

Manipal School of Information Sciences (MSIS)

Manipal Academy of Higher Education, Manipal

Outcome Based Education (OBE) Framework

Two Year full time Postgraduate Program

Master of Engineering - ME (Big Data and Data Analytics)

TABLE OF CONTENTS

Contents

NATURE AND EXTENT OF THE PROGRAM:	3
PROGRAM EDUCATION OBJECTIVE (PEO):	
GRADUATE ATTRIBUTES:	e
QUALIFICATIONS DESCRIPTORS	8
PROGRAM OUTCOMES:	10
COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)	12
PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING	140

NATURE AND EXTENT OF THE PROGRAM

An engineering graduate skillset requirement is changingwith invent of the new technologies. In particular theimpact of Big data and transformative technologies like Data Analytics provide a high employability in the industry. Big Data and Data Analytics are playing an important role in business, government, healthcare and education. Big Data technologies provide efficient solutions for acquiring and processing large scale data. Data Analytics combines principles and techniques from mathematics, computer science and machine learning for offering predictive and prescriptive solutions

ME (Big Data and Data Analytics) Program is a comprehensive two-year postgraduate program, which aims to provide hands-on experience to prepare industry-readyBig Data and Data Analytics professionals. The program ME (BDA) helps engineering graduates to learn, understand, and practice big data analytics and machine learning approaches, which include the study of modern computing big data technologies and scaling up machine learning techniques focusing on industry applications.

ME (Big Data and Data Analytics) postgraduate degree would welcome graduates from any discipline with 50% mark in qualifying exam. Students after successfully completing the program will get career opportunities as anBig Data Architect, Data Analyst, Database Administrator, Data Scientists, Big Data Engineer and Business Analyst.

PROGRAM EDUCATION OBJECTICE (PEO)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for ME (Big Data and Data Analytics) program are as follows.

PEO No	Education Objective								
PEO 1	Develop in depth understanding of the key technologies in data engineering, data science and business analytics.								
PEO 2	Practice problem analysis and decision-making using machine learning techniques.								
PEO 3	Gain practical, hands-on experience with statistics, programming languages and big data tools through coursework and applied research experiences.								

GRADUATE ATTRIBUTES

S No.	Attribute	Description				
1	Scholarship of Knowledge	Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.				
2	Critical Thinking	Analyse complex engineering problems critically, apply independent judgement for synthesising information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.				
3	Problem Solving	Think laterally and originally, conceptualise and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.				
4	Research Skill	Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.				
5	Usage of modern tools	resources, and modern engineering and IT tools, including				

		with an understanding of the limitations.								
		Possess knowledge and understanding of group dynamics,								
		recognise opportunities and contribute positively to								
	Collaborative and	collaborative-multidisciplinary scientific research,								
6	Multidisciplinary	demonstrate a capacity for self-management and teamwork,								
	work	decision-making based on open-mindedness, objectivity a								
		rational analysis in order to achieve common goals and								
		further the learning of themselves as well as others.								
		Demonstrate knowledge and understanding of engineering								
		and management principles and apply the same to one's								
7	Project Management	own work, as a member and leader in a team, manage								
'	and Finance	projects efficiently in respective disciplines and								
		multidisciplinary environments after consideration of								
		economical and financial factors.								
		Communicate with the engineering community, and with								
		society at large, regarding complex engineering activities								
		confidently and effectively, such as, being able to								
8	Communication	comprehend and write effective reports and design								
		documentation by adhering to appropriate standards, make								
		effective presentations, and give and receive clear								
		instructions.								
		Recognise the need for, and have the preparation and ability								
9	Life-long Learning	to engage in life-long learning independently, with a high								
		level of enthusiasm and commitment to improve knowledge								
		and competence continuously.								
		Acquire professional and intellectual integrity, professional								
	Ethical Practices and	code of conduct, ethics of research and scholarship,								
10	Social Responsibility	consideration of the impact of research outcomes on								
	,	professional practices and an understanding of responsibility								
		to contribute to the community for sustainable development								

		of society.
	Independent and	Observe and examine critically the outcomes of one's actions
11	Reflective Learning	and make corrective measures subsequently, and learn from
	Reflective Learning	mistakes without depending on external feedback.

QUALIFICATIONS DESCRIPTORS

1. Demonstrate

- (i) A systematic, extensive and coherent knowledge and understanding of an academic field of study as a whole and its applications, and links to related disciplinary areas/subjects of study; including a critical understanding of the established theories, principles and concepts, and of a number of advanced and emerging issues in the field of Big Data;
- (ii)Procedural knowledge that creates different types of professionals related to the Big Data, including research and development, teaching and government and public service;
- (iii) Professional and communication skills in the domain of machine learning, distributed computing, real time streaming, natural language and text processing, including a critical understanding of the latest developments, tools in the domain of big data and data analytics.
- Demonstrate comprehensive knowledge about materials, including current research, scholarly, and/or professional literature, relating to essential and advanced learning areas pertaining to the bigdata and analytics, and techniques and skills required for identifying problems and issues related.
- 3. Demonstrate skills in identifying information needs, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources, analysis and interpretation of data.
- 4. Methodologies as appropriate to the subject(s) for formulating evidence based solutions and arguments
- 5. Use knowledge, understanding and skills for critical assessment of a wide range of ideas and complex problems and issues relating to the chosen field of study.

- 6. Communicate the results of studies undertaken in an academic field accurately in a range of different contexts using the main concepts, constructs and techniques of the bigdata and data analytics studies.
- 7. Address one's own learning needs relating to current and emerging areas of study, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge.
- 8. Apply one's disciplinary knowledge and transferable skills to new/unfamiliar contexts and to identify and analyse problems and issues and seek solutions to real-life problems.

PROGRAM OUTCOMES

After successful completion of ME (Big Data and Data Analytics), Students will be able to:

PO No	Attribute	Competency							
		Acquire in-depth knowledge of BDA domain, with an ability to							
DO 1	Scholarship of	discriminate, evaluate, analyze, synthesize the existing and							
PO 1	Knowledge	new knowledge, and integration of the same for							
		enhancement of knowledge.							
		Analyze complex Big Data and Data Analytics Eco System							
		critically, apply independent judgement for synthesizing							
PO 2	Critical Thinking	information to make intellectual and/or creative advances for							
		conducting research in a wider theoretical, practical and							
		policy context.							
		Think laterally and originally, conceptualize and solve Big Data							
		problems, evaluate a wide range of potential solutions for							
PO 3	Problem Solving	those problems and arrive at feasible, optimal solutions after							
		considering public health and safety, cultural, societal and							
		environmental factors in the core areas of expertise.							
		Extract information pertinent to unfamiliar problems through							
		literature survey and experiments, apply appropriate research							
		methodologies, techniques and tools, design, conduct							
PO 4	Research Skill	experiments, analyze and interpret data, demonstrate higher							
104	Research Skiii	order skill and view things in a broader perspective,							
		contribute individually/in group(s) to the development of							
		scientific/technological knowledge in one or more domains of							
		engineering.							
PO 5	Usage of modern	Create, select, learn and apply appropriate techniques,							
103	tools	resources, and modern engineering and IT tools, including							

		prediction and modelling, to complex engineering activities						
		with an understanding of the limitations.						
PO 6	Collaborative and Multidisciplinary work	Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.						
PO 7	Project Management and Finance	Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors						
PO 8	Communication	Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.						
PO 9	Life-long Learning	Recognize the need for and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.						
PO 10	Ethical Practices and Social Responsibility	Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility						

		to contribute to the community for sustainable development				
		of society.				
	Independent and	Observe and examine critically the outcomes of one's actions				
	macpenaent and	observe and examine entiredity the outcomes of one 3 actions				
PO 11	Reflective	and make corrective measures subsequently and learn from				
	Learning	mistakes without depending on external feedback.				

COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)

FIRST YEAR:

Semester: 2 Semester: 2

Subject Code	Subject Title	L	т	Р	С	Subject Code	Subject Title	L	Т	Р	С
BDA 601	Fundamentals of Machine Lear- ning	3	-	-	3	BDA 605	Machine Learning for Big Data	3	-	-	3
BDA 602	Algorithms and Data Structures for Big Data	3	ı	ı	3	BDA 616	Modern Databases for Big Data	3	ı	ı	3
BDA 623	Architecture of Big Data Systems	3	-	-	3	MCL 602	Advanced Applications of Probability and Statistics	3	-	-	3
MCL 601	Applied Probability and Statistics	3	-	ı	3	BDA 618	Multimedia Analytics	3	-	-	3
	Elective - 1	3	-	-	3		Elective - 2	3	-	ı	3
BDA 601L	Fundamentals of Machine Learning Lab	-	-	3	1	BDA 605L	Machine Learning for Big Data Lab	•	-	3	1
BDA 602L	Algorithms and Data Structures for Big Data Lab	-	-	3	1	BDA 616L	Modern Databases for Big Data Lab	-	-	3	1
BDA 623L	Architecture of Big Data Systems Lab	-	ı	3	1	MCL 602L	Advanced Applications of Probability and Statistics	ı	ı	3	1
MCL 601L	Applied Probability and Statistics Lab	-	-	3	1	BDA 618L	Multimedia Analytics Lab	-	-	3	1
	Elective - 1 Lab	-	-	3	1		Elective - 2 Lab	1	-	3	1
BDA 695	Mini Project - 1	-	-	4	-	BDA 696	Mini Project - 2	-	-	-	4
BDA 697	Seminar - 1	-	-	1	-	BDA 698	Seminar - 2	-	-	-	1

Total	15	_	15	25	Total	15	-	15	25
lotai	13	_	13	23	Iotai	13	_	13	23

SECOND YEAR (FINAL YEAR):

III and IV Semester						
BDA 799	Project Work	25				
Total Number of Cred	75					

List of Electives(Theory)

	Elective - 1	Elective - 2		
Code	Subject	Code	Subject	
CSE-625	Mobile Web Application Development	CDC-607	DevOps for Cloud	
BDA-622	Principles of Data Visualization	BDA-621	Natural Language and Text Processing	
		ENP-601	Entrepreneurship	

List of Electives(Lab)

	Elective - 1	Elective - 2			
Code	Subject	Code	Subject		
CSE-625L	Mobile Web Application Development Lab	CDC-607L	DevOps for Cloud Lab		
BDA-622L	Principles of Data Visualization Lab	BDA-621L	Natural Language and Text Processing		
			Lab		
		ENP-601L	Entrepreneurship Lab		

Name of the Institution / Department: Manipal School of Information Sciences

Name of the P	Program:	ME (Big Data and Data Analytics)					
Course Title:		Fundamentals of Machine Learning					
Course Code:	BDA-601	Course Instructor:					
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1					
No of Credits:	3	Prerequisites: Basic Programming – preferably Python					
Synopsis:	This Course provides in:	sight on					
	1. This course p	rovides the concept of machine learning, applications,					
	techniques, design issues and approaches to machine learning.						
	2. This course provides the fundamental knowledge about concept learning,						
	hypothesis and bias.						
	3. To implement machine learning algorithms such as Decision Tree learning,						
	Probably App	roximately Correct (PAC) learning, Bayesian learning,					
	Instance-based	learning, Principal Component Analysis (PCA) and Ensemble					
	methods in rea	I time data set for various analysis.					
Course							
Outcomes	On successful completion	on of this course, students will be able to					
(COs):							
CO 1:	Identify the goals, ap	plications, types and design issues of machine learning					
CO 1.	techniques.						
CO 2:	Relate concept learning	g and hypothesis space.					
CO 3:	Apply PCA learning app	roach to reduce the dimension.					
CO 4:	Analyse different mach	ine learning algorithms.					
CO 5:	Design ensemble metho	ods.					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:		
Content	Compe	etencies
Unit 1: Introduction		
Definition of Machine Learning, Goals	At the	end of the topic student should be able to:
and applications of machine learning,		Define Machine Learning (C1)
Basic design issues and approaches to	۷.	Describe about any three applications for
machine learning, Types of machine		which machine learning approaches seem
learning techniques		appropriate. (C2)
	3.	Illustrate different types of machine
		learning techniques (C3)
Unit 2: Inductive Classification		
The concept learning task, Concept	1.	Relate concept learning and hypothesis
learning as search through a		space (C4).
hypothesis space, General-to-specific	2.	Apply different algorithms to obtain most
ordering of hypotheses, Finding		general and most specific hypotheses
maximally specific hypotheses, Version		from the training examples. (C3)
spaces and the candidate elimination		
algorithm, Inductive bias.		
Unit 3: Decision Tree learning	I	
Representing concepts as decision	1.	Apply decision tree algorithm to find the
trees, Recursive induction of decision		hypothesis space (C3)
trees, Picking the best splitting	2.	Construct decision tree machine learning
attribute, Entropy and information		algorithm (C5)
gain, Searching for simple trees and	3.	Explain the method of choosing training
computational complexity.		examples and target function in the
		design of a machine learning system (C2)
	4.	Explain different validation technique to
		find the accuracy in training and testing of

data set (C5)

Unit 4:	Computational learnin	g theory
---------	------------------------------	----------

Models of learnability: learning in the limit, Probably Approximately Correct (PAC) learning, Sample Complexity: quantifying the number of examples needed to PAC learn, Computational complexity of training. Sample complexity for finite hypothesis spaces, Noise Learning Multiple Classes, Bias-variance trade-off, underfitting and over-fitting concepts

- 1. Define various terms related to computational learning approach (C1).
- Describe different models learning in the limit (C2)
- 3. Calculate the number of training examples required in different types of learning approaches (C4).

