Sample Paper

Time : 90 Minutes

General Instructions

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
- 3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
- 4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1.	Solve $\frac{\cos\theta}{\csc\theta+1} + \frac{\cos\theta}{\csc\theta-1}$	$\frac{1}{1} = 2, \theta < 90^{\circ}$				
	(a) 0° (b	o) 30°	(c)	45°	(d)	60°
2.	is equal to $\frac{\tan^2 \theta}{\tan^2 \theta - 1} + \frac{\cos^2 \theta}{\sec^2 \theta - 1}$	$\frac{\sec^2\theta}{-\csc^2\theta}$				
	(a) 0 (b	b) 2	(c)	$\frac{1}{2\sin^2\theta - \cos^2\theta}$	(d)	$\frac{1}{\sin^2\theta - \cos^2\theta}$

- 3. If 50 and 40 are acute angles satisfying $\sin 5\theta = \cos 4\theta$, then $2\sin 3\theta \sqrt{3} \tan 3\theta$ is equal to
 - (a) $\sin 2\theta$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0
- 4. Determine the value of k for which the following system of equations becomes consistent : 7x y = 5, 21x 3y = k.

(a)
$$k = 15$$
 (b) $k = 11$ (c) $k = 4$ (d) $k = \frac{11}{2}$

- A railway half -ticket costs half the full fare but the reservation charges are the same on a half ticket as on full ticket. One reserved first class ticket from station *A* to station *B* costs ₹ 2125. Also, one reserved first class ticket and one reserved half first class ticket from *A* to *B* costs ₹ 3200. Find the full fare from station *A* to *B* and also the reservation charges for a ticket.
 (a) ₹ 1100, ₹ 15
 (b) ₹ 2100, ₹ 25
 (c) ₹ 1000, ₹ 25
 (d) ₹ 2000, ₹ 40
- 6. Mrs. Vidya bought a piece of cloth as shown in the figure. The portion of the cloth that is not coloured consists of 6 identical semi-circles.

Max Marks : 40

SP-10

Find the area of the coloured portion.

- (a) 144 cm^2 (b) 126 cm^2 (c) 195 cm^2 (d) 243 cm^2
- 7. A factory has 120 workers in January, 90 of them are female workers. In February, another 15 male workers were employed. A worker is then picked at random. Calculate the probability of picking a female worker.

(a)
$$\frac{3}{4}$$
 (b) $\frac{4}{9}$ (c) $\frac{2}{3}$ (d) $\frac{1}{2}$

8. When 2^{256} is divided by 17, then remainder would be

9. In the given figure, P and Q are points on the sides AB and AC respectively of a triangle ABC. PQ is parallel to BC and divides the triangle ABC into 2 parts, equal in area. The ratio of PA : AB =

10. The figure given shows two identical semi-circles cut out from a piece of coloured paper.

Find the area of the remaining piece of paper (Use $\pi = \frac{22}{7}$)

(a) 2:3
(b) 1:6
(c) 6:1
(d) 2:1
12. A box contains a number of marbles with serial number 18 to 38. A marble is picked at a random. Find the probability that

- it is a multiple of 3.
 - (a) $\frac{3}{5}$ (b) $\frac{7}{20}$ (c) $\frac{3}{4}$ (d) $\frac{1}{3}$

13. The area of a right angled triangle is 40 sq. cm. and its perimeter is 40 cm. The length of its hypotenuse is

(a) 16 cm (b) 18 cm (c) 17 cm (d) Data insufficient

14. The sum of exponents of prime factors in the prime-factorisation of 196 is

(a) 3 (b) 4 (c) 5 (d) 2

15. A drain cover is made from a square metal plate of side 40 cm having 441 holes of diameter 1 cm each drilled in it. Find the area of the remaining square plate.

