \ln y = xy'$

(C)
$$x \ln y = y y$$

(D)
$$y \ln y = x y'$$

- 9. The order and degree of the differential equation $\frac{d^2y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{\frac{2}{3}}$ is
 - (A) 3,2
- (B) 1,2
- (C) 1,3
- 10. The solution of the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ is

(A)
$$\ln \left(\frac{x^2 + y^2}{x^2} \right) + 2 \tan^{-1} \frac{y}{x} = c$$

(B)
$$\frac{y^2}{2} + xy = \frac{x^3 - x^2}{2} + c$$

(C)
$$\left(1 + \frac{x}{y}\right)y = \left(1 - \frac{x}{y}\right) + c$$

$$(D) y = x - 2 \ln y + c$$

11. Solution of the differential equation $\frac{dy}{dx} + 2y = e^x$ is

$$(\Delta) 3y - a^{x} + c$$

$$B) ye^{2x} = e^x + c$$

$$(C) y = e^x + ce^{-2x}$$

(A)
$$3y = e^x + c$$
 (B) $ye^{2x} = e^x + c$ (C) $y = e^x + ce^{-2x}$ (D) $3y = e^x + ce^{-2x}$

$(A)^{\frac{401}{12}}$	(B) $\frac{399}{12}$	(C) $\frac{287}{2}$	(D) none of these	
13. 5 boys and !	5 girls sit in a row ra	ndomly. Then the proba	bility that all 5 girls sit togethe	r
(A) $\frac{1}{32}$	(B) $\frac{1}{4}$	(C) $\frac{1}{42}$	(D) none of these	
14. A bag conta		d balls. Then the probab	oility of drawing two balls of the	<u> </u>
(A) $\frac{28}{91}$	(B) $\frac{15}{91}$	(C) $\frac{43}{91}$	(D) none of these	
15. $\lim_{x\to 0}$ (sin	$(x + \cos x)^{\frac{1}{x}}$ is equal	to		
37 30	(B) e^2	(C) $\frac{1}{e}$	(D) 1	
16. $\lim_{x\to 1} \frac{x^{20}-}{x-1}$	$\frac{1}{2}$ is equal to			
(A) 0	(B) 10	(C) 20	(D) none of these	
	f $^{\prime}a^{\prime}$ for which the fu	$ \text{Inction } f(x) = \begin{cases} ax - 1 \\ 2x - 3 \end{cases} $, $x < 2$, $x \ge 2$ is continuous at $x = 2$	2
is (A) 0	(B) 2	(C) 1	(D) 4	
Correct? (A) f is con (B) f is diff (C) $f(0) =$	ntinuous in $[0,\pi]$ erentiable in $[0,\pi]$		nen which of the following is no	it
(A) continue (B) continue	x x , then $f(x)$ is ous as well as differences but not differentiable but not conting these	tiable in $\left[-1,1\right]$		
20. If $x = y\sqrt{1}$	$\frac{1}{1-x^2}$, then $\frac{dy}{dx}$ is equ	ıal to		
(A) y	(B) $\frac{\sqrt{1-x^2}}{1+2x^2}$	(C) $\frac{\sqrt{1-y^2}}{1-2y^2}$	(D) 0	

12. The variance of first 20 natural numbers is

- 21. If $y = \ln \ln x$, then $e^y \frac{dy}{dx}$ is equal to
- (A) $\frac{1}{r \ln x}$ (B) $\ln x$ (C) $\frac{1}{\ln x}$
- (D) $\frac{1}{x}$
- 22. The equation of the tangent at the point (1,1) to the curve $2y = 4 x^2$ is
 - (A) x + y = 0
- (B) x + y + 1 = 0 (C) x y + 1 = 0 (D) x + y = 2
- 23. The maximum value of $2x^3 + 3x^2 12x + 4$ for $-3 \le x < 4$ occurs at x = 2x + 4
 - (A) 2

- (D) 2
- 24. If $= \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to
- (A) $\sin z$
- (B) $\tan z$
- (C) 0
- (D) none of these
- 25. If $y = (2x + 3)^9$, then $y^{(5)}$ ($y^{(n)}$ denotes the n-th order derivative) is equal to