Unit 5: Bayesian learning

Probability theory and Bayes rule,
Naive Bayes learning algorithm Parameter smoothing, Generative vs.
discriminative training, Logistic
regression, Bayes nets and Markov
nets for representing dependencies

- Write the applications of Bayes theorem
 (C3)
- Describe the use of Logistic Regression in Machine Learning (C2)
- 3. Predict the target value for the new instance using Naïve Bayes classifier. (C3)

Unit 6: Instance-based learning

Constructing explicit generalizations versus comparing to past specific examples, K-Nearest Neighbour learning algorithm, Case-based reasoning (CBR) learning

- 1. Construct explicit generalizations (C5)
- 2. Discriminate Instances Based and Casebased learning (C4)
- 3. Explain K-nearest neighbour learning (C5)

Unit 7: Continuous Latent Variables

Principal Component Analysis (PCA),
Applications of PCA

- 1. Describe use of Principal Component Analysis for the complex data set (C2).
- 2. Apply PCA to choose principal components for the given data set (C3)

Unit 8: Ensemble methods (bagging and boosting)

Using	committees	of m	ultiple	1.	Choose a suitable method of ensemble
hypothes	ses, Baggir	ng, Bo	osting,		learning approach (C3).
DECORA	ΓΕ, Active	learning	with	2.	Explain various ensemble techniques (C5)
ensemble	es				

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time					
		(Hrs)					
Lecture	30	60					
Quiz	02	04					
Small Group Discussion (SGD)	02	02					
Self-directed learning (SDL)	-	04					
Problem Based Learning (PBL)	02	04					
Case Based Learning (CBL)	-	-					
Revision	02	-					
Assessment	06	-					
TOTAL	44	74					

Assessment Methods:							
Formative:	Summative:						
Internal practical Test	Sessional examination						
Theory Assignments	End semester examination						
Lab Assignment & Viva	Viva						

Mapping of assessment with Cos									
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation	*	*	*	*					
End Semester Examination	*	*	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	1. T. Mitchell, "Machine Learning", McGraw-Hill, 1997.
	2. E. Alpaydin, "Machine Learning", MIT Press, 2010.
	3. C. Bishop," Pattern Recognition and Machine Learning",
	Springer, 2006.
	4. E. Hart, R. Duda and D. Stork, "Pattern Classification", Wiley-
	Interscience, 2000.
	5. T. Hastie, R. Tibshirani and J. Friedman, "The Elements of
	Statistical Learning: Data Mining,
	6. Inference and Prediction", Springer, 2nd Edition, 2009.
	7. Jason Bell, "Machine Learning for Big Data", Wiley Big Data
	Series, 2016.
	8. 7. Rama Murthy G," Multidimensional Neural Networks
	Unified Theory", New Age International, 2008.

Name of the P	rogram: MI	E (Big Data and Data Analytics)					
Course Title:	Alg	gorithms and Data Structures for Big Data					
Course Code: E	BDA 602 Co	urse Instructor:					
Academic Year	r: 2020-2021 Se	mester: First Year, Semester 1					
No of Credits:	3 Pro	erequisites: Programming in Python, C					
Synopsis:	This Course provides insig	ght on					
	1. This course introd	duces students to elementary data structures and					
	design of algorithms.						
	2. Students learn how to design optimal algorithms with respect to time						
	and space						
	3. Students learn how to implement link list, stack, queues, searching						
	and sorting techni	ques, sets, trees and graphs.					
	4. Students learn to	implement string and text processing techniques.					
	5. Students learn to	implement Data stream algorithms.					
Course							
Outcomes	On successful completion	of this course, students will be able to					
(COs):							
CO 1:	Analyse recursive prograr	ms, solve a general class of recurrence relations (C4)					
CO 2:	Design programs for imp	plementation of linked lists, stack, queues, binary					
CO 2:	search tree, sorting and searching (C4)						
60.2	Design programs for dictionary, hash tables, graphs and shortest path						
CO 3:	techniques. (C4)						
CO 4:	Design string and text pro	ocessing programs. (C4)					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*						*		
CO 2	*	*	*						*		
CO 3	*	*	*						*		
CO 4	*	*	*	*							

Course content and outcomes:						
Content	Competencies					
Unit 1: Algorithm specification and analysis techniques						
Analysis of recursive programs.	At the end of the topic student should be able to:					
Solving recurrence equations.	1. Define recursive programs (C2)					
General solution for a large class of	2. Design simple recursive programs (C4)					
recurrences.	3. Solve recurrence relations (C4)					
Unit 2: Elementary data structures						
Implementation of lists, stacks, queues.	1. Design singly linked list (C3)					
	2. Design doubly linked list(C3)					
	3. Explain the concepts of array-based					
	stacks (C2)					
	4. Explain the concepts of pointer-based					
	stacks (C2)					
	5. Design and implement Queues. (C4)					
Unit 3: Sorting and Searching Technique	es					
Quick sort, heap sort, merge sort.	1. Design applications with suitable sorting					
Linear search and binary search.	and searching techniques. (C4)					
Unit 4: Hashing and Dictionaries						
Hashing and Dictionaries	1. Design various hash functions and					
	implement suitable hash tables (C4)					
Unit 5: Binary search trees						
Construction.	1. Understand and implement BST and its					
Inorder, preorder and postorder	various traversal techniques (C2)					
traversals.						
Unit 6: Graphs						
Representation of graphs. Depth First	1. Define graphs (C2)					
Searching. Breadth First Searching.	2. Design data structure for graphs (C6)					
Minimum cost spanning tree.	3. Formulate an algorithm to solve minimum					
Single source shortest paths and all-	cost spanning tree(C6)					

pairs shortest path.	4. Formulate an algorithm to solve Single source shortest path (C6)5. Formulate an algorithm to solve All- pair shortest path(C6)			
Unit 7: String and text processing technic	ques			
Pattern-Matching Algorithms.	1. Design applications with suitable pattern			
Text Compression.	matching algorithms (C4).			
Tries.				
Unit 8: Data stream algorithms				
Sampling, Random Projections, Basic	1. Implement suitable data streaming			
Algorithmic Techniques, Group Testing,	algorithms (C3).			
Tree Method and Graph sketching.				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation				*	
End Semester Examination	*	*	*	*	

Feedback Process	End-Semester Feedback	
Reference Material	1. Introduction to Algorithms - Thomas H. Cormen, Charles	
	E. Leiserson, Ronald L. Rivest. MIT Press.	
	2. Data Structures and Algorithms - Aho, Hopcroft and	
	Ulmann. Pearson Publishers.	
	3. Data Structures and Algorithms in Python - Michael T.	
	Goodrich, Roberto Tamassia, and Michael H. Goldwasser.	
	John Wiley & Sons.	
	4. Data Streams: Algorithms and Applications - S.	
	Muthukrishnan. Foundations and Trends in Theoretical	
	Computer Science archive, Volume 1 Issue 2, August	
	2005, Pages 117 – 236.	

Name of the P	Program: ME (Big Data and Data Analytics)		
Course Title:	Architecture of Big Data Systems		
Course Code:	BDA 623 Course Instructor:		
Academic Yea	·		
No of Credits:	3 Prerequisites: Programming in Python, Java		
Synopsis:	This Course provides insight on		
	1. Students learn the concept of big data characteristics, batch and		
	lambda architecture.		
	2. This course introduces students to basics file systems in Big Data		
	3. This course helps the student to understand the concepts of Hadoop		
	framework, Spark framework and their internals.		
	4. This course helps the students to learn Map-reduce programming,		
	Spark programming.		
	5. Students learn the different layers with use cases demonstrations.		
Course			
Outcomes	On successful completion of this course, students will be able to		
(COs):			
CO 1:	Examine the type of data in big data (C3)		
CO 2:	To design applications based with Hadoop framework (C5)		
CO 3:	To design applications based with spark architecture (C5)		
CO 4:	To build applications based on the Big Data Architecture platforms and		
CO 4:	analyse the results based on the outcome of the applications used (C6)		

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*			*					
CO 2	*	*	*		*		*			*	
CO 3	*	*	*		*		*			*	
CO 4	*	*	*		*	*	*			*	

(Deemed to be University under Section 3 of the UGC Act, 1956)							
Course content and outcomes:							
Content	Competencies						
Unit 1: Classifying Big Data Characteristics							
Analysis type - real time or batched for	At the end of the topic student should be able to:						
later analysis.	1. Identify different types of Data						
Processing methodology - predictive,	2. Identify processing methodology						
analytical, ad-hoc query, and reporting.							
Data frequency and size on demand, as							
with social media data Continuous							
feed, real-time - weather data,							
transactional data Time series - time-							
based data							
Data type - transactional, historical,							
master data and metadata.							
Content formats - structured,							
unstructured, semi-structured							
Data sources - Web and social media,							
humans, machines, transaction data							
and biometric data.							
Unit 2: Big Data processing - the Lambd	a architecture						
Append-only, immutable data	1. Understand Lambda architecture to						
Batch layer	handle Big Data (C2).						
Serving layer	2. Understand different layers in Lambda						
Speed layer	Architecture (C2).						
Case study: Druid - A Real-time							
Analytical Data Store							
Unit 3 Batch layer, Serving layer and Sp	eed layer						
Choosing a storage solution for the	1. Develop applications to store data in HDFS						

(C4).

2. Develop applications for batch processing

batch layer: Distributed file systems,

Vertical partitioning.

MapReduce: a paradigm for Big Data	using Map Reduce technique (C4).
computing.	3. Understand the need of serving layer (C2).
Performance metrics for the serving	4. Design application to store data for
layer	processing in serving layer (C4).
Requirements for a serving layer	5. Understand the need of Speed layer for
database	data processing (C2).
Computing real time views	
Storing real time views	
Challenges of incremental computation	
Asynchronous versus synchronous	
updates	
Unit 4: Spark: Alternatives to MapRed	uce
Spark Architecture	1. Understand Spark Architecture for data
Spark Session	processing (C2).
DataFrame	2. Design applications using DataFrames and
Transformations and Actions	RDDs (C4).
Spark SQL	
Resilient Distributed Datasets	
(RDDs)	
Unit 5: Stream Processing using Spark	
Advantages and challenges of stream	1. Understand different stream processing
processing	techniques (C2).
Stream Processing Design Points	2. Design applications for handling real time
Streaming APIs	data using Structured Streaming (C4).
Structured Stream Processing	
Unit 6: Machine Learning using Spar	k
High level M-Lib concepts	1. Understand different libraries and
M-Lib in Action	packages for machine learning in Spark
	(C2).
	2. Design machine learning model using

	Spark (C4).

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation				*	
End Semester Examination	*	*	*	*	
Laboratory examination	*	*	*	*	

Feedback Process	End-Semester Feedback
Reference Material	1. Big Data: Principles and best practices of scalable real-
	time data systems - Nathan Marz and James Warren.
	Manning Publisher.
	2. Hadoop: The Definitive Guide: Storage and Analysis at
	Internet Scale – Tom White, O'Reilly Publication 4 th
	Edition.
	3. Spark: The Definitive Guide: Big Data Processing Made
	Simple – Bill Chambers, MateiZaharia, O'Reilly Publication
	1 st Edition.
	4. http://static.druid.io/docs/druid.pdf ,
	http://druid.io/docs/0.8.0/design/design.html
	5. Big data architecture and patterns - IBM developerWorks.
	6. http://www.ibm.com/developerworks/library/bd-
	archpatterns1/
	7. Big Data and Analytics -IBM developerWorks.
	http://www.ibm.com/developerworks/analytics/
	8. http://lambda-architecture.net/
	9. Apache HBase - http://hbase.apache.org/
	10. Apache Spark Streaming -
	https://spark.apache.org/streaming/
	11. SummingbirdMapReduce library -
	https://github.com/twitter/summingbird

Name of the Program:	ME (Big Data and Data Analytics)
Course Title:	Applied Probability and Statistics
Course Code: MCL 601	Course Instructor:

Academic Year: 2020-2021		Semester: First Year, Semester 1		
No of Credits: 3		Prerequisites: Basic algebra and calculus		
Synopsis:	This course provides an introduction to fundamental concepts in probabili			
	and statistics that are essential for data science applications.			
Course				
Outcomes	On successful comple	tion of this course, students will be able to		
(COs):				
CO 1:	Understand and apply the basic principles of sampling.			
CO 2:	Model random pheno	omena using random variables.		
CO 3:	Calculate & interpret	probability as a measure of quantifying uncertainty.		
CO 4:	Construct Bayesian m	odels for analysing practical problems.		
CO 5:	·	Itechnique to explain attributes of a population.		

Mappi	ng of C	Os to Po	Os								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*	*								
CO 3	*	*	*	*				*			
CO 4		*	*	*		*		*			
CO 5		*	*	*		*				*	

Course content and outcomes:				
Content	Competencies			
Unit 1: Counting, probability concepts, a	and conditional probability			
Multiplication rule; permutation; At the end of the topic student should be able to:				
combination - Sampling: with/without	1. Understand and apply the basic principles			
replacement and order matters/does	of sampling (C1, C3).			
not matter - Binomial & multinomial	2. Understand and apply the basic principles			
coefficients - Distribution problems	of probability (C1, C3).			

Set theory; sample space; outcomes; events - Frequency based definition of probability - Equally likely vs. not equally likely outcomes - Axioms of probability

Conditional probability; probability tree model; chain rule - Decomposition and the law of total probability - Bayes' rule - intuition, dependence/independence of events.

- 3. Differentiate and relate frequency-based interpretation of probability to classical approach (C4).
- 4. Apply Bayesian principle for modelling practical problems (C5).

Unit 2: Random variables

Modelling using discrete random variables: Bernoulli, geometric, binomial. binomial. negative hypergeometric, and Poisson distributions Probability mass function and cumulative distribution function - Expectation and variance: discrete case -Modelling using continuous random variables: uniform, normal, log-normal, exponential, and beta distributions; probability density function - Expectation and variance: continuous case Functions of random variables.

- Understand and differentiate discrete and continuous random variables of practical interest (C2, C4).
- 2. Gain solid foundation in the mathematical aspects of random variables (C2).
- 3. Understand how to use random variables to model random phenomena (C4).
- 4. Compare and contrast practical applicability of random variables (C6).

Unit 3: Sampling and parameter estimation

Population and sample - Statistic & sampling distribution - Sample mean

- 1. Differentiate population and sample (C4).
- 2. Describe population parameters using

and variance - Central limit theorem — intuition and applications

Point estimation - Standard error - Interval estimation: interpretation of confidence interval - Hypothesis testing: p-values, significance level and their interpretations, application to analysis of one- /two-sample mean and paired data.

inferences drawn from a sample (C6).

- 3. Design and apply appropriate hypothesis tests for practical problems (C3).
- 4. Communicate and explain the results of hypothesis testing (C6).

