Sample Paper

General Instructions

1. The question paper contains three parts A, B and C.
2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
5. There is no negative marking.

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1. Solve $\frac{\cos \theta}{\operatorname{cosec} \theta+1}+\frac{\cos \theta}{\operatorname{cosec} \theta-1}=2, \theta<90^{\circ}$
(a) 0°
(b) 30°
(c) 45°
(d) 60°
2. is equal to $\frac{\tan ^{2} \theta}{\tan ^{2} \theta-1}+\frac{\operatorname{cosec}^{2} \theta}{\sec ^{2} \theta-\operatorname{cosec}^{2} \theta}$
(a) 0
(b) 2
(c) $\frac{1}{2 \sin ^{2} \theta-\cos ^{2} \theta}$
(d) $\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
3. If 5θ and 4θ are acute angles satisfying $\sin 5 \theta=\cos 4 \theta$, then $2 \sin 3 \theta-\sqrt{3} \tan 3 \theta$ is equal to
(a) $\sin 2 \theta$
(b) $\frac{1}{2}$
(c) $\frac{1}{\sqrt{3}}$
(d) 0
4. Determine the value of k for which the following system of equations becomes consistent : $7 x-y=5,21 x-3 y=k$.
(a) $\mathrm{k}=15$
(b) $\mathrm{k}=11$
(c) $\mathrm{k}=4$
(d) $\mathrm{k}=\frac{11}{2}$
5. A railway half-ticket costs half the full fare but the reservation charges are the same on a half ticket as on full ticket. One reserved first class ticket from station A to station B costs ₹ 2125 . Also, one reserved first class ticket and one reserved half first class ticket from A to B costs ₹ 3200 . Find the full fare from station A to B and also the reservation charges for a ticket.
(a) ₹ 1100 , ₹ 15
(b) ₹ 2100 , ₹ 25
(c)
₹ 1000 , ₹ 25
(d) ₹ 2000 , ₹ 40
6. Mrs. Vidya bought a piece of cloth as shown in the figure. The portion of the cloth that is not coloured consists of 6 identical semi-circles.

Find the area of the coloured portion.
(a) $144 \mathrm{~cm}^{2}$
(b) $126 \mathrm{~cm}^{2}$
(c) $\quad 195 \mathrm{~cm}^{2}$ (d) $\quad 243 \mathrm{~cm}^{2}$
7. A factory has 120 workers in January, 90 of them are female workers. In February, another 15 male workers were employed. A worker is then picked at random. Calculate the probability of picking a female worker.
(a) $\frac{3}{4}$
(b) $\frac{4}{9}$
(c) $\frac{2}{3}$
(d) $\frac{1}{2}$
8. When 2^{256} is divided by 17 , then remainder would be
(a) 1
(b) 16
(c) 14
(d) None of these
9. In the given figure, P and Q are points on the sides $A B$ and $A C$ respectively of a triangle $A B C . P Q$ is parallel to $B C$ and divides the triangle $A B C$ into 2 parts, equal in area. The ratio of $P A: A B=$

(a) $1: 1$
(b) $(\sqrt{2}-1): \sqrt{2}$
(c) $1: \sqrt{2}$
(d) $(\sqrt{2}-1): 1$
10. The figure given shows two identical semi-circles cut out from a piece of coloured paper.

Find the area of the remaining piece of paper (Use $\pi=\frac{22}{7}$)

(a) $296.1 \mathrm{~cm}^{2}$
(b) $265.4 \mathrm{~cm}^{2}$
(c) $\quad 221.5 \mathrm{~cm}^{2}$
(d) $201.7 \mathrm{~cm}^{2}$
11. In what ratio does the point $(-2,3)$ divide the line-segment joining the points $(-3,5)$ and $(4,-9)$?
(a) $2: 3$
(b) $1: 6$
(c) $6: 1$
(d) $2: 1$
12. A box contains a number of marbles with serial number 18 to 38 . A marble is picked at a random. Find the probability that it is a multiple of 3 .
(a) $\frac{3}{5}$
(b) $\frac{7}{20}$
(c) $\frac{3}{4}$
(d) $\frac{1}{3}$
13. The area of a right angled triangle is $40 \mathrm{sq} . \mathrm{cm}$. and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) Data insufficient
14. The sum of exponents of prime factors in the prime-factorisation of 196 is
(a) 3
(b) 4
(c) 5
(d) 2
15. A drain cover is made from a square metal plate of side 40 cm having 441 holes of diameter 1 cm each drilled in it. Find the area of the remaining square plate.
(a) $1250.5 \mathrm{~cm}^{2}$
(b) $1253.5 \mathrm{~cm}^{2}$
(c) $\quad 1240.2 \mathrm{~cm}^{2}$
(d) $1260.2 \mathrm{~cm}^{2}$
16. Which of the following statement is true?
(a) Every point on the number line represents a rational number.
(b) Irrational numbers cannot be represented by points on the number line.
(c) $\frac{22}{7}$ is a rational number.
(d) None of these.
17. Given $\triangle A B C \sim \triangle D E F$, if $A B=2 D E$ and area of $\triangle A B C$ is $56 \mathrm{~cm}^{2}$, find the area of $\triangle D E F$.
(a) $14 \mathrm{sq} . \mathrm{cm}$
(b) $5 \mathrm{sq} . \mathrm{cm}$
(c) $18 \mathrm{sq} . \mathrm{cm}$
(d) $56 \mathrm{sq} . \mathrm{cm}$
18. Given that L.C.M. $(91,26)=182$, then H.C.F. $(91,26)$ is
(a) 13
(b) 26
(c) 17
(d) 9
19. One card is drawn from a well shuffled deck of 52 cards.
I. The probability that the card will be diamond, is $1 / 2$.
II. The probability of an ace of heart is $1 / 52$.
III. The probability of not a heart is $3 / 4$.
IV. The probability of king or queen is $1 / 26$.