(a) 1250.5 cm^2 (b) 1253.5 cm^2 (c) 1240.2 cm^2 (d) 1260.2 cm^2

Sample	Paper-2	┝
--------	---------	---

16.	Which of the following st	tatement is true?										
	(a) Every point on the number line represents a rational number.											
	(b) Irrational numbers cannot be represented by points on the number line.											
	(c) $\frac{22}{7}$ is a rational number. (d) None of these											
	(d) None of these.											
17.	Given $\triangle ABC \sim \triangle DEF$, if $AB = 2DE$ and area of $\triangle ABC$ is 56 cm ² , find the area of $\triangle DEF$. (a) 14 sq cm (b) 5 sq cm (c) 18 sq cm (d) 56 sq cm											
	(a) 14 sq.cm	(b) 5 sq.cm	(c)	18 sq.cm	(d)	56 sq.cm						
18.	• Given that L.C.M. $(91, 26) = 182$, then H.C.F. $(91, 26)$ is											
	(a) 13	(b) 26	(c)	17	(d)	9						
19.	One card is drawn from a	well shuffled deck	of 52 card	S.								
	I. The probability that t	he card will be diar	nond, is 1/	2.								
	II. The probability of an	ace of heart is 1/52	2.									
	III. The probability of no	t a heart is $3/4$.										
	IV. The probability of kin	ng or queen is 1/26.										
	Which of the statement(s) is/are true?										
	(a) I and II	(b) II and III	(c)	III and IV	(d)	None of these						
20.	In what ratio is the line set $(x) = 2 + 2$	egment joining the p	points $(3, 5)$	(-4, 2) divided by y $2 + 2$	-axis?	4 . 2						
	(a) 3:2	(b) 3:4	(c)	2:3	(d)	4:3						
	SECTION-B											
Sect	ion R consists of 20 quasio	ns of 1 mark each	$\frac{31}{4m}$ 16 au	psions are to be attempt	ad a							
Sect	ion B consists of 20 quesio	ns of 1 mark each.	Any 16 que	esions are to be attempte	ed.							
Sect.	ion <i>B</i> consists of 20 quesio Find an acute angle θ , wh	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$	$\frac{31}{4 \text{ my } 16 \text{ que}}$ $\frac{1-\sqrt{3}}{1+\sqrt{3}}$	esions are to be attempte	ed.							
Sect.	<i>ion B consists of 20 quesio</i> Find an acute angle θ, wh (a) 0°	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15°	$\frac{1-\sqrt{3}}{1+\sqrt{3}}$ (c)	230°	<i>ed.</i> (d)	60°						
Sect. 21. 22.	ion B consists of 20 quesio Find an acute angle θ , wh (a) 0° If $x = a (cosec \theta + cot \theta)2 + 2$	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$	$\frac{1-\sqrt{3}}{1+\sqrt{3}}$ (c)	30°	<i>ed.</i> (d)	60°						
<u>Sect</u> 21. 22.	ion B consists of 20 quesio Find an acute angle θ , wh (a) 0° If $x = a (\operatorname{cosec} \theta + \cot \theta)$ (a) $\frac{a^2 + b^2}{a^2 - b^2}$	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$	$\frac{1-\sqrt{3}}{(c)}$	30° ab	<i>ed.</i> (d) (d)	60° <u>a</u> b						
Sect. 21. 22. 23.	Find an acute angle θ , wh (a) 0° If $x = a$ (cosec $\theta + \cot \theta$) (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding sid be in the ratio 4 : 5. (d) None of the above	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divide bining the mid-point es of two similar tri	Any 16 que $1 - \sqrt{3}$ $1 + \sqrt{3}$ (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$ e each other ts of the action of the	30° = ab tr proportionally, then it ljacent sides of a quadril in the ratio 4 : 5, then co	ed. (d) (d) is a trapeziu lateral form orresponding	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must						
Sect 21. 22. 23. 24.	Find an acute angle θ , wh (a) 0° If $x = a (\operatorname{cosec} \theta + \cot \theta)$ (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding sid be in the ratio 4 : 5. (d) None of the above Find a point on the x-axis	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divide bining the mid-point es of two similar trians	Any 16 que $\frac{1-\sqrt{3}}{1+\sqrt{3}}$ (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c) 	30° = ab er proportionally, then it ljacent sides of a quadril in the ratio 4 : 5, then co e points (5, 4) and (-2, 3	ed. (d) (d) is a trapeziu lateral form orresponding).	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must						