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:	
Formative:	Summative:
Internal practical Test	Sessional examination

Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2		*	*	*	
Assignment/Presentation	*	*	*	*	*
End Semester Examination	*	*	*	*	*

Feedback Process	•	End-Semester Feedback				
Reference Material		1. Introduction to Probability, Charles M. Grinstead,				
		American Mathematical Society; 2nd Revised Edition				
		1997. Available online at				
		https://open.umn.edu/opentextbooks/textbooks/introdu				
		ction-to-probability				
	:	2. A First Course in Probability, Sheldon Ross, 9th Edition,				
		Pearson Education India; 9th Edition, 2013.				
	:	3. Biostatistics Open Learning textbook – Online resource				
		from University of Florida available at				
		https://bolt.mph.ufl.edu/6050-6052/				
		4. 4. All of Statistics: A Concise Course in Statistical				
		Inference, Larry Wasserman – Springer.				

Name of the Program:	ME (Big Data and Data Analytics)
Course Title:	Fundamentals of Machine Learning Lab
Course Code: BDA-601L	Course Instructor:

Academic Year	Academic Year: 2020 - 2021 Semester: First Year, Semester 1					
No of Credits:	1 Prerequisites: Basics of Programming					
Synopsis:	This Course provides insight on					
	1. This course provides the concept of machine learning,					
	applications, techniques, design issues and approaches to					
	machine learning.					
	2. This course provides the fundamental knowledge about concept					
	learning, hypothesis and bias.					
	3. To implement machine learning algorithms such as Decision Tree					
	learning, Probably Approximately Correct (PAC) learning,					
	Bayesian learning, Instance-based learning, Principal Component					
	Analysis (PCA) and Ensemble methods in real time data set for					
	various analysis.					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Identify the software and tools for designing machine learning applications.					
CO 2:	Apply concept learning and hypothesis space.					
CO 3:	Apply machine learning approach to reduce the dimension.					
CO 4:	Analyse different machine learning algorithms.					
CO 5:	Design ensemble methods.					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction					
Definition of Machine Learning	At the end of the topic student should be able to:				
Goals and applications of machine	1. Identify programming environments				
learning	available for the machine learning (C1)				
Basic design issues and approaches to	2. Classify the pros and cons of various				
machine learning	environments for ML coding (C2)				
Types of machine learning techniques					
Unit 2: Inductive Classification					
The concept learning task.	1. Design a machine learning model to get a				
Concept learning as search through a	Maximally Specific Hypothesis for the				
hypothesis space.	given training examples (C5).				
General-to-specific ordering of	2. Construct a machine learning model to				
hypotheses.	obtain most general and most specific				
Finding maximally specific hypotheses.	hypotheses for the given training				
Version spaces and the candidate	examples (C5)				
elimination algorithm. Inductive bias.					
Unit 3: Decision Tree learning					
Representing concepts as decision	1. Develop a machine learning classifier				
trees. Recursive induction of decision	using decision tree and random forest				
trees.	(C5)				
Picking the best splitting attribute	2. Examine different applications of decision				
Entropy and information gain.	tree and random forest (C4)				
Searching for simple trees and					
computational complexity.					
Unit 4: Computational learning theory	!				
Models of learnability: learning in the	1. Design a learning method to determine				
limit.	the sample complexity of training				
Probably Approximately Correct (PAC)	examples (C5)				

learning.	2. Analyse bias-variance trade-off, under-
Sample complexity: quantifying the	fitting and over-fitting concepts (C4)
number of examples needed to PAC	
learn.	
Computational complexity of training.	
Sample complexity for finite	
hypothesis spaces. Noise. Learning	
Multiple Classes. Bias-variance trade-	
off, under-fitting and over-fitting	
concepts.	
Unit 5: Bayesian learning	
Probability theory and Bayes rule.	1. Design a machine learning model using
Naive Bayes learning algorithm -	Bayes learning (C5).
Parameter smoothing.	2. Develop a machine learning classifier
Generative vs. discriminative training	models using different approach (C5)
Logistic regression.	3. Design Bayes nets and Markov nets for
Bayes nets and Markov nets for	representing dependencies (C5)
representing dependencies	
Unit 6: Instance-based learning	
Constructing explicit generalizations	1. Design machine learning models to
versus comparing to past specific	classify the instances using K-NN and CBR
examples.	approaches (C5).
K-Nearest Neighbour learning	
algorithm.	
Case-based reasoning (CBR) learning.	
Unit 7: Continuous Latent Variables	
Principal Component Analysis (PCA),	1. Apply PCA for different complex
Applications of PCA	applications (C3)
Unit 8: Ensemble methods (bagging and	boosting)
Using committees of multiple	1. Design a Bayesian Networks (C5)

hypotheses.	2. Develop machine learning models using
Bagging	Ensemble models. (C5)
Boosting	
DECORATE	
Active learning with ensembles.	

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos	
--------------------------------	--

Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	
Assignment/Presentation	*	*	*	*	*
Laboratory Examination	*	*	*	*	*

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Machine Learning, T. Mitchell, McGraw-Hill, 1997
	2.	Machine Learning, E. Alpaydin, MIT Press, 2010
	3.	Pattern Recognition and Machine Learning, C. Bishop,
		Springer, 2006
	4.	Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley-
		Interscience, 2000
	5.	T. Hastie, R. Tibshirani and J. Friedman, The Elements of
		Statistical Learning: Data Mining,
	6.	Inference and Prediction. Springer, 2nd Edition, 2009
	7.	Machine Learning for Big Data, Jason Bell, Wiley Big Data
		Series
	8.	Multidimensional Neural Networks Unified Theory, Rama
		Murthy G
	9.	Current literature

Name of the Program:	ME (Big Data and Data Analytics)
----------------------	----------------------------------

Course Title:		Algorithms and Data Structures for Big Data Lab			
Course Code: BDA 602L		Course Instructor:			
Academic Yea	r: 2020-2021	Semester: First year, First semester			
No of Credits:	1	Prerequisites: Programming in C or Python			
Synopsis:	 Students learn how to design optimal algorithms with respect to time and space Students learn how to implement link list, stack, queues, searching and sorting techniques, sets, trees and graphs. Students learn to implement string and text processing techniques. Students learn to implement Data stream algorithms. 				
Course Outcomes (COs):	On successful completion of this course, students will be able to				
CO 1:	Evaluate the performance of Algorithms				
CO 2:	Develop applications using suitable data structures				
CO 3:	Design applications using Data streaming and pattern matching algorithms				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*						*		
CO 2	*	*	*			*					
CO 3	*	*	*		*	*					

Course content and outcomes:								
Content	Competencies							
Unit 1: Elementary Data Structures								
Linked List, Stacks, Queues, Sorting	At the end of the topic student should be able to:							
and Searching Techniques	1. Implement Linked list, Stacks, Queues							
	(C4).							
	2. Design applications using various							

	searching and sorting techniques.
Unit 2: Tree, Sets and Hash Table	
Binary Tree, Binary search tree	1. Implement Binary Tree and BST (C4)
Sets and Hash Tables	Design applications using Hash Tables
Unit 3: Graph	
Representation of Graph	1. Implement Graph and its traversals (BFS,
BFS and DFS	DFS) (C4).
Shortest path algorithms	2. Design applications with shortest path
	algorithms (C4)
Unit 4: Pattern Matching and Data stre	aming
	1. Implement pattern matching algorithms.

Learning strategy	Contact hours	Student learning time
		(Hrs)
Lecture	12	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3			
Sessional Examination 1	*	*				
Sessional Examination 2		*	*			
Assignment/Presentation	*	*	*			
End Semester Examination	*	*	*			
Laboratory Examination	*	*	*			

Feedback Process	End-Semester Feedback
Reference Material	1. Data Structures and Algorithms in Python - Michael T.
	Goodrich, Roberto Tamassia, and Michael H. Goldwasser.
	John Wiley & Sons.
	2. Data Streams: Algorithms and Applications - S.
	Muthukrishnan. Foundations and Trends in Theoretical
	Computer Science archive, Volume 1 Issue 2, August 2005,
	Pages 117 – 236.

Name of the P	rogram:	ME (Big Data and Data Analytics)				
Course Title:		Architecture of Big Data Systems Lab				
Course Code: I	BDA 623L	Course Instructor:				
Academic Year	r: 2020-2021	Semester: First year, First semester 1				
No of Credits:	1	Prerequisites: Programming in Python, Java				
Synopsis:	1. This course he	elps the student to understand the concepts of Hadoop				
	framework, Sp	park framework and their internals.				
	2. This course h	elps the students to learn Map-reduce programming,				
	Spark progran	nming.				
	3. This course he	elps the students to build machine learning model using				
	Spark framew	ork.				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1:	Install and develop applications using Hadoop and its ecosystems					
CO 2:	Build applications using Spark frame work					
CO 3:	Build Machine Learni	ng models using Spark				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*	*			*	*	
CO 2	*	*	*		*	*			*	*	
CO 3	*	*	*		*	*			*	*	

Course content and outcomes:							
Content	Competencies						
Unit 1: Hadoop ecosystem							
Installation and configuring Hadoop	At the end of the topic student should be able to:						
ecosystem	1. Practice applications in HDFS and YARN.						
	(C3)						

	2. Practice applications using Sqoop, Hive,
	PIG. (C3)
	3. Compute programs using MapReduce.
	(C3)
Unit 2: Spark Framework	
Spark tool chain – RDD, DataFrame,	1. Develop applications using Spark
SQL and Streaming	DataFrame and SQL (C4).
	2. Design real time applications using Spark
	Streaming (C4).
Unit 3: Machine Learning using Spark	
MLIB	1. Compute machine learning models using
	Spark. (C3)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time			
		(Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*			
Sessional Examination 2		*	*	
Assignment/Presentation	*	*	*	
End Semester Examination	*	*	*	
Laboratory Examination	*	*	*	

Feedback Process	End-Semester Feedback	
Reference Material	1. Big Data: Principles and best pra	actices of scalable real-time
	data systems - Nathan Marz ar	d James Warren. Manning
	Publisher.	
	2. Hadoop: The Definitive Guide:	Storage and Analysis at
	Internet Scale – Tom White, O'Re	illy Publication 4th Edition.
	3. Spark: The Definitive Guide: E	Big Data Processing Made
	Simple – Bill Chambers, MateiZah	aria, O'Reilly Publication 1st
	Edition.	

Name of the P	rogram:	ME (Big Data and Data Analytics)	
Course Title:		Applied Probability and Statistics Lab	
Course Code:	MCL 601L	Course Instructor:	
Academic Yea	r: 2020-2021	Semester: First Year, Semester 1	
No of Credits:	1	Prerequisites: MCL 601	
Synopsis:	This course provides	a hands-on introduction to fundamental concepts in	
	probability and stati	stics that are essential for data science applications	
	using the R programn	ning language.	
Course			
Outcomes	On successful completion of this course, students will be able to		
(COs):			
CO 1:	Apply the basic principles of sampling to practical problems.		
CO 2:	Visualize probability concepts through frequency-based interpretations.		
CO 3:	Simulate discrete an	d continuous random variables for modelling random	
CO 3:	phenomena.		
CO 4:	Design and apply hypothesis tests followed by interpretation of results.		
CO E.	Interpret statistical results and communicate them unambiguously and		
co 5: effectively.			

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2		*	*		*						
CO 3	*	*	*	*	*						
CO 4		*	*	*	*	*					
CO 5				*	*	*		*		*	

Course content and outcomes:		
Content Competencies		
Unit 1: Counting, probability concepts, and conditional probability		

Multiplication rule; permutation; combination - Sampling: with/without replacement and order matters/does not matter - Binomial & multinomial coefficients - Distribution problems Set theory; sample space; outcomes; events - Frequency based definition of probability - Equally likely vs. not equally likely outcomes - Axioms of probability Conditional probability; probability tree model; chain rule - Decomposition and the law of total probability -Baves' rule intuition,

dependence/independence of events.

At the end of the topic student should be able to:

- 1. Understand the basic principles of the R programming language (C1).
- Develop short code snippets to understand the basic principles of sampling and probability (C1, C3).
- Visualise and interpret probability concepts through a frequency-based approach (C6).
- 4. Program and analyse Bayesian models for practical problems (C4).

Unit 2: Random variables

Modelling using discrete random variables: Bernoulli, geometric, binomial, binomial, negative hypergeometric, and Poisson distributions Probability mass function and cumulative distribution function - Expectation and variance: discrete case -Modelling continuous random variables: uniform, normal, log-normal, exponential, and beta distributions; probability density function - Expectation and variance: continuous case - Functions of random variables.

- Understand and apply R functions to simulate discrete and continuous random variables (C3).
- Using sampling, compute and interpret different attributes of random variables (C4).
- Visualise and interpret histograms and probability mass/density functions of random variables using state of the art visualisation libraries in R (C4).
- Develop codes to model random phenomena using appropriate random variables (C5).

Unit 3: Sampling and parameter estimation

Population and sample - Statistic & sampling distribution - Sample mean and variance - Central limit theorem — intuition and applications

Point estimation - Standard error - Interval estimation: interpretation of confidence interval - Hypothesis testing: p-values, significance level and their interpretations, application to analysis of one- /two-sample mean and paired data

- Visualise sample data through histograms (C3).
- Compute estimates of population parameters using samples and communicate the uncertainty in the estimates (C4).
- 3. Use R in-built functions for performing hypothesis tests (C4).
- 4. Interpret and communicate the results of hypothesis tests (C6).

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	
Assignment/Presentation	*	*	*	*	*
Laboratory examination	*	*	*	*	*

Feedback Process	End-Semester Feedback	
Reference Material	1. Introduction to Probability, Charles M. Grinstead, Ameri	ican
	Mathematical Society; 2nd Revised Edition 1997. Availa	able
	online	at
	https://open.umn.edu/opentextbooks/textbooks/introdu	ctio
	n-to-probability	
	2. A First Course in Probability, Sheldon Ross, 9th Edit	ion,
	Pearson Education India; 9th Edition, 2013.	
	3. Biostatistics Open Learning textbook – Online resource for	rom
	University of Florida available	at
	https://bolt.mph.ufl.edu/6050-6052/	
	4. All of Statistics: A Concise Course in Statistical Inferen	nce,
	Larry Wasserman – Springer.	