Which of the statement(s) is/are true?
(a) I and II
(b) II and III
(c) III and IV
(d) None of these
20. In what ratio is the line segment joining the points $(3,5) \&(-4,2)$ divided by y-axis?
(a) $3: 2$
(b) $3: 4$
(c) $2: 3$
(d) $4: 3$

SECTION-B

Section B consists of 20 quesions of 1 mark each. Any 16 quesions are to be attempted.
21. Find an acute angle θ, when $\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$
(a) 0°
(b) 15°
(c) 30°
(d) 60°
22. If $x=a(\operatorname{cosec} \theta+\cot \theta)$ and $y=\frac{b(1-\cos \theta)}{\sin \theta}$, then $x y=$
(a) $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}}$
(b) $\mathrm{a}^{2}-\mathrm{b}^{2}$
(c) ab
(d) $\frac{\mathrm{a}}{\mathrm{b}}$
23. Which of the following is not correct?
(a) If the diagonals of a quadrilateral divide each other proportionally, then it is a trapezium.
(b) The line segments joining the mid-points of the adjacent sides of a quadrilateral form a parallelogram.
(c) If corresponding sides of two similar triangles are in the ratio 4:5, then corresponding medians of the triangles must be in the ratio $4: 5$.
(d) None of the above
24. Find a point on the x-axis which is equidistant from the points $(5,4)$ and $(-2,3)$.
(a) $(2,0)$
(b) $(0,3)$
(c) $(-2,2)$
(d) $(3,0)$
25. Find the point of trisectionof the line joining the points $(-2,-19)$ and $(5,4)$.
(a) $(2,-3)$
(b) $(1,2)$
(c) $\left(\frac{1}{3},-\frac{34}{3}\right)$
(d) $\left(\frac{8}{3}, \frac{11}{3}\right)$
26. If the mid point of the line joining $(3,4)$ and $(k, 7)$ is (x, y) and $2 x+2 y+1=0$. Find the value of k.
(a) 10
(b) -15
(c) 15
(d) $\quad-10$
27. For which value of p, will the lines represented by the following pair of linear equations be parallel
$3 x-y-5=0$
$6 x-2 y-p=0$
(a) all real values except 10
(b) 10
(c) $5 / 2$
(d) $1 / 2$
28. If ABC and EBC are two equilateral triangles such that D is mid-point of BC , then the ratio of the areas of triangles ABC and BDE is
(a) $2: 1$
(b) $1: 2$
(c) $1: 4$
(d) $4: 1$
29. If $\left(\frac{a}{3}, 4\right)$ is the midpoint of the line segment joining $A(-6,5)$ and $B(-2,3)$, then what is the value of ' a '?
(a) -4
(b) -12
(c) 12
(d) $\quad-6$
30. A fair die is thrown once. The probability of getting a composite number less than 5 is
(a) $\frac{1}{3}$
(b) $\frac{1}{6}$
(c) $\frac{2}{3}$
(d) 0
31. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=10 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm} . \mathrm{PQRS}$ is a rectangle inside the isosceles triangle. Given $\mathrm{PQ}=\mathrm{SR}=y \mathrm{~cm}$ and $\mathrm{PS}=\mathrm{QR}=2 x \mathrm{~cm}$, then $x=$
(a) $6-\frac{3 y}{4}$
(b) $6+6 y$
(c) $6+\frac{4 y}{3}$
(d) $\frac{7 x+8 y}{4}$
32. If the zeroes of the polynomial $f(x)=k^{2} x^{2}-17 x+k+2,(k>0)$ are reciprocal of each other than value of k is
(a) 2
(b) -1
(c) $\quad-2$
(d) 1
33. The figure shows two concentric circleswith centre O and radii 3.5 m and 7 m . If $\angle \mathrm{BOA}=40^{\circ}$, find the area of the shaded region.

