QUESTION PAPER CODE 65/3/B
 EXPECTED ANSWERS/VALUE POINTS
 SECTION - A

Marks

1. $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x} \quad$ (Standard form) $\quad 1 / 2 m$
I.F. $=\log x \quad 1 / 2 m$
2. $x=2, y=9$
($1 / 2$ for correct x or y)
$\therefore \mathrm{x}+\mathrm{y}=11$
$1 / 2 \mathrm{~m}$
3. order 3, or degree 1
\therefore Degree + order $=4$
4. using $\sin \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}$

$$
\Rightarrow \theta=0^{\circ}
$$

$1 / 2 \mathrm{~m}$
$1 / 2 \mathrm{~m}$
5. $\vec{a} \cdot \vec{b}=0 \Leftrightarrow x=-6$
$1 / 2 \mathrm{~m}$
$\mathrm{y}= \pm \sqrt{40}$ or $\pm \sqrt{2} \sqrt{10}$
$1 / 2 \mathrm{~m}$
6. $\begin{array}{ll}\mathrm{a}^{2} \sin ^{2} \alpha+\mathrm{a}^{2} \sin ^{2} \beta+\mathrm{a}^{2} \sin ^{2} \gamma & 1 / 2 \mathrm{~m} \\ =2 \mathrm{a}^{2} & 1 / 2 \mathrm{~m}\end{array}$

SECTION - B

7. $\left.\begin{array}{rl}\overrightarrow{\mathrm{AB}} & =-2 \hat{\mathrm{i}}-5 \hat{k} \\ \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}-2 \hat{j}-\hat{k}\end{array}\right\}$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-10 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \quad 1 \mathrm{~m}$
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{165} \quad 1 / 2 \mathrm{~m}$

$$
\begin{array}{rlr}
\hat{\mathrm{n}} & =\frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|} \\
& =\frac{(-10 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})}{\sqrt{165}} \text { or } \frac{10 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}}{\sqrt{165}} & 1 \mathrm{~m} \\
\end{array}
$$

8. $\left.\begin{array}{rl}\vec{a}_{1} & =-\hat{i}, \vec{b}_{1}=\hat{i}+\frac{1}{2} \hat{j}-\frac{1}{12} \hat{k} \\ \vec{a}_{2}=-2 \hat{j}+\hat{k}, \vec{b}_{2}=\hat{i}+\hat{j}+\frac{1}{6} \hat{k}\end{array}\right\}$

$$
1 \mathrm{~m}
$$

$\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$1 / 2 \mathrm{~m}$
$\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\frac{1}{6} \hat{\mathrm{i}}-\frac{1}{4} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}$
$1 / 2 \mathrm{~m}$

$$
\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|=\frac{7}{12}
$$

Foot of perpendicular are $(0, b, c) \&(a, 0, c)$
1 m
Equ. of required plane

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
0 & \mathrm{~b} & \mathrm{c} \\
\mathrm{a} & 0 & \mathrm{c}
\end{array}\right|=0 \\
\Rightarrow & \mathrm{bcx}+\mathrm{acy}-\mathrm{abz}=0
\end{aligned}
$$

9. $\mathrm{p}(\mathrm{x}=2)=9 \cdot \mathrm{P}(\mathrm{x}=3) \quad 1 \mathrm{~m}$
$\Rightarrow{ }^{3} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}=9 \cdot{ }^{3} \mathrm{C}_{3} \mathrm{p}^{3} \cdot \mathrm{q}^{0} \quad 1 \mathrm{~m}$
$\Rightarrow 3 \mathrm{p}^{2}(1-\mathrm{p})=9 \mathrm{p}^{3} \quad 1 \mathrm{~m}$

$$
\Rightarrow \quad \mathrm{p}=\frac{1}{4}
$$

OR
Let H_{1} be the event that red ball is drawn
H_{2} be the event that black ball is drawn
E be the event that both balls are red

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{H}_{1}\right)=\frac{3}{8}, \quad \mathrm{P}\left(\mathrm{H}_{2}\right)=\frac{5}{8} \\
& \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)=\frac{5_{\mathrm{C}_{2}}}{10_{\mathrm{C}_{2}}}=\frac{2}{9}, \quad \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{3_{\mathrm{C}_{2}}}{10_{\mathrm{C}_{2}}}=\frac{1}{15} \\
& \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right) \\
& \quad=\frac{3}{8} \cdot \frac{2}{9}+\frac{5}{8} \cdot \frac{1}{15}=\frac{1}{8}
\end{aligned}
$$