Name of the P	rogram:	ME (Big Data and Data Analytics)		
Course Title:		Mini Project - 1		
Course Code:	BDA 695	Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1		
No of Credits:	4	Prerequisites: Any programming language and circuit basics		
Synopsis:	Students are expecte	d to select a problem in the area of their interest and		
	the area of their sp	ecialization that would require an implementation in		
	hardware / software	or both in a semester		
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
CO 1:	Apply the objectives of the project work and provide an adequate			
35 =:	background with a detailed literature survey			
60.3	Breakdown the proj	ect into sub blocks with sufficient details to allow the		
CO 2:	work to be reproduced by an independent researcher			
60.3	Compose hardware/s	software design, algorithms, flowchart, methodology,		
CO 3: and block diagram				
CO 4:	Evaluate the results			
CO 5:	Summarize the work	carried out		

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO5:							*				

Course content and outcomes:					
Content	Competencies				
Phase 1					
Problem identification, synopsis	At the end of the topic student should be able to:				
submission, status submission, mid	1. Identify the problem/specification (C1)				
evaluation.	2. Discuss the project (C2)				
	3. Prepare the outline (C3)				
	4. Describe the status of the project (C2)				
	5. Prepare a mid-term project presentation				
	report (C3)				
	6. Prepare and present mid-term project				
	presentation slides (C3, C5)				
	7. Develop project implementation in				
	hardware/software or both in chosen				
	platform (C5)				
Phase 2					
Status submission, final evaluation.	1. Prepare the progress report (C3)				
	2. Prepare the final project presentation				
	report (C3)				
	3. Prepare and present final project				
	presentation slides (C3, C5)				
	4. Modify and Develop implementation in				
	hardware/software or both in chosen				
	platform (C3, C5)				
	5. Justify the methods used and obtained				
	results (C6)				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	48	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Practical	-	-		
Revision	-	-		
Assessment	03	-		
TOTAL	51	09		

Assessment Methods:				
Formative:	Summative:			
Project Problem Selection	Mid-Term Presentation			
Synopsys review	Second status review			
First status review	Demo & Final Presentation			

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Mid Presentation	*	*					
Presentation	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

rogram:	ME (Big Data and Data Analytics)				
	Seminar - 1				
BDA 697	Course Instructor:				
r: 2020 - 2021	Semester: First Year, Semester 1				
1	Prerequisites: Communication Skill				
1. To select, sear	ch and learn technical literature.				
2. To Identify a c	urrent and relevant research topic.				
3. To prepare a t	opic and deliver a presentation.				
4. To develop the	e skill to write a technical report.				
5. Develop abilit	ry to work in groups to review and modify technical				
content.					
On successful comple	tion of this course, students will be able to				
•	in identifying relevant information, defining and				
explaining topics und	er discussion.				
Show competence in working with a methodology, structuring their oral					
work, and synthesizin	g information.				
Use appropriate regis	ters and vocabulary, and will demonstrate command of				
voice modulation, voi	ce projection, and pacing.				
Demonstrate that the	ey have paid close attention to what others say and can				
respond constructively.					
Develop persuasive	speech, present information in a compelling, well-				
structured, and logical sequence, respond respectfully to opposing ideas,					
show depth of knowl	ledge of complex subjects, and develop their ability to				
synthesize, evaluate a	and reflect on information.				
	BDA 697 r: 2020 - 2021 1 1. To select, sear 2. To Identify a c 3. To prepare a t 4. To develop the 5. Develop ability content. On successful comple Show competence explaining topics und Show competence in work, and synthesizin Use appropriate regis voice modulation, voi Demonstrate that the respond constructive Develop persuasive structured, and logic show depth of knowle				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*							*	*		*
CO 2	*							*	*		*
CO 3	*							*	*		*
CO 4	*							*	*		*
CO5:	*							*	*		*

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	14	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Practical	-	-		
Revision	-	-		
Assessment	-	-		
TOTAL	14	-		

Assessment Methods:				
Formative:	Summative:			
Seminar Topic Selection				
Synopsys review				
PPT Review				

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Presentation	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen Seminar

Name of tl	he Program: ME (Big Data and Data Analytics)						
Course Titl	le: Mobile Web Application Development						
Course Co	de: CSE-625 Course Instructor:						
Academic	Year: 2020-2021 Semester: First Year, Semester 1						
No of Cred	lits: 3 Prerequisites: Basic knowledge of OOP's concepts, Java programming language						
Synopsi	1. This course would provide fundamental knowledge about android						
s:	platform.						
	2. The course will also provide skill sets to design and develop secured						
	mobile web applications.						
	3. This course will provide basic knowledge about programming for						
	technologies available on smart phones.						
Course	On successful completion of this course, students will be able to						
Outcom							
es							
(COs):							
CO 1:	Discuss the challenges of mobile web application development.						
CO 2:	Apply HTML5, CSS, javascript and DOM API's in web application development.						
CO 3:	Use of programming for technologies available on smart phones.						
CO 4:	Design and develop secure mobile web applications.						

Mapping of COs to POs												
COs	PO	PO	PO	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	1	2	3			6						
CO 1	*	*										
CO 2		*	*		*							
CO 3		*	*		*							
CO 4		*	*	*	*							

Course content and outcomes:							
Content	Compe	etencies					
Unit 1: Challenges of mobile Web application development							
The limitations of mobile networks.	At the	end of the topic student should be able to:					
Reducing the page weight – the	1.	Discuss limitation of mobile networks (C2)					
amount of markup and external	2.	Explain way of reducing the page weight (C2)					
elements. Avoiding useless network	3.	Discuss limitations imposed by battery life					
usage. Understanding the "mobile-		(C2)					
first" design principles. Limitations							
imposed by battery life.							
Unit 2: Setting up a personal Web si	te						
Setting free VMs - micro-instances -	1.	Set up VMs on AWS (C4)					
on AWS. Installing and configuring	2.	Discuss HTTP and REST API's (C2)					
NGINX on AWS micro instances.	3.	Solve issues on installation and configuration					
Working with routing and reverse		NGIX on AWS (C3)					
proxies HTTP and REST APIs							
Unit 3: HTML5 and CSS for mobile d	evices.						
Media queries for handling mobile	1.	Discuss principles of responsive design (C2)					
form-factors. Principles and practice	2.	Use of media queries for handling mobile					
of responsive design. Mobile UX,		form-factors (C3)					
Viewport, Fluid design and							
responsive images							
Unit 4: Programming with JavaScrip	t and D	OM APIs					
Accessing document fragments.	1.	Explain jQuery and other light weight libraries					
Using jQuery and other light-weight		(C2)					
libraries. AJAX and asynchronous	2.	Discuss AJAX and asynchronous programming					
programming		(C2)					

Unit 5: Architecture of Android appl	ications	5
Android application framework,	1.	Discuss android application framework (C2)
core libraries, android runtime,	2.	Explain android runtime system and core
Linux kernel		libraries (C2)
Unit 6: Programming for technologic	es availa	able on smart phones
Introduction to PhoneGap, Handling	1.	Use of PhoneGap in mobile web applications
Touch events. Making use of the		(C3)
accelerometer and the Location	2.	Practice accelerometer and location APIs (C3)
APIs.		
Accessing camera and media		
devices		
Unit 7: Developing offline facilities i	n mobil	e web applications
Localstorage and IndexDB APIs	1.	Discuss Localstorage and IndexDB APIs (C2)
Unit 8: Designing and developing se	cure mo	bile web applications
Understanding the single-origin	1.	Discuss different encryptions techniques
policy, Dangers of Cross-site		used in client-server communication (C2)
scripting Principles of the secure	2.	Practice best practices in developing secure
socket layer and HTTPS Practical		client-side code (C3)
encryption for client-server		
communication in Web applications.		
Best practices in developing secure		
client-side code		

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time				
		(Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:							
Formative:	Summative:						
Theory Assignment	Sessional Examination						
Lab Assignment	University End Semester						
	Examination						
Lab Test	Viva						
Viva							

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4				
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				
Assignment/Presentation		*	*	*				
End Semester Examination	*	*	*	*				

Feedback	•	End-Semester Feedback	End-Semester Feedback					
Process								
Reference	1.	Learning Web App Development (Build Quickly with	Proven					
Material		JavaScript Techniques) - Semmy Purewal. O'Reilly Medi	a. 2014.					
		MSOIS, MAHE, Manipal 13						
	2.	The Browser Security Handbook. Michal Z	Zalewski.					
		https://code.google.com/p/browsersec/wiki/Main						
	3.	3. High Performance Responsive Design - Tom Barker. O'						
		publisher. 2014.						
	4. Apple UI Design							
		https://developer.apple.com/library/ios/documentation	/UserEx					
		perience/Conceptual/MobileHIG/i ndex.html						
	5.	Android Design Pr	inciples.					
		https://developer.android.com/design/index.html						
	6.	Android Application Development Re	ference.					
	https://developer.android.com/develop/index.html							

ce of						
data						
data						
, and						
visual						
Extracting, transforming and storing data from various data sources.						
ation,						
visual						
encoding and interaction.						
alysis						
ation						
ai vi						

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*	*					
CO 2	*	*			*						
CO 3	*	*	*								
CO 4	*		*		*			*			
CO 5	*	*	*	*							

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction to Web scraping	
Web scraping models and techniques,	At the end of the topic student should be able to:
Case study: BeautifulSoup, Scrapy,	1. Understanding various formats of data.
Selenium	(C1)
	2. Design programs to dynamically extract
	data from web. (C4)
	3. Design programs to read data from various
	data sources. (C4)
Unit 2: Data Analysis	
Data structures for analysis: numpy,	1. Understand and integrate various data
pandas	structures for data analysis process (C2).
Data Wrangling: Clean, Transform,	2. Create various techniques to clean and
Merge, Reshape	handle missing data (C4).
Data Aggregation and Group	3. Design data filtering and transformation
Operations	techniques (C4).
Case study: Exploratory analysis of	

public / scrapped datasets	
Unit 3: Data Visualization	
Data Visualization – classification,	1. Describe what is the purpose of
infographics versus data visualization,	Visualization. (C2)
visualization for supporting	2. Describe various ways of classifying
exploratory data analysis, visual art,	visualization. (C2)
choosing appropriate visual encodings,	3. Explain what is explorative and explanative
rules for visualization - Visualization	visualization. (C2)
techniques: time series, statistical	4. Differentiate data visualization and visual
distributions, maps - Data visualization	art. (C2)
for web	5. Create visualization for time series data.
	(C4)
	6. Create visualization for statistical
	distributions. (C4)
	7. Create visualization for maps, Hierarchical
	data and network data. (C4)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time			
		(Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Sessional Examination 1	*	*				
Sessional Examination 2			*	*		
Assignment/Presentation	*	*	*	*	*	
End Semester Examination	*	*	*	*	*	
Laboratory examination	*	*	*	*	*	

Feedback Process	End-Semester Feedback
Reference Material	1. Website Scraping with Python: Using BeautifulSoup and
	Scrapy, Gábor & Hajba, APRESS Publications, 1st Edition,
	2018.
	2. Web Scraping with Python: Collecting More Data from the
	Modern Web, Ryan Mitchell Shroff, O'Reilly, 2 nd Edition,
	2018.
	3. Designing Data Visualizations , Julie Steele and Noah Iliinsky;
	O'Reilly Media; 1 st Edition, 2011.
	4. Python for Data Analysis , Wes McKinney; Shroff; O'Reilly; 2 nd
	Edition, 2018.

Name of the	Program:	ME (Big Data and Data Analytics)				
Course Title:		Mobile Web Application Development Lab				
Course Code	: CSE-625L	Course Instructor:				
Academic Year: 2020-2021		Semester: First Year, Semester 1				
No of Credits: 1		Prerequisites: Basic knowledge of OOP's concepts, Java programming language				
Synopsis:	1. This course	would provide fundamental knowledge about android				
	platform.					
	2. The course v	will also provide skill sets to design and develop secured				
	mobile web	applications.				
	3. This course	3. This course will provide basic knowledge about programming for				
	technologies	chnologies available on smart phones.				
Course	On successful completion of this course, students will be able to					
Outcomes						
(COs):						
CO 1:	Solve issues related to mobile web application development					
CO 2:	Apply HTML5, CSS, javascript and DOM API's in web application development					
CO 3:	Use of programming	for technologies available on smart phones				
CO 4:	Construct secure mo	obile web applications				

Mapping of COs to POs												
Cos	PO 10	PO 11	PO 12									
	1	2	3	4	5	6	7	8	9			
CO 1		*	*		*							
CO 2		*	*		*							
CO 3		*	*		*							
CO 4		*	*	*	*							

Course content and outcomes:					
Content	Competencies				
Unit 1: Installation of Android Studi	io				
Installation of Android Studio,	At the end of the topic student should be able to:				
environment setting, Project	1. Identify different features in android studio				
creation, building a project, running	(C1)				
a sample project	2. Explain Android manifest file (C2)				
	3. Discuss DVM, DDMS, android emulator (C2)				
	4. Discuss the issues related running and				
	debugging applications (C2)				
Unit 2: Introduction to HTML5 and C	SS for mobile devices				
Implementation of mobile web	1. Practice to create more responsive mobile				
applications using HTML5 and CSS	web applications (C3)				
	2. Develop android applications using Mobile				
	UX, Viewport, Fluid design and responsive				
	images (C4)				
Unit 3: Programming with JavaScrip	t and DOM APIs				
Using jQuery and other light-weight	1. Develop mobile web applications using				
libraries.	JQuery and other light-weight libraries (C4)				
AJAX and asynchronous	2. Apply AJAX and asynchronous programming				
programming	techniques in mobile web applications(C3)				
Unit 4: Programming for technologic	es available on smart phones				
Introduction to PhoneGap, Handling	1. Write mobile web applications using				
Touch events. Making use of the	PhoneGap techniques (C3)				

accelerometer and the Location	2. Apply touch events in mobile web				
APIs.	applications (C3)				
Accessing camera and media	3. Demonstrate the use of accelerometer and				
devices.	location APIs in mobile web applications (C3)				
Unit 5: Designing and developing se	cure mobile web applications				
Practical encryption for client-server 1. Use of various encryption techniques					
communication in Web applications.	communications in mobile web applications				
Bost practices in developing secure	(C3)				
Best practices in developing secure	, ,				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:	
Formative:	Summative:

Theory Assignment	Sessional Examination
Lab Assignment	University End Semester
	Examination
Lab Test	Viva
Viva	

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO4			
Sessional Examination 1	*	*					
Sessional Examination 2		*	*	*			
Assignment/Presentation	*	*		*			
End Semester Examination							
Laboratory examination	*	*	*	*			

Feedback	•	End-Semester F	eedback			
Process						
Reference	1.	Learning Web	App Develor	ment (Build (Quickly w	ith Proven
Material		JavaScript Tech	niques) - Sen	nmy Purewal. (O'Reilly Me	edia. 2014.
		MSOIS, MAHE,	Manipal 13			
	2.	The Browser	Security	Handbook.	Michal	Zalewski.
		https://code.go	ogle.com/p/b	orowsersec/wik	ki/Main	
	3.	High Performa	nce Responsi	ve Design - T	Tom Barke	er. O'Reilly
		publisher. 2014				
	4.	Apple	UI	Design		Basics.
		https://develop	https://developer.apple.com/library/ios/documentation/UserEx			
		perience/Conce	perience/Conceptual/MobileHIG/i ndex.html			
	5.	Android	Г	esign		Principles.
		https://developer.android.com/design/index.html				
	6.	Android /	Application	Developm	ent	Reference.
		https://develop	https://developer.android.com/develop/index.html			

Name of the Program:		ME (Big Data and Data Analytics)		
Course Title:		Principles of Data Visualization Lab		
Course Code: BDA-622L		Course Instructor:		
Academic Yea	r: 2020-2021	Semester: First year, semester 1		
No of Credits:	1	Prerequisites: Programming in Python		
Synopsis:	This Course provides	insight on		
		ntroduces data visualization, the art and science of nto readable graphics.		
		design and create data visualizations based on data		
		n how do data extraction, data modelling and data		
		n to map data attributes to graphical attributes, and all encoding based on known properties of visual		
Course Outcomes (COs):	On successful completion of this course, students will be able to			
CO 1:	Data scrapping from different data sources.			
CO 2:	Data Cleaning, transformations and Analysis.			
CO 3:	Data Visualization usi	ng different techniques, tools and charts.		