- (A) $9.8.7.6.5 \times 2^5 (2x+3)^5$ (B) $9.8.7.6.5 \times 2^5 (2x+3)^4$ (C) $9.8.7.6.5 \times 2^4 (2x+3)^5$ (D) $9.8.7.6.5 \times 2^4 (2x+3)^4$
- 26. The sum of the series $1 + 3x + 6x^2 + 10x^2 + \cdots \infty$ is (here |x| < 1)
- (A) $\frac{1}{(1-x)^2}$ (B) $\frac{1}{1-x}$ (C) $\frac{1}{(1+x)^2}$ (D) $\frac{1}{(1-x)^3}$
- 27. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, the $\frac{1}{2} |\vec{a} \vec{b}|$ is equal to
- (A) $\frac{1}{2} \left| \sin \frac{\theta}{2} \right|$ (B) $\left| \sin \frac{\theta}{2} \right|$ (C) $2 \left| \sin \frac{\theta}{2} \right|$
- (D) none of these
- 28. If \vec{a} , \vec{b} and \vec{c} are any three vectors, then $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ only if
- (A) \vec{b} and \vec{c} are collinear
- (B) \vec{a} and \vec{c} are collinear
- (C) \vec{a} and \vec{b} are collinear
- (D) none of these
- 29. If $2x^2 + 3x 2 \le 0$, then
- (A) $x \le -2$
- $(B) -2 \le x \le \frac{1}{2}$
- (D) $x \leq \frac{1}{2}$
- 30. The smallest value of $x^2 3x + 3$ in (-3,3) is
 - (A) 18
- (B) -14
- (D) none of these
- 31. The direction cosines of any normal to the xy -plane are
- (A) 1,0,0
- (B) 0,1,0
- (C) 1,1,0
- (D) 0,0,1
- 32. The distance of the point (1,3,-2) from the plane x+y-z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z-1}{-6}$ is

- $(A)^{\frac{5}{11}}$
- (B) $\frac{3}{11}$
- (C) $\frac{7}{11}$
- (D) none of these
- 33. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere

 $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is

- (A) 26
- (B) 23
- (C) 13
- (D) none of these
- 34. If the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is parallel to the plane ax + by + cz + d = 0, then
 - $(A) \frac{a}{l} = \frac{b}{m} = \frac{c}{n}$

(B) al + bm + cn = 0

(C) $\frac{a}{l} + \frac{b}{m} + \frac{c}{n} = 0$

- (D) none of these
- 35. The equation of the straight line passing through the point of intersection of the lines x - y = 2 and 2x - 3y + 1 = 0 and parallel to the line 3x + 4y = 16 is
 - (A) 3x + 4y + 41 = 0
- (B) 3x + 4y 41 = 0
- (C) 4x + 3y + 41 = 0
- (D) 4x + 3y 41 = 0
- 36. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then
 - (A) $ab(a+b) + 6abh + 8h^3 = 0$
- (B) $ab(a+b) 6abh + 8h^3 = 0$
- (C) $ab(a+b) + 3abh + 4h^3 = 0$
- (D) none of these
- 37. If (1,-1) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle $x^2 + y^2 + 4x - 6y + 3 = 0$, then the value of c is
 - (A) 12
- (B) -12
- (C) 14
- (D) 14
- 38. If (6,0) is the vertex and y- axis is the directrix of a parabola, then its focus is
 - (8,0)
- (B)(4,0)
- (C)(12,0)
- (D) none of these
- 39. The eccentricity of the ellipse $9x^2 + 5y^2 30y = 0$ is
- (B) $\frac{2}{3}$

- 40. An equation of the tangent to the hyperbola $3x^2 + 4y^2 = 3$, which is perpendicular to the line x + 3y - 7 = 0 is
 - (A) $y = 3x + \sqrt{6}$ (B) $y = -3x + \sqrt{6}$ (C) y = 3x 6
- (D) none of these
- 41. If $\alpha + \beta = 45^{\circ}$, then $(1 + \tan \alpha)(1 + \tan \beta)$ is equal to
 - (A) 1