Differentiating again,

$$
\begin{array}{cc}
x \frac{d^{2} y}{d x^{2}}=\frac{a^{2}}{(a+b x)^{2}} & 1 m \\
x^{3} \cdot \frac{d^{2} y}{d x^{2}}=\left(\frac{a x}{a+b x}\right)^{2}=\left(x \frac{d y}{d x}-y\right)^{2}(\operatorname{using}(i)) & 1 / 2 m
\end{array}
$$

11. $u=\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}-1}\right)=2 \cos ^{-1} \mathrm{x} \Rightarrow \frac{\mathrm{du}}{\mathrm{dx}} \frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
$11 / 2 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{v}=\sqrt{1-\mathrm{x}^{2}} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \\
& \left.\frac{\mathrm{dv}}{\mathrm{dx}}\right|_{x=\frac{1}{2}}=\frac{2}{\mathrm{x}}=4
\end{aligned}
$$

1 m
$11 / 2 \mathrm{~m}$
12. Let $I=\int_{0}^{\pi / 2} \frac{5 \sin x+3 \cos x}{\sin x+\cos x} d x$.

$$
\Rightarrow \quad \mathrm{I}=\int_{0}^{\pi / 2} \frac{5 \cos x+3 \sin x}{\cos x+\sin x} d x \ldots \ldots . . \text { (ii) }\left(\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right) \quad 11 / 2 m
$$

Adding (i) and (ii)

put $\log \mathrm{x}=\mathrm{t} \Rightarrow \mathrm{x}=\mathrm{e}^{\mathrm{t}} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt} \quad 1 \mathrm{~m}$
$=\int e^{t}\left(\log t+\frac{1}{t^{2}}\right) d t$
$=\int e^{t}\left[\left(\log t-\frac{1}{t}\right)+\left(\frac{1}{t}+\frac{1}{t^{2}}\right)\right] d t$ $11 / 2 \mathrm{~m}$
$=e^{t}\left(\log t-\frac{1}{t}\right)+c$
1 m
$=x\left[\log (\log x)-\frac{1}{\log x}\right]+c$
$1 / 2 \mathrm{~m}$
13. $I=\int \frac{x \cos x}{\cos x+x \sin x} d x$
put $\cos x+x \sin x=t$
$\Rightarrow \quad \mathrm{x} \cos \mathrm{xdx}=\mathrm{dt} \quad 1 \mathrm{~m}$

$$
=\int \frac{\mathrm{dt}}{\mathrm{t}}
$$

$$
=\log |\cos x+x \sin x|+c
$$

$$
1 \mathrm{~m}
$$

14. $\int \frac{x^{4} d x}{(x-1)\left(x^{2}+1\right)}=\int\left[(x+1)+\frac{1}{(x-1)\left(x^{2}+1\right)}\right] d x$

1 m (using partial fractions)

$$
=\int(x+1) d x+\frac{1}{2} \int \frac{d x}{(x-1)}-\frac{1}{2} \int \frac{x+1}{x^{2}+1} d x
$$

15. $\left[\begin{array}{ll}15000 & 15000\end{array}\right]\left[\begin{array}{c}\frac{2}{100} \\ \frac{x}{100}\end{array}\right]=[1800]$
$\Rightarrow \quad 300+150 \mathrm{x}=1800$
1 m
$\Rightarrow \quad \mathrm{x}=10 \%$
yes : compassionate or any other relevant value
1 m
16. $\cot ^{-1}(x+1)=\sin ^{-1} \frac{1}{\sqrt{1+(x+1)^{2}}}$
$11 / 2 \mathrm{~m}$
and $\tan ^{-1} x=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$11 / 2 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \sin \left(\sin ^{-1} \frac{1}{\sqrt{1+(\mathrm{x}+1)^{2}}}\right)=\cos \left(\cos ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right) \\
& \Rightarrow \quad 1+\mathrm{x}^{2}+2 \mathrm{x}+1=1+\mathrm{x}^{2} \Rightarrow \mathrm{x}=-\frac{1}{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
& 2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31} \\
= & 2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31} \\
= & \tan ^{-1} \frac{24}{7}-\tan ^{-1} \frac{17}{31} \\
= & \tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

17.