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*				*	*	
CO 2	*	*	*		*	*		*	*	*	
CO 3	*	*	*	*	*	*		*		*	

Course content and outcomes:				
Content	Competencies			
Unit 1: Data Scrapping				
Web scrapping models	At the end of the topic student should be able to:			
Installing and configuring tools to	1. Identify different types of data sources			
handle different data types.	(C2).			
	2. Design applications to scrap static data			
	(C4).			
	3. Design applications to extract data from			
	dynamic web pages (C4).			
Unit 2: Data Analysis				
Working with packages like numpy,	1. Design scripts to clean, handle missing			
pandas, sklearn	data (C4).			
Perform exploratory data analysis.	2. Design scripts to apply required			
	transformations to cleaned data (C4).			
Unit 3: Data Visualization				
Creating different types of	1. Develop applications for exploratory data			
Visualization.	visualization (C4).			
Creating different types of charts.	2. Develop scripts to create static			
	visualization using various visual encodings			
	(C4).			
	3. Create dynamic visualization for web (C4).			

Learning strategies, contact hours and student learning time		
Learning strategy	Contact hours	Student learning time
		(Hrs)
Lecture	12	-
Seminar	-	-
Quiz	-	-

Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
Lab Assignment & Viva	Viva	

Mapping of assessment with Cos			
Nature of assessment	CO 1	CO 2	CO 3
Sessional Examination 1	*		
Sessional Examination 2		*	*
Assignment/Presentation	*	*	*
End Semester Examination	*	*	*
Laboratory Examination	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. Website Scraping with Python: Using BeautifulSoup and
	Scrapy, Gábor & Hajba, APRESS Publications, 1st Edition,
	2018.
	2. Web Scraping with Python: Collecting More Data from the
	Modern Web, Ryan Mitchell Shroff, O'Reilly, 2 nd Edition,

つ	\boldsymbol{n}	1	റ
		- 1	×

- Designing Data Visualizations, Julie Steele and Noah Iliinsky;
 O'Reilly Media; 1st Edition, 2011.
- 4. **Python for Data Analysis**, Wes McKinney; Shroff; O'Reilly; 2nd Edition, 2018.

Name of the P	Program: ME (Big Data and Data Analytics)			
Course Title:	Machine Learning for Big Data			
Course Code:	BDA 605 Course Instructor:			
Academic Yea	r: 2020 - 2021 Semester: First Year, Semester 2			
No of Credits:	Prerequisites: Programming with Python and Data Visualization			
Synopsis:	This Course provides insight on			
	1. This course provides the concept of neurons and biological			
	motivation, activation functions and threshold units, supervised and			
	unsupervised learning, perceptron network models in Artificial Neural			
	Networks.			
	2. This course provides the knowledge about learning from unclassified			
	data using clustering techniques.			
	3. This course provides the concept of Support Vector Machines for			
	linear and non-linear classification.			
	4. This course provides the concept of Deep Learning and design of			
	convolutional neural network for Deep Learning.			
	5. This course provide the knowledge about the applications and design			
	of Reinforcement Learning algorithms.			
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
	Describe activation functions, weights and threshold units used in artificial			
CO 1:	neural networks, supervised and unsupervised learning, gradient descent			
	approach, types of perceptron models, overfitting			

CO 2:	Explain the concept of hierarchical clustering and non-hierarchical clustering, support vector machine, deep neural networks and reinforcement learning
CO 3:	Demonstrate artificial neural network models, clustering models, support vector classifier models, Deep learning models and reinforcement learning models
CO 4:	Compare and contrast single layer, multilayer and deep neural networks in terms of accuracy in classification
CO 5:	Design back propagation neural network, K-means and agglomerative clustering, deep neural network, reinforcement learning models and selection of a machine learning algorithm for the given data analysis.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO
											11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:				
Content	Competencies			
Unit 1: Artificial Neural Networks				
Neurons and biological motivation,	At the end of the topic student should be able to:			
Activation functions and threshold	1. Relate biological neurons with artificial			
units, Supervised and unsupervised	neurons and the motivation for ANN			
learning, Perceptron Model:	development. (C1)			
representational limitation and	2. Distinguish Supervised and unsupervised			
gradient descent training, Multilayer	learning (C2).			

networks and back propagation,	3. Describe about error reduction techniques			
Overfitting	in used Artificial Neural Networks based			
	learning (C2)			
	4. Write the usability of different activation			
	functions for ANN learning system. (C3)			
	5. Describe the architecture			
	of various perceptron networks. (C2)			
Unit 2: Clustering				
Learning from unclassified data,	1. Write the different methods of learning			
Clustering. Hierarchical Agglomerative	from unclassified data (C3).			
Clustering, Non- Hierarchical	2. Explain the operations			
Clustering - k-means partitional	of various clustering models in machine			
clustering, Expectation maximization	learning (C5)			
(EM) for soft clustering, Semi-	3. Describe the methods used for measuring			
supervised learning with EM using	dissimilarity between two clusters. (C2)			
labelled and unlabelled data.	4. Apply clustering techniques for data			
	analysis. (C3)			
Unit 3: Kernel Methods				
Dual Representations, Design of	Describe Dual Representations. (C2)			
Kernels .	2. Explain the Kernel trick for learning non-			
	linear functions (C5)			
Unit 4: Support Vector Machines (SMV)				
Maximum margin linear separators,	Describe about Maximum Margin and			
Quadratic programming solution to	Support Vector Machine. (C2)			
finding maximum margin separators,	2. Examine the advantages of maximum			
Kernels for learning non-linear	margin linear separators technique in SVM			
functions, Varying length pattern	(C4)			
classification using SVM	3. Explain the Kernel trick for learning non-			
	linear functions (C5)			
į				

	4. Show the relation between two forms of representation of a hyperplane (C3)		
Unit 5: Deep Learning			
Introduction to Deep Learning,	1. Define Deep Learning. (C1)		
Introduction to convolutional Neural	2. Describe the applications of deep learning.		
Network (CNN), CNN Architecture and	(C2)		
layers, Building simple CNN model for	3. Explain the architecture of Deep Neural		
classification, Training and Testing the	Network and CNN (C5)		
CNN model	4. Design a classifier for the image		
	classification system. (C5)		
Unit 6: Reinforcement Learning			
Characteristics, N-arm Bandit Problem,	1. Explain the concept of Multi-Armed Bandit		
Calculating the Value Function,	Problem (MABP). (C2)		
Associative Learning – Adding States,	2. Write the functions of Upper Confidence		
The Markov Property & Markov	Bound (UCB) algorithm. (C3)		
Decision Process	3. Outline the learning process		
	and characteristics of reinforcement learning.		
	(C4)		
	4. Explain about Markov decision process.		
	(C5)		

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		

Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*	*		*		
Sessional Examination 2	*	*	*	*	*		
Assignment/Presentation	*	*	*	*	*		
End Semester Examination	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	1. T. Mitchell, "Machine Learning", McGraw-Hill, 1997.
	2. E. Alpaydin, "Machine Learning", MIT Press, 2010.
	3. C. Bishop, "Pattern Recognition and Machine Learning",
	Springer, 2006.
	4. R. Duda, E. Hart, and D. Stork, "Pattern Classification", Wiley
	Interscience, 2000.
	5. Satish Kumar, "Neural Networks - A Class Room Approach",
	Second Edition, Tata McGraw-Hill, 2013.

- T. Hastie, R. Tibshirani and J. Friedman," The Elements of Statistical Learning: Data Mining", Inference and Prediction, Springer, 2nd Edition, 2009.
- 7. Jason Bell, "Machine Learning for Big Data", Wiley Big Data Series, 2016.
- 8. J. Shawe-Taylor and N. Cristianini, "Kernel Methods for Pattern Analysis", Cambridge University Press, 2004.
- 9. S. Haykin, "Neural Networks and Learning Machines", Prentice Hall of India, 2010.
- 10. Rama Murthy G, "Multidimensional Neural Networks Unified Theory", New Age International, 2008.
- F. Camastra and A. Vinciarelli, "Machine Learning for Audio,
 Image and Video Analysis Theory and Applications",
 Springer, 2008.

Name of the P	Program: ME (Big Data and Data Analytics)					
Course Title:		Modern Database for Big Data				
Course Code: BDA 616 Course Instructor:						
Academic Yea	Academic Year: 2020-2021 Semester: First Year, Semester 2					
No of Credits:	3	Prerequisites: Databases with SQL Queries				
Synopsis:	This Course provide	es insight on Basic MapReduce Partitioning and				
	combining, Key-Va	lue Databases, Document Databases, Column-Family				
	Stores, Graph Databa	ses				
Course						
Outcomes	On successful comple	On successful completion of this course, students will be able to				
(COs):						
CO 1:	Examine different types of data.					
CO 2:	Design queries to handle different data types.					
CO 3:	Explain different data models.					
CO 4:	Explain the concepts	of map reduce in handling of data.				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*						
CO 2	*	*	*		*						
CO 3	*		*								
CO 4	*		*		*						

Course content and outcomes:	
Content	Competencies

TRED BY V (Deemea :	to be University under Section 3 of the UGC Act, 1956)
Unit 1: Introduction	
Introduction to growth of traditional	At the end of the topic student should be able to:
and modern database systems	1. Analyze traditional and modern database
	systems (C4)
Unit 2: SQL	L
Syntax and Semantics	1. Design various SQL queries (C5)
Unit 3: NoSQL Database	
Why NoSQL? - Data Models	1. Limitations of traditional databases.(C2)
	Various Data Models to handle huge amount of
	data. (C2)
Unit 4: Distribution models for scala	ability
Horizontal partitioning Data	1. Understand different distribution models
shardingMaster-slave replication.	for data Scalability (C3)
Peer-to-peer replication Version	2. Describe achieve Data shardinng? (C2)
stamps – business and system	
transactions.	
Unit 5: Consistency Models	
Update consistency, Read Consistency,	1. Understating Data consistency techniques
CAP Theorem	(C2).
	2. Implementing CAP theorem (C3).
Unit 6: MapReduce	<u> </u>
Basic MapReduce Partitioning and	Understanding MapReduce technique (C2).
combining Composing MapReduce	2. Design applications using suitable
calculations Two-stage map-reduce	MapReduce techniques (C4).
example. Incremental MapReduce.	
Unit 7: Case study	<u></u>
Key-Value Databases - Document	1. Design applications using different types of
Databases - Column-Family Stores -	databases (C4).
Graph Databases	
Unit 8: Beyond NoSQL	1

File systems, Event sourcing, Memory	1. Alternate techniques to NoSQL databases
Image, Version control, XML Database,	(C4)
Object Database	
Unit 9:	
Choosing your database	1. Design steps to choose proper databases
	based on user requirements (C4).

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4		
Sessional Examination 1	*	*				

Sessional Examination 2		*	*	*
Assignment/Presentation	*	*	*	*
End Semester Examination	*	*	*	*

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Database System Concepts, Avi Silberschatz, Henry F. Korth,
		and S. Sudarshan. McGraw Hill, 6 th Edition, 2010.
	2.	NoSQL Distilled: A Brief Guide to the Emerging World of
		Polyglot Persistence, Pramod J. Sadalage, Martin Fowler,
		Addison-Wesley, 2012.
	3.	Seven Databases in Seven Weeks: A Guide to Modern
		Databases and the NoSQL Movement, Eric Redmond, Jim R.
		Wilson, Pragmatic Bookshelf. 2012.