- (D) none of these
- 42. The most general solution of $\tan \theta = -1$ and $\cos \theta = \frac{1}{\sqrt{2}}$ is

 - (A) $n\pi + \frac{7\pi}{4}$ (B) $n\pi + (-1)^n \frac{7\pi}{4}$ (C) $2n\pi + \frac{7\pi}{4}$
- (D) none of these

(here n is an integer)

43. The value of sir	$\ln\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$ is	equal to	
(A) $\frac{\sqrt{3}}{2}$	$(B)-\frac{\sqrt{3}}{2}$	(C) $\frac{1}{2}$	(D) none of these
44. In a triangle AB	C if $b+c=3a$, then	$\tan \frac{B}{2} \tan \frac{C}{2}$ is equal to	Ď.
(A) $\frac{1}{3}$	(B) 1	(C) $\frac{1}{4}$	(D) $\frac{1}{2}$
45. If $\alpha + \beta + \gamma = \frac{1}{2}$	$rac{ au}{2}$, then the value of ta	$\ln \alpha \tan \beta + \tan \beta \tan \gamma$	$\gamma + \tan \gamma \tan \alpha$ will be
(A) 1	(B) $\frac{1}{2}$	(C) $\frac{3}{2}$	(D) none of these
46. The minor of '2'	in the determinant	$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \\ 2 & 0 & 3 \end{vmatrix}$ is	
(A) 0	(B) 17	(C) -17	(D) - 15
47. If the value of a	third order determina	nt is 8 , then the value	of the determinant
formed by its c	ofactor is		
(A) 8	(B) 24	(C) 32	(D) 64
48 . The value of the	e determinant 2 3 4 6 8 11	5 9 is 15	
(A) -2	(B) 2	(C) 4	(D) -4
has a unique sol			
$(A) \kappa \neq 0$	(B) $-1 < k < 1$	$(C) - 2 < \kappa < 2$	(D) $\kappa = 0$
50. Let z be a comp	olex number with mode	ules 4 and argument $\frac{27}{3}$	$\frac{\tau}{z}$, then z is equal to
$(A)-2+i2\sqrt{3}$	(B) $2 - i2\sqrt{3}$	(C) $-1 + i\sqrt{3}$	(D) none of these
51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)$	$\int_{0}^{n} = \cos(n\theta) + i\sin(n\theta)$	n heta) , then n is equal t	o
(A)2	(B) 3	(C) 4	(D) none of these
	mean between two not then $2\frac{a}{b}$ is equal to	on-negative numbers a	a and b be same as the
(A) 2	(B) 1	(C) $\frac{1}{2}$	(D) none of these
53. The number of v	ways in which 5 letters	can be posted in 6 let	ter boxes in a town is
(A) 6 ⁵	(B) 5 ⁶	(C) ⁶ P ₅	(D) 6C_5
54. The number of p	oroper divisors (exclud (B) 47	ing 1, and itself) of 252 (C) 56	! is (D) none of these

- 55. If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$ is equal to

- (A) 2^{11} (B) $\frac{2^{11}-1}{11}$ (C) $\frac{2^{11}}{11}$ (D) none of these
- 56. If the set A has 4 elements, B has 5 elements, then the number of elements in $A \times B$ is
 - (A) 10
- (B) 20
- (C) 16
- (D) 9
- 57. Let R be a relation on the set of natural numbers \mathbb{N} such that mRn if m is a factor of n, (here , n are elements of $\mathbb N$) then the relation is
 - (A) reflexive and symmetric
 - (B) reflexive and transitive
 - (C) equivalence relation
 - (D) transitive but not reflexive
- 58. Let $f:(0,\infty)\to(0,\infty)$ be defined by $(x)=10x^2$, $x\in(0,\infty)$, then f is
 - (A) one to one but not onto
 - (B) onto but not one-to-one
 - (C) bijective
 - (D) neither one-to-one nor onto
- 59. Which of the following is a statement
- (A) shut the door
- (B) listen to me
- (C) is $9 \times 3 = 27$?
- (D) 15 is less than 3
- 60. The binary representation of 13 is
 - (A) 1001
- (B) 1101
- (C) 1011
- (D) 1110