Sect. 21. 22. 23. 24.	Find an acute angle θ , wh (a) 0° If $x = a$ (cosec $\theta + \cot \theta$) (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding sidd be in the ratio 4 : 5. (d) None of the above Find a point on the x-axis (a) (2, 0)	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divide bining the mid-point es of two similar tri s which is equidistant (b) $(0, 3)$	Any 16 que $1 - \sqrt{3}$ $1 + \sqrt{3}$ (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$ e each other ts of the action angles are angles are int from the (c)	30° $=$ ab ab ab br proportionally, then it liacent sides of a quadril in the ratio 4 : 5, then co br points (5, 4) and (-2, 3 (-2, 2))	ed. (d) (d) is a trapeziu lateral form orresponding). (d)	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must (3, 0)						
Sect. 21. 22. 23. 24. 25.	Find an acute angle θ , wh (a) 0° If $x = a$ (cosec $\theta + \cot \theta$) (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding sid be in the ratio 4 : 5. (d) None of the above Find a point on the x-axis (a) (2, 0) Find the point of trisection	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divide bining the mid-point es of two similar tri s which is equidistant (b) (0, 3) nof the line joining	Any 16 que $\frac{1-\sqrt{3}}{1+\sqrt{3}}$ (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$ (c) $\frac{1}{2}$	30° $=$ ab	ed. (d) (d) is a trapeziu lateral form orresponding). (d)	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must (3, 0) (2, 11)						
Sect. 21. 22. 23. 24. 25.	Find an acute angle θ , wh (a) 0° If $x = a$ (cosec $\theta + \cot \theta$) (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding sidd be in the ratio 4 : 5. (d) None of the above Find a point on the x-axis (a) (2, 0) Find the point of trisection (a) (2, -3)	$\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divide bining the mid-point es of two similar tri s which is equidistant (b) (0, 3) nof the line joining (b) (1, 2)	Any 16 que $1 - \sqrt{3}$ $1 + \sqrt{3}$ (c) $\frac{1}{2}$, then xy (c) $\frac{1}{2}$, then y (c) $\frac{1}{2}$, then y (c) (c) (c) (c) (c) (c) (c) (c)	30° = ab	ed. (d) (d) is a trapeziu lateral form orresponding). (d) (d)	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must $(3, 0)$ $\left(\frac{8}{3}, \frac{11}{3}\right)$						
Sect. 21. 22. 23. 24. 25. 26.	Find an acute angle θ , wh (a) 0° If $x = a$ (cosec $\theta + \cot \theta$) (a) $\frac{a^2 + b^2}{a^2 - b^2}$ Which of the following is (a) If the diagonals of a (b) The line segments jo (c) If corresponding siddes in the ratio 4 : 5. (d) None of the above Find a point on the x-axis (a) (2, 0) Find the point of trisection (a) (2, -3) If the mid point of the line	ns of 1 mark each. A nen $\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1}{1}$ (b) 15° and $y = \frac{b(1 - \cos \theta)}{\sin \theta}$ (b) $a^2 - b^2$ s not correct? quadrilateral divided bining the mid-point es of two similar trians (b) (0, 3) nof the line joining (b) (1, 2) e joining (3, 4) and	Any 16 que $\frac{1-\sqrt{3}}{(c)}$ $\frac{1}{\sqrt{3}}$	30° = ab	ed. (d) (d) is a trapeziu lateral form orresponding). (d) (d) . Find the va	60° $\frac{a}{b}$ m. a parallelogram. g medians of the triangles must $(3, 0)$ $\left(\frac{8}{3}, \frac{11}{3}\right)$ lue of k.						