Name of the P	rogram:	ME (Big Data and Data Analytics)				
Course Title:		Advanced Applications of Probability and Statistics				
Course Code:	MCL 602	Course Instructor:				
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2				
No of Credits:	3	Prerequisites: MCL 601				
Synopsis:	This course provides	an introduction to advanced applications of probability				
	and statistics for mult	ivariate and time series data.				
Course						
Outcomes On successful comple		tion of this course, students will be able to				
(COs):						
CO 1:	Compute and interpret	descriptive statistics for multivariate data				
CO 2:	Apply linear and logistic regression models for practical problems and assess models performance					
CO 3:	Interpret the output of principal component analysis (PCA) applied to multivariate data for dimension reduction					
CO 4:	Identify multivariate data with mixed data type features and cluster using appropriate technique					
	appropriate technique Understand the basics of time series modelling and apply to real-life problems					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*								
CO 2	*	*	*	*							
CO 3	*	*	*	*				*			
CO 4		*	*	*	*	*					
CO 5	*	*	*								

Course content and outcomes:					
Content	Competencies				
Unit 1: Multivariate Distributions					
Mean vector, covariance and	At the end of the topic student should be able to:				
correlation – population vs. sample -	1. Understand the organisation of				
The multivariate Gaussian – joint-,	multivariate data (C2).				
marginal-, and conditional	2. Relate multivariate population and sample				
distributions, Mahalanobis distance	parameters (C4).				
and outliers - Properties of the	3. Understand and apply multivariate				
multivariate Gaussian - Parameter	Gaussian modelling to practical problems				
estimation: maximum likelihood	(C2, C3).				
estimation (MLE) and maximum	4. Compare parameter estimation using				
aposteriori estimation (MAP).	different probabilistic approaches (C4).				
Unit 2: Linear and Logistic Regression					
Simple linear regression – regression	1. Model a linear relationship between input				
model, estimating and interpreting	and output variables, and assess model				
coefficients, accuracy of coefficient	performance (C5).				
estimates and model, ANOVA, R2	2. Use different performance metrics to				
statistic - Multiple linear regression –	conclude what is a good linear fit to the				
estimating coefficients, qualitative	data (C6).				
predictors, interaction effects,	3. Interpret model coefficients and investigate				
potential problems - Logistic	the effect of input variables on output				
regression – binary and multinomial	through sensitivity analysis (C6).				
logistic regression models, estimating	4. Apply logistic regression modelling for				
and interpreting coefficients, assessing	binary and multiclass classification and				
model calibration and discrimination,	assess model performance (C6).				
area under the ROC curve.					
Unit 3: Principal Component Analysis, C	luster Analysis				
Geometric intuition of principal	1. Understand the mathematical foundation				

components -Maximum variance perspective algebraic setup, eigenvectors eigenvalues of sample correlation matrix Interpretation and application of principal components for dimension reduction.

Dissimilarity measures for mixed data types - Partition around medoids (PAM) vs. K-means algorithms -Selecting the number of clusters. of principal component analysis (PCA) (C2).

- 2. Perform and interpret the output of PCA applied to multivariate data for dimension reduction (C6).
- 3. Assess when PCA is applicable for clustering multivariate data (C6).
- Compare and contrast methods for clustering multivariate data with mixed data types (C6).

Unit 4: Bootstrapping, Time Series Analysis

Time series concepts: stationarity, trend, seasonality, autocorrelation - Autoregressive moving average (ARMA) models - Resampling, smoothing, windowing, and rolling average - First and second order differencing - Validating time series predictions.

- Understand the basic principles of bootstrapping as an experimental method to estimate the sampling distributions of a statistic (C2).
- 2. Understand the basic mathematical principles of time series modelling (C2).
- 3. Apply time series modelling to practical problems (C3).
- 4. Interpret the results of times series model predictions (C3).

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time					
		(Hrs)					
Lecture	30	60					
Quiz	02	04					
Small Group Discussion (SGD)	02	02					
Self-directed learning (SDL)	-	04					

Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2		*	*	*				
Assignment/Presentation	*	*	*	*	*			
End Semester Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback
Reference Material	1. An Introduction to Statistical Learning with Applications in R,
	Gareth James, Daniela Witten, Trevor Hastie and Robert
	Tibshirani, Springer; 1st Edition, 2013, Corr. 7th printing 2017
	Edition.
	2. An Introduction to Applied Multivariate Analysis with R, Brian
	Everitt and Torsten Hothorn– Springer Publications,1st Edition,
	2011.
	3. Machine Learning - A Probabilistic Perspective, Kevin P.
	Murphy, The MIT Press; 1st Edition, 2012.

Mathematics for Machine Learning, Marc Peter Deisenroth, A
 Aldo Faisal, and Cheng Soon Ong, Cambridge University Press,
 2020. – Online resource from Cambridge University Press
 available at https://mml-book.github.io/book/mml-book.pdf

Name of the P	rogram:	ME (Big Data and Data Analytics)			
Course Title:		Multimedia Analytics			
Course Code:	BDA 618	Course Instructor:			
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2			
No of Credits:	3	Prerequisites: Basic Programming			
Synopsis:	This Course provides	insight on			
	1. Time domain a	audio processing techniques.			
	2. Identify differ	ent image representation methods.			
	3. Implementing	different image feature extraction methods.			
	4. Implementing	g different Video classification models.			
Course					
Outcomes	On successful comple	tion of this course, students will be able to			
(COs):					
CO 1:	Examine different aud	dio encoding techniques.			
CO 2:	Illustrate Time domain audio processing techniques.				
CO 3:	Identify different image representation methods.				
CO 4:	Analyse different ima	ge feature extraction methods			
CO 5:	Analyse different Vide	eo classification models			

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*			*					
CO 3	*	*	*		*	*					
CO 4	*	*	*	*	*					*	

CO 5	*	*	*	*			

Course content and outcomes:							
Content	Competencies						
Unit 1: Audio Acquisition Representation and Storage							
Sound Physics, Production Perception,	At the end of the topic student should be able to:						
Audio Encoding and Storage Format,	1. Understand sound physics (C2).						
Time Domain Audio processing Image	2. Implement different Audio encoding and						
and Video Acquisition, Representation	storage techniques (C4).						
and Storage	3. Design applications for Image and Video						
	acquisition and Storage (C4).						
Unit 2: Image Handling and Process	sing						
Reading images from files, Simple	1. Understand different image processing						
Image transformations, Matrices,	techniques (C2).						
Colors and Filters, Contours and	2. Design application to handle different						
Segmentation, Object detection and	filters (C4).						
recognition	3. Implement object detection and						
	recognition algorithms (C4).						
Unit 3: Video							
Video Principles, Standards, Video	1. Understand different Video standards (C2).						
classification models, Motion	2. Develop applications using video						
Detection, Object Tracking in Video	classification models (C4).						
	3. Design applications of motion detection						
	and Object tracking (C4).						
Unit 4: Case study							
Speech and hand writing recognition -	1. Design applications for – Speech and						

Automatic Face recognition, Sign board detection, Lane change detection - Video segmentation and key frame extraction

handwriting recognition (C4).

- 2. Design application to detect and classify images (C4).
- 3. Design application to extract information from given Video (C4).

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				

Assignment/Presentation	*	*	*	*	*
End Semester Examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. Machine Learning for Audio, Image and Video Analysis,
	Francesco Camastra and Alessandro Vinciarelli Springer's
	Publication, 2nd edition. 2015.
	2. Practical Python and OpenCV, An Introductory, Example
	Driven Guide to Image Processing and Computer Vision, Dr.
	Adrian Rosebrock, 4th edition, 2019
	3. Computer Vision with Python Cookbook: Leverage the power
	of OpenCV 3 and Python to build computer vision
	applications, Aleksei Spizhevoi, Aleksandr Rybnikov, Packt
	Publishing, 1st Edition, 2018.

ogram:	ME (Big Data and Data Analytics)				
	DevOps for Cloud				
CDC-607	Course Instructor:				
2020-2021	Semester: First Year, Semester 2				
3	Prerequisites: Ubuntu OS , Networking and Software Life				
	Cycle				
This Course provides i	nsight on				
On successful comple	tion of this course, students will be able to				
Explain the concept o	f automation of Product Life Cycle stages.				
Demonstrate Continu	uous Integration / Continuous Testing / Continuous				
Deployment of Produc	ct.				
Compare and contra	st existing Software Methodologies with Devops Life				
Cycle stages.					
Design and Devops methodologies for Product development and Release.					
Explain the concepts of	of Tools used in each stages of Devops.				
	CDC-607 2020-2021 3 This Course provides in the concept of Demonstrate Continuation Compare and contractions are contracted as a contraction of the contraction o				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO	PO 4	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO
			3				7				11
CO 1	*	*					*				
CO 2			*		*						*
CO 3		*	*			*					

CO 4	*				*	*		
CO 5	*						*	

Course content and outcomes:					
Content	Competencies				
Unit 1: DevOps Introduction					
Understanding Development -	At the end of the topic student should be able to:				
Developement SDLC : WaterFall &	1. Explain about the Product Life Cycle				
Agile - Understanding Operations -	Software methodologies (C2)				
Dev vs Ops - DevOps to the rescue -	2. Describe Devops life cycle for Product				
What is DevOps - DevOps SDLC -	Development and Release (C2)				
Continous Delivery model -	3. Explain the stages of Devops (C2)				
DevOps tools for DevOps SDLC -	4. Describe about Continuous Integration /				
DevOps Roles & Responsiblities.	Continuous Deployment pipeline. (C2)				
	5. Write the significance of automation in				
	Product life cycle management. (C3)				
	6. Describe different between standard				
	software methodologies and Devops				
	software methodologies. (C2)				
Unit 2: Linux					
Linux Introduction, Principles & Linux	1. Explain the evolution of Linux OS (C2)				
distro – Booting - Command line	2. Explain Linux File System (C2)				
utililities & Basic commands - Linux	3. Demonstrate Linux Users and Groups (C3)				
Filesystem - Filters & I/O	4. Describe OS Level Virtualization techniques				
Redirections - Users & Group	like Containers (C3)				
administration - File permissions &	5. Demonstrate basic Linux Commands (C4)				

Ownerships - Sudo - Software

Managemen - Useful tools: ssh,

telnet, scp, rsync, disk utils, backups

etc - Service & Process management

- Shell Scripting - Systems and HW

stats - Linux Containers (lxc) - Dockers

- Kubernetes and Microservices .

Unit 3: Networking fundamentals

Components of computer networks -Classification: LAN, WAN, Peer to Peer network. Server based -Switches -Network Architecture -Routers -Protocols -Port numbers -DNS -DHCP - IP Addresses - Ip Addresses & Subnet Masks - IP Address Ranges Subnetting - Private Vs Public networks -High Availaiblity -Firewalls & NACL - Web Application Architecture -Infrastructure -Network layout -Services & Components - Architecture from a DevOps perspective.

- 1. Explain Computer network and devices (C2)
- 2. Demonstrate subnetting and its need (C3)
- 3. Explain IPV4 Addressing scheme (C2)
- Demonstrate type of Network Devices like
 Switches , Hub , Router using Simulator
 Tools (C4)
- Describe networking Services like DNS ,DHCP , NACL , FTP etc (C4)

Unit 4: Automation, Orchestration & Config Management

Version control system with Git:
What is VCS & why it is needed DevOps use cases - Setup your own
repo with git - Manage your code
base/source code with GIT & GITHUB

- Explain need and types of version control software (C1)
- Describe architecture of Distributed version control systems (C2)
- 3. Explain Git and Github as case study (C3)

Unit 5: Continuous Integration with Jenkins

Introduction to continuous integration.

1. Describe about Continuous Integration /

Build & Release and relation with DevOps -Understanding development and developers -Why Continuous integration **Jenkins** introduction and setup -**Jenkins** projects/jobs -Jenkins plugins | Jenkins administration: Users -Nodes/slaves -Managing plugins -Managing software versions Introduction - Phases -Java builds Build and Release job/project setup | Nexus: Intro & Setup - Software versioning & Hosted repository -Integration with Jenkins - Continuous integration job/project setup Complete Jenkins project: Packinging Static code Analysis -Artifacts -Tomcat setup Staging & productions -Artifacts deployments to webservers from Jenkins -Build Pipeline -Jenkins not just CI tool anymore -

Continuous Deployment pipeline. (C2)

- 2. Write the significance of automation in Product life cycle management. (C3)
- Describe different between standars software methodologies and Devops software methodologies. (C2)
- 4. Give examples for Automation of stages of Product development using Devops . (C2)
- 5. Write the limitation of a Current Software methodologies for Product Development.(C3)
- 6. Describe the architecture of Continuous Integration server. (C2)
- Apply Devops methodologies for Product Development and Release(C3)

Unit 5: Ansible

Configuration Management &
Automation - What is Ansible & its
features - Ansible setup on local &
cloud - Understanding Ansible
architecture & Execution - Inventory
| Ad hoc commands: Automating
change Management with Ad Hoc

More DevOps use cases of Jenkins

- Write the steps in Automation of Testing in Web development. (C3)
- 2. Explain the operations Continuous Testing.(C5)
- Write the taxonomy of Continuous
 Integration / Continuous Delivery /
 Continuous Deployment (C3)

commands - Playbook Introduction -Ansible configuration with ansible.cfg - Ansible documentation - Modules, modules & lots of modules - Writing playbook for webserver & DB server deployments - Tasks - Variables -Templates - Loops -Handlers -Conditions - Register -Debugging -Ansile Roles - Identify server roles -Roles structure - Creating, Managing and executing roles - Ansible Galaxy -Exploring Roles from Galaxy -Download Galaxy roles and integrate with your code - Ansible Advanced Execution - Improving execution time Limiting and selecting tasks -Troubleshooting and Testing.