(a) $\frac{77}{6} \mathrm{~cm}^{2}$
(b) $\frac{76}{5}$
(c) $\frac{73}{6}$
(d) None of these
34. If $\cot \theta=\left(\frac{15}{8}\right)$, then evaluate $\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}$
(a) 1
(b) $\frac{225}{64}$
(c) $\frac{156}{7}$
(d) -1
35. If a letter is chosen at random from the letter of English alphabet, then the probability that it is a letter of the word 'DELHI' is
(a) $\frac{1}{5}$
(b) $\frac{1}{26}$
(c) $\frac{5}{26}$
(d) $\frac{21}{26}$
36. What is the largest number that divides 70 and 125 , leaving remainders 5 and 8 respectively?
(a) 13
(b) 9
(c) 3
(d) 585
37. The diagonal BD of a parallelogram ABCD intersects the segment AE at the point F , where E is any point on the side BC . Then

(a) $\frac{\mathrm{EF}}{\mathrm{FA}}=\frac{\mathrm{FB}}{\mathrm{AB}}$
(b) $\mathrm{DF} \times \mathrm{EF}=\mathrm{FB} \times \mathrm{FA}$
(c) $\mathrm{DF} \times \mathrm{EF}=(\mathrm{FB})^{2}$
(d) None of these
38. If $P=(2,5), Q=(x,-7)$ and $P Q=13$, what is the value of ' x '?
(a) 5
(b) 3
(c) $\quad-3$
(d) $\quad-5$
39. What is the largest number that divides 245 and 1029, leaving remainder 5 in each case?
(a) 15
(b) 16
(c) 9
(d) 5
40. If p, q are two consecutive natural numbers, then H.C.F. (p, q) is
(a) p
(b) q
(c) 1
(d) $\quad p q$

SECTION-C

Case Study Based Questions:

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

Q 41. - Q 45 are based on case study-I

Case Study-I

Place a lighted bulb at a point O on the ceiling and directly below it a table in classroom. Place $\triangle \mathrm{ABC}$ shape cardboard parallel to the ground between the lighted bulb and the table. Then a shadow of $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is cost on the table such that $\Delta \mathrm{ABC} \sim \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ shown in figure.
If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{~A}^{\prime} \mathrm{B}^{\prime}=15 \mathrm{~cm} ; \mathrm{B}^{\prime} \mathrm{C}^{\prime}=12 \mathrm{~cm}$,
$A C=3 \mathrm{~cm}, \angle B^{\prime}=60^{\circ}$ and $\angle A=80^{\circ}$.

Answer the following questions.
41. Length of $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is :
(a) 3 cm
(b) 4 cm
(c) 9 cm
(d) 12 cm
42. Length of BC is :
(a) 4 cm
(b) 12 cm
(c) 3 cm
(d) 15 cm
43. Measure of $\angle \mathrm{A}^{\prime}$ is :
(a) 60°
(b) 80°
(c) 180°
(d) 40°
44. Find the measure of $\angle B$.
(a) 60°
(b) 40°
(c) 80°
(d) 180°
45. Find the measure of $\angle \mathrm{C}$.
(a) 60°
(b) 40°
(c) 80°
(d) 180°

Q 46-Q 50 are based on case study-II

Case Study-II

A two digit number is obtained by either multiplying sum of the digits by 8 and adding 1 or by multiplying the difference of the digits by 13 and adding 2 .

If x be the digit in ten's place and y be the digit at unit place with $x>y$, then answer the following questions.
46. Find the equation corresponding to multiplying sum of the digits by 8 and adding 1 .
(a) $2 x-7 y=1$
(b) $2 x+7 y=4$
(c) $2 x-7 y=4$
(d) $2 x+7 y=1$
47. Find the equation corresponding to multiplying the difference of the digits by 13 and adding 2 .
(a) $14 y-3 x=2$
(b) $3 x-14 y=4$
(c) $14 x-3 y=2$
(d) $3 y-14 x=6$
48. What is the value of x ?
(a) 2
(b) 3
(c) 4
(d) 5
49. What is the value of y ?
(a) 0
(b) 1
(c) 3
(d) 4
50. What is the number?
(a) 21
(b) 31
(c) 41
(d) 51