SP-12

Mathematics

27. For which value of p, will the lines represented by the following pair of linear equations be parallel

3x - y - 5 = 06x - 2y - p = 0(a) all real values e

- (a) all real values except 10
 (b)
 10

 (c) 5/2
 (d)
 1/2
- **28.** If ABC and EBC are two equilateral triangles such that D is mid-point of BC, then the ratio of the areas of triangles ABC and BDE is
 - (a) 2:1 (b) 1:2 (c) 1:4 (d) 4:1
- **29.** If $\left(\frac{a}{3}, 4\right)$ is the midpoint of the line segment joining A(-6, 5) and B(-2, 3), then what is the value of 'a'? (a) -4 (b) -12 (c) 12 (d) -6
- **30.** A fair die is thrown once. The probability of getting a composite number less than 5 is
 - (a) $\frac{1}{3}$ (b) $\frac{1}{6}$ (c) $\frac{2}{3}$ (d) 0
- **31.** ABC is an isosceles triangle in which AB = AC = 10 cm, BC = 12 cm. PQRS is a rectangle inside the isosceles triangle. Given PQ = SR = y cm and PS = QR = 2x cm, then x =
 - (a) $6 \frac{3y}{4}$ (b) 6 + 6y (c) $6 + \frac{4y}{3}$ (d) $\frac{7x + 8y}{4}$
- 32. If the zeroes of the polynomial $f(x) = k^2x^2 17x + k + 2$, (k > 0) are reciprocal of each other than value of k is (a) 2 (b) -1 (c) -2 (d) 1
- 33. The figure shows two concentric circles with centre O and radii 3.5 m and 7 m. If $\angle BOA = 40^{\circ}$, find the area of the shaded region.

73

(d) None of these

34. If $\cot \theta = \left(\frac{15}{8}\right)$, then evaluate $\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}$

(a) $\frac{77}{6}$ cm² (b) $\frac{76}{5}$

(a) 1 (b) $\frac{225}{64}$ (c) $\frac{156}{7}$ (d) -1

(c)

- 35. If a letter is chosen at random from the letter of English alphabet, then the probability that it is a letter of the word 'DELHI' is
 - (a) $\frac{1}{5}$ (b) $\frac{1}{26}$ (c) $\frac{5}{26}$ (d) $\frac{21}{26}$

36. What is the largest number that divides 70 and 125, leaving remainders 5 and 8 respectively?

(a) 13 (b) 9 (c) 3 (d) 585

Sample Paper-2

Q 41. - Q 45 are based on case study-I

Case Study-I

Place a lighted bulb at a point O on the ceiling and directly below it a table in classroom. Place $\triangle ABC$ shape cardboard parallel to the ground between the lighted bulb and the table. Then a shadow of $\triangle A'B'C'$ is cost on the table such that $\triangle ABC \sim \triangle A'B'C'$ shown in figure.

If AB = 5 cm, A'B' = 15 cm; B'C' = 12 cm,

AC = 3 cm, $\angle B' = 60^{\circ}$ and $\angle A = 80^{\circ}$.

SP-13

SP-14

Answer the following questions.

41.	Length of A'C' is :						
	(a) 3 cm	(b)	4 cm	(c)	9 cm	(d)	12 cm
42.	Length of BC is :						
	(a) 4 cm	(b)	12 cm	(c)	3 cm	(d)	15 cm
43.	Measure of $\angle A'$ is :						
	(a) 60°	(b)	80°	(c)	180°	(d)	40°
44.	Find the measure of $\angle B$.						
	(a) 60°	(b)	40°	(c)	80°	(d)	180°
45.	Find the measure of $\angle C$.						
	(a) 60°	(b)	40°	(c)	80°	(d)	180°

Q 46 - Q 50 are based on case study-II

Case Study-II

A two digit number is obtained by either multiplying sum of the digits by 8 and adding 1 or by multiplying the difference of the digits by 13 and adding 2.

If x be the digit in ten's place and y be the digit at unit place with x > y, then answer the following questions.

46.	Find the equation corresponding to multiplying sum of the digits by 8 and adding 1.								
	(a) $2x - 7y = 1$	(b)	2x + 7y = 4	(c)	2x-7y	= 4	(d)	2x + 7y = 2x + 7y	= 1
47.	Find the equation	correspon	nding to multiply	ying	the differ	rence of the digits	by 13 and	d adding	2.
	(a) $14y - 3x = 2$	(b)	3x - 14y = 4	(c)	14x - 3y	y = 2	(d)	3y - 14x	= 6
48.	What is the value	of x ?							
	(a) 2	(b)	3		(c)	4		(d)	5
49.	What is the value	of y ?							
	(a) 0	(b)	1		(c)	3		(d)	4
50.	What is the numb	er?							
	(a) 21	(b)	31		(c)	41		(d)	51