- 4. Design a Workflow for Automation of Product life cycle using Devops (C5, P3).
- Construct a Continuous Integration /
 Continuous Deployment pipeline (C5)
- Compare Standard Software methodologies vs Devops methodologies for Product Development. (C6, P2)
- 7. Describe about Containers and Container Orchestration Services. (C2)
- Examine the advantages of using
 Containers in Web development(C4)
- Describe Container orchestration services architecture(C2)
- Show the function of Container orchestration services(C3)
- 11. Define Configuration Management tools and its need. (C1)
- 12. Describe the features of Configuration

 Management. (C2)
- Explain the architecture of Configuration
 Management (C5)
- 14. Design a Configuration Management Codes to administrate infrastructure of organization (C5)
- 15. Explain the need of Continuous Monitoring tools (C5)
- 16. Design an Architecture Continuously

 Monitor infrastructure. (C4)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time				
		(Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	*
Assignment/Presentation				*	*
End Semester Examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. Eric Foster-Johnson, John C. Welch, Micah Anderson,
	Beginning Shell Scripting (Programmer to Programmer), Wrox
	Publications
	2. Randal K. Michael "Mastering Unix Shell Scripting: Bash,
	Bourne, and Korn Shell Scripting for Programmers, System
	Administrators, and UNIX Gurus", 2nd Edition, Wiley
	Publications
	3. Bintu Harwani, "UNIX & Shell Programming", Oxford
	Publications, 2013
	4. John Ferguson Smart, "Jenkins: The Definitive Guide", O'reilly
	Publications
	5. Mitesh Soni, "Jenkins Essentials", Packt Publications
	6. Rafal Leszko, "Continuous Delivery with Docker and Jenkins",
	Packt Publications
	7. Veselin Kantsev, "Implementing DevOps on AWS", Packt
	Publications
	8. Randall Smith, "Docker Orchestration", Packt Publications
	9. Alan Berg, "Jenkins Continuous Integration Cookbook", Packt
	Publications
	10. Kumaran S., Senthil, " Practical LXC and LXD Linux Containers
	for Virtualization and Orchestration", Apress Publications
	11. Konstantin Ivanov, " Containerization with LXC", Packt
	Publications
	12. Karl Matthias, Sean Kane, "Docker: Up & Running:Shipping

Reliable Containers in Production",O'Reilly Media	
---	--

Name of the Program:		ME (Big Data and Data Analytics)		
Course Title:		Natural Language and Text Processing		
Course Code:	: BDA-621	Course Instructor:		
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2		
No of Credits	:: 3	Prerequisites: Programming in Python		
Synopsis:	This course introduc	es fundamental concepts in natural language and text		
	processing.			
Course				
Outcomes	On successful comple	tion of this course, students will be able to		
(COs):				
CO 1:	Understand syntax ar	nd semantics of text.		
CO 2:	Perform text processing by implementing lexical analysis, word stemm co 2:			
word stop, and term selection.				
CO 3:	Perform categorizing and tagging of words.			
CO 4:	Classification and information extraction from text.			
CO 5:	CO 5: Design models for sentiment and semantic analysis from text.			

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*									
CO 3	*	*									
CO 4		*	*	*							
CO 5		*	*	*	*						

Course content and outcomes:

Content Competencies

Unit 1: Natural Language Basics; Accessing, Processing and Understanding Text; Categorizing and Tagging Words

Natural Language, Linguistics,
Language Semantics, Text Corpora.
Accessing Text Corpora, from the Web
and from Disk, Conditional Frequency
Distributions, Regular Expressions for
Detecting Word Patterns,
Tokenization.

Using a Tagger, Tagged Corpora,
Automatic Tagging, N-Gram Tagging,
Transformation-Based Tagging.

At the end of the topic student should be able to:

- 1. Understand the basic principles of organizing textual data (C2).
- 2. Understand how to access text corpora from different media (C2).
- 3. Understand how words can be used as building blocks for textual analysis (C2).
- 4. Understand different types of tagging (C2).

Unit 2: Classification and Information Extraction; Text Similarity and Clustering

Automated Text Classification, TF-IDF Model, Advanced Word Vectorization Models, Classification Algorithms - Multinomial Naïve Bayes, Support Vector Machines. Text Summarization and Information Extraction - Text Normalization, Feature Extraction, Keyphrase Extraction, Topic Modelling, Automated Document Summarization. Term Similarity, Analysing Document

- 1. Understand the mathematical principles of word vectorization (C2).
- Compare and contrast different classification algorithms for text analysis (C6).
- 3. Understand how to perform feature extraction for text analysis (C3).
- 4. Understand how to compare and cluster text documents (C3).

Similarity, Document Clustering.	
Unit 3: Semantic and Sentiment Analysis	S
Exploring WordNet, Word Sense	1. Understand how to access the WordNet
Disambiguation, Named Entity	lexical database (C3).
Recognition, Analysing Semantic	2. Understand how to perform semantic
Representations, Sentiment Analysis.	analysis of natural language expressions
	(C3).
	3. Understand how to perform sentiment
	analysis of text documents (C3).

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2		*	*	*	
Assignment/Presentation	*	*	*	*	*
End Semester Examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. Text Analytics with Python: A Practitioner's Guide to Natural
	Language Processing, Dipanjan Sarkar; Publisher: Apress, 2nd
	Edition, 2019.
	2. Natural Language Processing with Python: Analyzing Text with
	the Natural Language Toolkit, by Steven Bird, Ewan Klein,
	Edward Loper, O'Reilly Media, Inc, 1st edition 2009.
	3. Hands-On Natural Language Processing with Python: A
	practical guide to applying deep learning architectures to your
	NLP applications, Rajesh Arumugam, Rajalingappaa
	Shanmugamani, Packt Publishing Limited, 2018.

Name of the Program:		ME (Big Data and Data Analytics)			
Course Title:		Entrepreneurship			
Course Code:	ENP-601	Course Instructor:			
Academic Year	r: 2020 - 2021	Semester: First Year, Semester 2			
No of Credits:	3	Prerequisites: -			
Synopsis:	This course introduce	es students to the theory of entrepreneurship and its			
	practical implementation. It focuses on different stages related to the				
	entrepreneurial proce	ess, including business model innovation, monetization,			
	small business manag	gement as well as strategies that improve performance			
	of new business ventu	ures. Centered on a mixture of theoretical exploration as			
	well as case studies of	of real-world examples and guest lectures, students will			
	develop an unders	tanding of successes, opportunities and risks of			
	entrepreneurship. Th	nis course has an interdisciplinary approach and is			
	therefore open to students from other Majors.				
Course					
Outcomes	On successful completion of this course, students will be able to:				
(COs):					
	To impart knowledge on the basics of entrepreneurial skills and competencies				
CO 1:	to provide the participants with necessary inputs for creation of ne				
	ventures.				
CO 2:	To familiarize the	participants with the concept and overview of			
CO 2:	entrepreneurship with a view to enhance entrepreneurial talent				
CO 3:	To appraise the entrepreneurial process starting with pre-venture stage				
CO 4:	To Create and exploit innovative business ideas and market opportunities				
To Build a mind-set focusing on developing novel and unique					
CO 5:	market opportunities				
CO 6:	To explore new vista	s of entrepreneurship in 21st century environment to			

generate innovative business ideas through case studies.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2				*							
CO 3			*								
CO 4						*					
CO 5								*			
CO 6										*	

Course content and outcomes:							
Content	Competencies						
Unit 1: Introduction to Entreprene	urship						
Meaning and Definition of	At the end of the topic student should be able to:						
Entrepreneurship - Employment vs	1. Explain the meaning of Entrepreneurship						
Entrepreneurship, Theories of	(C1)						
Entrepreneurship, approach to	2. Discuss the theories of Entrepreneurship						
entrepreneurship, Entrepreneurs VS	(C1)						
Manager	3. Discuss the approaches to						
	Entrepreneurship (C1)						
Unit 2: Entrepreneurial Traits							
Personality of an entrepreneur, Types	1. Discuss the Personality traits of						
of Entrepreneurs	entrepreneurs. (C2)						
Unit 3: Process of Entrepreneurship							
Factors affecting Entrepreneurship	1. Identify the fundamentals and						

process	responsibilities of entrepreneurship (C2)
	2. Exemplify one's capabilities in relation to
	the rigors of successful ventures (C3)
	3. Identify and differentiates the different
	characteristics and competencies of an
	entrepreneurs (C2)
Unit 4: Business Start-up Process	
Idea Generation, Scanning the	1. Explain the Process of Business start up
Environment, Macro and Micro	(C1)
analysis	2. Develop creativity and critical thinking in
	identifying opportunities (C5)
	3. Apply innovative approaches in envisioning
	ones entrepreneurial career (C3)
Unit 5: Business Plan writing	
Points to be considered, Model	1. Identify different business models (C3)
Business plan	2. Describe different parts of a business
	plan(C2)
Unit 6: Case studies	
Indian and International	1. Perform self-assessment and analyse
Entrepreneurship	entrepreneurial personal traits and
	competencies (C4)
	2. Evaluate oneself and plan courses of action
	to help develop one's entrepreneurial
	characteristics and competencies. (C5)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	30	60				
Quiz	02	04				

Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	CO 6		
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				
Assignment/Presentation					*	*		
End Semester Examination	*	*	*	*	*	*		

Feedback Process	End-Semester Feedback					
Reference Material	1. NVR Naidu and T. Krishna Rao, "Management and					
	Entrepreneurship", IK International Publishing House Pvt.					
	Ltd 2008.					
	2. Mohanthy Sangram Keshari, "Fundamentals of					
	Entrepreneurship", PHI Publications, 2005					
	3. Butler, D. (2006). Enterprise planning and development.					
	USA: Elsevier Ltd. Gerber, M.E. (2008) Awakening the					

Name of the Program:		ME (Big Data and Data Analytics)					
Course Title:		Machine Learning for Big Data Lab					
Course Code: BDA 605L		Course Instructor:					
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2					
No of Credits	: 1	Prerequisites: Programming with Python and Data Visualization					
Synopsis:	This Course provides in	nsight on					
Course							
Outcomes	On successful complet	ion of this course, students will be able to					
(COs):							
	Demonstrate activation functions, weights and threshold units in artificial						
CO 1:	neural networks						
60.3	Demonstrate Artificial Neural Network, Clustering, Support Vector Machine,						
CO 2:	Deep Neural Network and Reinforcement Learning models						
	Analyse Artificial Neural Network, Clustering, Support Vector Machine, Deep						
CO 3:	Neural Network and Reinforcement Learning models						
00.4	Compare and contrast single layer, multilayer and deep neural networks in						
CO 4:	terms of accuracy in classification						
60 F	Design different types of artificial neural network models, clustering model						
CO 5:	deep neural network models, reinforcement learning models						

Маррі	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:				
Content	Competencies			
Unit 1: Artificial Neural Networks				
Neurons and biological motivation.	At the end of the topic student should be able to:			
Activation functions and threshold	1. Demonstrate activation functions, weights			
units.	and threshold units in artificial neural			
Supervised and unsupervised learning	networks (C3)			
Perceptron Model: representational	2. Demonstrate ANN models (C3)			
limitation and gradient descent	3. Design of ANN models for classification			
training.	(C5)			
Multilayer networks and back	4. Analyse the performance issues (C4)			
propagation.				
Overfitting.				
Unit 2: Clustering				
Learning from unclassified data.	1. Demonstrate various clustering models in			
Clustering.	machine learning (C3)			
Hierarchical Aglomerative Clustering.	2. Design different types of clusters (C5)			
Non-Hierarchical Clustering - k-means	3. Analyse the performance of clustering			
partitional clustering.	techniques on different data (C4)			
Expectation maximization (EM) for soft	4. Apply clustering techniques for data			
clustering.	analysis. (C3)			
Semi-supervised learning with EM				
using labeled and unlabled data.				
Unit 3 Kernel Methods				
Dual Representations	1. Design of different kernel techniques (C5)			
Design of Kernels				
Unit 4: Support Vector Machines (SMV	V)			

Maximum margin linear separators.	1. Demonstrate Maximum margin linear				
Quadractic programming solution to	separators. (C3)				
finding maximum margin separators.	2. Design SVM classifiers (C5)				
Kernels for learning non-linear	3. Analyse the performance of SVM (C4)				
functions.					
Varying length pattern classification					
using SVM					
Unit 5: Deep Learning					
Introduction to Deep Learning	1. Develop Deep Neural Network/ CNN (C5)				
Introduction to convolutional Neural	2. Design a classifier for the image				
Network (CNN)	classification system. (C5)				
CNN Architecture and layers	3. Compare performance of CNN and ANN for				
Building simple CNN model for	image classification (C4)				
classification					
Training and Testing the CNN model					
Unit 6: Reinforcement Learning					
Characteristics	1. Apply reinforcement learning model using				
N-arm Bandit Problem	different principles (C3)				
Calculating the Value Function	2. Analyse various reinforcement learning				
Associative Learning – Adding States	techniques (C4)				
The Markov Property & Markov Decision	3. Design of reinforcement learning models				
Process	(C5)				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		

Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:						
Formative:	Summative:					
Internal practical Test - yes	Sessional examination					
Theory Assignments	End semester examination -					
Lab Assignment & Viva - yes	yes Viva					
Lab Assignment & Viva - yes	Viva					

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	
Assignment/Presentation			*	*	*
Laboratory examination			*	*	*

Feedback Process	End-Semester Feedback				
Reference Material	1. Machine Learning, T. Mitchell, McGraw-Hill, 1997				
	2. Machine Learning, E. Alpaydin, MIT Press, 2010				
	3. Pattern Recognition and Machine Learning, C. Bishop,				
	Springer, 2006				

- 4. Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley-Interscience, 2000
- Neural Networks A Class Room Approach, Satish Kumar, Second Edition, Tata McGraw-Hill, 2013
- 6. The Elements of Statistical Learning: Data Mining, Inference and Prediction, T. Hastie, R. Tibshirani and J. Friedman, Springer, 2nd Edition, 2009
- 7. Machine Learning for Big Data, Jason Bell, Wiley Big Data Series
- Kernel Methods for Pattern Analysis, J. Shawe-Taylor and
 N. Cristianini, Cambridge University Press, 2004
- Neural Networks and Learning Machines, S. Haykin, Prentice Hall of India, 2010
- 10. Multidimensional Neural Networks Unified Theory, Rama Murthy G
- 11. F.Camastra and A.Vinciarelli, Machine Learning for Audio, Image and Video Analysis – Theory and Applications, Springer, 2008

Name of the P	rogram:	ME (Big Data and Data Analytics)				
Course Title:		Modern Databases for Big Data Lab				
Course Code: I	BDA 616L	Course Instructor:				
Academic Year	r: 2020-2021	Semester: First year, Second semester				
No of Credits:	1	Prerequisites: Programming in Java, SQL, Python				
Synopsis:	This Course provides	insight on				
	1. This course he	elps students to write SQL queries to work on data.				
	2. Deals with diff	ferent data models				
	3. Discuss the distributed architecture to handle data which is scalable.					
4. Students work with different types of NoSQL databases.		with different types of NoSQL databases.				
Course	urse					
Outcomes On successful comple		tion of this course, students will be able to				
(COs):						
CO 1:	Design queries to extract required data.					
CO 2:	2: Experiment with different types NoSQL databases to handle Big Data					
CO 3:	CO 3: Analyse proper databases which are fault tolerant and scalable.					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
			3								
CO 1	*	*	*		*					*	
CO 2	*	*	*		*	*				*	
CO 3	*	*	*		*	*	*			*	

Course content and outcomes:	
Content	Competencies

Unit 1: NoSQL DB					
Installing NoSQL database.	At the end of the topic student should be able to:				
Querying NoSQL DB	1. Design queries to get data stored in				
	NoSQL database (C4).				
Unit 2: Data Distribution and Scalable					
Horizontal partitioning and data	Configure databases for handling data				
shrading. MapReduce in databases.	distribution and scalability (C4).				
	2. Develop applications with MapReduce				
	technique to handle the data (C4).				
Unit 3: Case study					
Choose proper database based on	1. Design applications to handle data using				
need	appropriate database (C4).				