$$
\begin{aligned}
& C_{1} \rightarrow C_{1}+C_{2}+C_{3}, \\
& (a+b+c)\left|\begin{array}{cc}
1 & b \\
1 & b_{a} \\
1 & a \\
b
\end{array}\right|=0 \\
& \\
& R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \\
& \Rightarrow\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|=0 \quad(\because a+b+c \neq 0) \\
& \Rightarrow \quad-a^{2}-b^{2}-c^{2}+a b+b c+c a=0 \\
& \Rightarrow-\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
& \Rightarrow a=b=c
\end{aligned}
$$

18. $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot \mathrm{A}$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$,
$\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 7 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot \mathrm{A}$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{3}$
$\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & -3 \\ 0 & 0 & 1\end{array}\right) \cdot \mathrm{A}$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{2}$
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & +7\end{array}\right) \cdot \mathrm{A}$
(2 marks for all operations)

19. $f(x)=x-\left|x-x^{2}\right|=|x-x(1-x)|=\left\{\begin{array}{ccc}2 x-x^{2} & ,-1 \leq x<0 \\ 0 & , & x=0 \\ x^{2} & , & 0<x \leq 1\end{array} \quad 1 m\right.$
$\mathrm{f}(\mathrm{x})$ being a polynomial is continuous on $[-1,0] \cup[0,1]$
$\begin{array}{ll}\operatorname{lt}_{x \rightarrow 0^{-}} f(x)=\operatorname{lt}_{x \rightarrow 0^{-}}\left(2 x-x^{2}\right)=0 & 1 / 2 m \\ \operatorname{lt}_{x \rightarrow 0^{+}} f(x)=\operatorname{lt}_{x \rightarrow 0^{+}} x^{2}=0 & 1 / 2 \mathrm{~m} \\ \quad \text { Also, } f(0)=0 & \\ \because \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x) & 1 \mathrm{~m} \\ \Rightarrow \text { There is no point of discontinuity on }[-1,1] & 1 \mathrm{~m}\end{array}$

SECTION-C

20.

1 m

Required Area
y^{\prime}

$$
=\int_{0}^{2} \sqrt{4-\mathrm{x}^{2}} \mathrm{dx}-\int_{0}^{2}(2-\mathrm{x}) \mathrm{dx}
$$

21. $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$

$$
\begin{array}{ll}
\text { put } y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} & 1 \mathrm{~m} \\
\Rightarrow \frac{1+v^{2}}{v^{3}}=-\frac{d x}{x} & 1 m
\end{array}
$$

Integrating both sides

$$
-\frac{1}{2 \mathrm{v}^{2}}+\log \mathrm{v}=-\log \mathrm{x}+\mathrm{c}
$$

1 m

$$
\Rightarrow-\frac{x^{2}}{2 y^{2}}+\log y=c
$$

when $\mathrm{x}=1, \mathrm{y}=1 \Rightarrow \mathrm{c}=-\frac{1}{2}$
1 m

$$
\Rightarrow \quad \log y=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{2 \mathrm{y}^{2}}
$$

$$
1 / 2 \mathrm{~m}
$$

when $\mathrm{x}=\mathrm{x}_{0}, \mathrm{y}=\mathrm{e} \quad \Rightarrow \quad \mathrm{x}_{0}=\sqrt{3} \mathrm{e}$ $11 / 2 \mathrm{~m}$

OR

I F $=e^{\int \tan x d x}=e^{\log \sec x}=\sec x$
$\therefore \frac{d}{d x}(y \cdot \sec x)=3 x^{2} \sec x+x^{3} \sec x \tan x$
$\Rightarrow \quad y \sec x=\int 3 x^{2} \sec x \cdot d x+x^{3} \sec x-\int 3 x^{2} \cdot \sec x d x+c R e^{V i e V} \quad 2 m$
$\Rightarrow y=x^{3}+c \cos x$
when $\mathrm{x}=\frac{\pi}{3}, \mathrm{y} \leq 0 ;$ we get $\mathrm{c}=\frac{-2 \pi^{3}}{27}$
1 m
$\therefore \quad y=x^{3}-\frac{2 \pi^{3}}{27} \cos x$
1 m
22. Let us consider the man invested on x
electronic and y manually operated machines

$$
\begin{equation*}
\text { Maximise } P=220 x+180 y \tag{i}
\end{equation*}
$$

1 m
subject to

$$
\begin{gathered}
x+y \leq 20 \\
3600 x+2400 y \leq 57600 \Rightarrow 3 x+2 y \leq 48 \\
x, y \geq 0
\end{gathered}
$$

$$
\begin{aligned}
& \left.\mathrm{P}\right|_{\mathrm{A}(16,0)}=3520 \mathrm{Rs} . \\
& \left.\mathrm{P}\right|_{\mathrm{B}(8,12)}=3920 \mathrm{Rs} . \\
& \left.\mathrm{P}\right|_{\mathrm{C}(0,20)}=3600 \mathrm{Rs} .
\end{aligned}
$$

$B(8,12)$

Maximum profit is Rs. 3920 at $\mathrm{x}=8, \mathrm{y}=12$
plotting each line $)=2 \mathrm{~m}$
($1 / 2$ to find the vertices of feasible region)

1 m
23. Equation of line is $\frac{x-3}{2}=\frac{y-4}{-3}=\frac{z-1}{5} 1 \mathrm{~m}$ Equation of plane is

$$
\left|\begin{array}{ccc}
x & -2 & y-1 \\
(\mathrm{p} & \mathrm{y}-2 \\
2 & -3 & -2 \\
-1
\end{array}\right|=0
$$

$$
1 \mathrm{~m}
$$

$$
\begin{equation*}
\Rightarrow \quad 2 x+y+z-7=0 \tag{i}
\end{equation*}
$$

1 m
general point on given line $(2 \lambda+3,-3 \lambda+4,5 \lambda+1)$ lies on (i)

$$
\therefore \quad 2(2 \lambda+3)+(-3 \lambda+4)+(5 \lambda+1)-7=0 \Rightarrow \lambda=-\frac{2}{3}
$$

1 m

1 m
\therefore Point of intersection $\left(\frac{5}{3}, 6,-\frac{7}{3}\right)$
1 m
24. Let H_{1} : be the event 1,2 appears
H_{2} : be the event $3,4,5,6$ appears
1 m
E_{3} : be the event that head appears

$$
\begin{array}{rlr}
\mathrm{P}\left(\mathrm{H}_{1}\right)=\frac{2}{6}=\frac{1}{3}, \quad \mathrm{P}\left(\mathrm{H}_{2}\right)=\frac{4}{6}=\frac{2}{3} & 1 \mathrm{~m} \\
\mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)=\frac{3}{8} \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{1}{2} & 1 \mathrm{~m} \\
\mathrm{P}\left(\mathrm{H}_{2} / \mathrm{E}\right) & =\frac{\mathrm{P}\left(\mathrm{H}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)} & 1 \mathrm{~m} \\
& =\frac{8}{11} & 2 \mathrm{~m}
\end{array}
$$

Let $\quad H_{1}$: be the event that 4 occurs
H_{2} : be the event that 4 does not occurs
1 m
E: be the event that man reports 4 occurs on a throw of dice

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{H}_{1}\right)=\frac{1}{6}, \quad \mathrm{P}\left(\mathrm{H}_{2}\right)=\frac{5}{6} \\
& \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)=\frac{3}{5} \quad \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=1-\frac{3}{5}=\frac{2}{5}
\end{aligned}
$$

$$
1 \mathrm{~m}
$$

$$
1 \mathrm{~m}
$$

$$
\mathrm{P}(\mathrm{H} / \mathrm{E})=\frac{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)}
$$

$$
=\frac{3}{13}
$$

25.

$*$	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

4 m

```
\(\forall a \in\{0,1,2,3,4,5,6\}\)
\(a * 0=a=0 * a \Rightarrow 0\) is identity
    \(\forall a \in\{1,2,3,4,5,6\}\)
\(\mathrm{a} * \mathrm{~b}=0=\mathrm{b} * \mathrm{a}\)
\(\Rightarrow \quad \mathrm{a}^{*}(7-\mathrm{a})=0=(7-\mathrm{a}) * \mathrm{a}\)
\(\Rightarrow \quad(7-\mathrm{a})\) is inverse of a
26. \(A=y(x+4)\)

\[
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
\]
\[
\begin{equation*}
\text { Let } z=A^{2}=\frac{9}{16}\left(16-x^{2}\right)(x+4)^{2} \Rightarrow y^{2}=\frac{9}{16}\left(16-x^{2}\right) \ldots \ldots \ldots . . \text { (i) } \tag{i}
\end{equation*}
\]
\[
\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=-\frac{9}{4}(4+\mathrm{x})^{2}+\frac{9}{8}(4+\mathrm{x})(8-4 \mathrm{x})
\]
\[
\left.\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}\right|_{x=2}<0
\]
\(\therefore \quad\) Maximum value of \(\mathrm{A}=9 \sqrt{3}\) sq. units```