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time			
		(Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:	
Formative:	Summative:
Internal practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with Cos			
Nature of assessment	CO 1	CO 2	CO 3
Sessional Examination 1	*		
Sessional Examination 2		*	*
Assignment/Presentation	*	*	*
Laboratory Examination	*	*	*

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Database System Concepts, Avi Silberschatz, Henry F. Korth,
		and S. Sudarshan. McGraw Hill, 6 th Edition, 2010.
	2.	NoSQL Distilled: A Brief Guide to the Emerging World of
		Polyglot Persistence, Pramod J. Sadalage, Martin Fowler,
		Addison-Wesley, 2012.
	3.	Seven Databases in Seven Weeks: A Guide to Modern
		Databases and the NoSQL Movement, Eric Redmond, Jim R.
		Wilson, Pragmatic Bookshelf. 2012.

Name of the P	rogram:	ME (Big Data and Data Analytics)
Course Title:		Advanced Applications of Probability and Statistics Lab
Course Code: MCL 602L		Course Instructor:
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2
No of Credits:	1	Prerequisites: MCL 602
Synopsis:	This course provides	an introduction to advanced applications of probability
	and statistics for and	alysing multivariate and time series data using the R
	programming languag	ge.
Course		
Outcomes	On successful comple	tion of this course, students will be able to
(COs):		
CO 1:	Compute and interpret descriptive statistics for multivariate data	
CO 2:	Build and assess linear and logistic regression models for practical problems	
Perform principal component analysis (PCA) for dimension reduction		omponent analysis (PCA) for dimension reduction in
	multivariate data	
CO 4:	Cluster multivariate data with mixed data types	
CO 5:	Apply time series mod	delling to real-life problems

Марр	ing of (COs to F	Os								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2		*	*	*	*			*			
CO 3		*	*	*	*			*			
CO 4		*	*	*	*	*		*			
CO 5	*	*	*								

Course content and outcomes:		
Content	Competencies	
Unit 1: Multivariate Distributions		
Mean vector, covariance and	At the end of the topic student should be able to:	
correlation – population vs. sample -	1. Compute descriptive statistics of	
The multivariate Gaussian – joint-,	multivariate data (C2).	
marginal-, and conditional	2. Perform exploratory data analysis of	
distributions, Mahalanobis distance	multivariate data (C4).	
and outliers - Properties of the	3. Identify outliers in multivariate data (C3).	
multivariate Gaussian - Parameter	4. Visualise and understand the properties of	
estimation: maximum likelihood	multivariate Gaussian data (C3).	
estimation (MLE) and maximum		
aposteriori estimation (MAP).		
Unit 2: Linear and Logistic Regression		
Simple linear regression – regression	1. Use in-built functions in R to build linear	
model, estimating and interpreting	models for practical problem (C3).	
coefficients, accuracy of coefficient	2. Compute different performance metrics to	
estimates and model, ANOVA, R2	assess model performance (C6).	
statistic - Multiple linear regression –	3. Interpret model coefficients and	
estimating coefficients, qualitative	investigate the effect of input variables on	
predictors, interaction effects,	output through sensitivity analysis (C6).	
potential problems - Logistic	4. Use in-built functions in R to build logistic	
regression – binary and multinomial	regression models for practical binary	
logistic regression models, estimating	classification problems and assess model	
and interpreting coefficients, assessing	performance (C6).	
model calibration and discrimination,	ation and discrimination,	
area under the ROC curve.		
Unit 3: Principal Component Analysis, C	luster Analysis	
Geometric intuition of principal	1. Visualise the geometric interpretation of	

components -Maximum variance perspective algebraic setup, eigenvectors eigenvalues of sample correlation matrix Interpretation and application of principal components for dimension reduction.

Dissimilarity measures for mixed data types - Partition around medoids (PAM) vs. K-means algorithms -Selecting the number of clusters. principal component analysis (PCA) (C3).

- 2. Use in-built functions in R to perform PCA on multivariate data (C3).
- Compare and contrast PCA for variance maximization vs. clustering of multivariate data (C6).
- 4. Cluster multivariate data with mixed data types using in-built functions in R (C3).

Unit 4: Bootstrapping, Time Series Analysis

Time series concepts: stationarity, trend, seasonality, autocorrelation - Autoregressive moving average (ARMA) models - Resampling, smoothing, windowing, and rolling average - First and second order differencing - Validating time series predictions.

- 1. Apply bootstrapping on a practical data set and assess performance (C3).
- 2. Understand and apply in-built functions in R for time series modelling (C3).
- 3. Apply time series modelling to practical problems (C3).
- 4. Interpret the results of times series model predictions (C3).

Learning strategies, contact hours and student learning time			
Learning strategy	Contact hours	Student learning time	
		(Hrs)	
Lecture	12	-	
Seminar	-	-	
Quiz	-	-	
Small Group Discussion (SGD)	-	-	
Self-directed learning (SDL)	-	-	
Problem Based Learning (PBL)	-	-	

Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:	
Formative:	Summative:
Internal practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with Cos	}				
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	*
Assignment/Presentation	*	*	*	*	*
Laboratory examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. An Introduction to Statistical Learning with Applications in R,
	Gareth James, Daniela Witten, Trevor Hastie and Robert
	Tibshirani, Springer; 1st Edition, 2013, Corr. 7th printing 2017
	Edition.
	2. An Introduction to Applied Multivariate Analysis with R, Brian
	Everitt and Torsten Hothorn– Springer Publications,1st
	Edition, 2011.
	3. Machine Learning - A Probabilistic Perspective, Kevin P.
	Murphy, The MIT Press; 1st Edition, 2012.

4.	Mathematics for Machine Learning, Marc Peter Deisenroth, A
	Aldo Faisal, and Cheng Soon Ong, Cambridge University
	Press, 2020. – Online resource from Cambridge University
	Press available at https://mml-book.github.io/book/mml-
	book.pdf

Name of the P	rogram:	ME (Big Data and Data Analytics)							
Course Title:	_ _	Multi Media Analytics Lab							
Course Code: I	3DA 618L	Course Instructor:							
Academic Yea	r: 2020-2021	Semester: First year, Second semester							
No of Credits:	1	Prerequisites: Programming in Python							
Synopsis:	This Course provides	insight on							
	1. Students und	derstand the physics behind Audio, its encoding							
	techniques.								
	2. Students learr	n how to read and represent images.							
	3. Students learn	n various image processing and information extraction							
	techniques.								
	4. Students learr	n to handle video data and extract information from it.							
Course									
Outcomes	On successful comple	tion of this course, students will be able to							
(COs):									
CO 1:	Experiment application	ons to extract information from Audio.							
CO 2:	Design applications for	or Image Analysis.							
CO 3:	Develop Models for V	ideo analysis.							

Маррі	Mapping of COs to POs										
COs	PO 1	PO 2	PO	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
			3								
CO 1	*	*	*		*	*					
CO 2	*	*	*	*	*	*			*	*	
CO 3	*	*	*	*	*	*			*	*	

Course content and outcomes:								
Content	Competencies							
Unit 1: Audio Analysis								
Audio encoding and processing	At the end of the topic student should be able to:							
	 Implement different audio encoding 							
	techniques (C4).							
	2. Develop applications to perform audio							
	analysis (C4).							
Unit 2: Image Analysis								
Image encoding, filters and	Implement various image storing and							
transformations.	reading techniques (C4).							
	2. Develop image processing techniques							
	(C4).							
Unit 3: Video Analysis	I .							
Video encoding and processing	1. Develop applications to extract object of							
techniques.	interest from input video (C4).							

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time					
		(Hrs)					
Lecture	12	-					
Seminar	-	-					
Quiz	-	-					
Small Group Discussion (SGD)	-	-					
Self-directed learning (SDL)	-	-					
Problem Based Learning (PBL)	-	-					
Case Based Learning (CBL)	03	-					
Clinic	-	-					
Practical	24	-					

Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:							
Formative:	Summative:						
Internal practical Test	Sessional examination						
Theory Assignments	End semester examination						
Lab Assignment & Viva	Viva						

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3				
Sessional Examination 1	*	*					
Sessional Examination 2		*	*				
Assignment/Presentation	*	*	*				
Laboratory Examination	*	*	*				

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Machine Learning for Audio, Image and Video Analysis,
		Francesco Camastra and Alessandro Vinciarelli Springer's
		Publication, 2nd edition. 2015.
	2.	Practical Python and OpenCV, An Introductory, Example
		Driven Guide to Image Processing and Computer Vision, Dr.
		Adrian Rosebrock, 4th edition, 2019
	3.	Computer Vision with Python Cookbook: Leverage the power
		of OpenCV 3 and Python to build computer vision
		applications, Aleksei Spizhevoi, Aleksandr Rybnikov, Packt

Publishing, 1st Edition, 2018.

Name of the P	rogram:	ME (Big Data and Data Analytics)					
Course Title:		Mini Project - 2					
Course Code:	BDA 696	Course Instructor:					
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2					
No of Credits:	4	Prerequisites: Any programming language and circuit basics					
Synopsis:	Students are expecte	ed to select a problem in the area of their interest and					
	the area of their spo	ecialization that would require an implementation in					
	hardware / software	or both in a semester					
Course							
Outcomes	On successful comple	tion of this course, students will be able to					
(COs):							
CO 1:	Apply the objectives of the project work and provide an adequate						
CO 1:	background with a detailed literature survey						
	Breakdown the proj	ect into sub blocks with sufficient details to allow the					
CO 2:	work to be reproduce	ed by an independent researcher					
00.0	Compose hardware/s	software design, algorithms, flowchart, methodology,					
CO 3:	and block diagram						
CO 4:	Evaluate the results						
CO 5:	Summarize the work	carried out					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	

CO 4			*			*
CO5:				*		

Course content and outcomes:	
Content	Competencies
Phase 1	
Problem identification, synopsis	At the end of the topic student should be able to:
submission, status submission, mid	1. Identify the problem/specification (C1)
evaluation.	2. Discuss the project (C2)
	3. Prepare the outline (C3)
	4. Describe the status of the project (C2)
	5. Prepare a mid-term project presentation
	report (C3)
	6. Prepare and present mid-term project
	presentation slides (C3, C5)
	7. Develop project implementation in
	hardware/software or both in chosen
	platform (C5)
Phase 2	
Status submission, final evaluation.	1. Prepare the progress report (C3)
	2. Prepare the final project presentation
	report (C3)
	3. Prepare and present final project
	presentation slides (C3, C5)
	4. Modify and Develop implementation in
	hardware/software or both in chosen
	platform (C3, C5)
	5. Justify the methods used and obtained

results (C6)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	48	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Practical	-	-		
Revision	-	-		
Assessment	03	-		
TOTAL	51	09		

Assessment Methods:				
Formative:	Summative:			
Project Problem Selection	Mid-Term Presentation			
Synopsys review	Second status review			
First status review	Demo & Final Presentation			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Mid Presentation	*	*			

Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

Name of the P	Program:	ME (Big Data and Data Analytics)			
Course Title:		Seminar - 2			
Course Code:	BDA 698	Course Instructor:			
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2			
No of Credits:	1	Prerequisites: Communication Skill			
Synopsis:	1. To select, sear	rch and learn technical literature.			
	2. To Identify a c	current and relevant research topic.			
	3. To prepare a t	opic and deliver a presentation.			
	4. To develop the	e skill to write a technical report.			
	5. Develop abilit	ty to work in groups to review and modify technical			
	content.				
Course					
Outcomes	On successful comple	tion of this course, students will be able to			
(COs):					
CO 1:	Show competence in identifying relevant information, defining and explaining topics under discussion.				
CO 2:	Show competence in working with a methodology, structuring their oral work, and synthesizing information.				
CO 3:		iters and vocabulary, and will demonstrate command of ice projection, and pacing.			
CO 4:	Demonstrate that they have paid close attention to what others say and can respond constructively.				
CO 5:	structured, and logic	speech, present information in a compelling, well-cal sequence, respond respectfully to opposing ideas, ledge of complex subjects, and develop their ability to and reflect on information.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*							*	*		*
CO 2	*							*	*		*
CO 3	*							*	*		*
CO 4	*							*	*		*
CO5:	*							*	*		*

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	14	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Practical	-	-		
Revision	-	-		
Assessment	-	-		
TOTAL	14	-		

Assessment Methods:				
Formative:	Summative:			
Seminar Topic Selection				
Synopsys review				
PPT Review				

Manning	of a	ssessment	with	C_{Ω}
IVIADDIIIE	UI O	1336331116111	VVILII	

Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback	
Reference Material	Particular to the chosen Seminar	

N C.U B		AAE (Die Detected Deteched 19ek)	
Name of the Program:		ME (Big Data and Data Analytics)	
Course Title:		Devops for CloudLab	
Course Code: CDC-607L		Course Instructor:	
Academic Year: 2020-2021		Semester: First Year, Semester 2	
No of Credits: 1		Prerequisites: Ubuntu OS , Networking and Software Life Cycle	
Synopsis:	This Course provides insight on		
Course Outcomes	On successful completion of this course, students will be able to		
(COs):			
CO 1:	Explain the concept of automation of Product Life Cycle stages		
CO 2:	Design an Devops methodologies for Product development and Release		
CO 3:	Demonstrate Continuous Integration / Continuous Testing / Continuous Deployment of Product		
CO4:	Explain the concepts of Tools used in each stages of Devops .		
CO5:	Demonstrate Continu	ous Monitoring of Production Environment	

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	РО	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
			3								
CO 1	*	*			*						
CO 2	*		*								
CO 3		*	*		*						
CO 4		*	*		*						
CO 5							*	*			

Course content and outcomes:	
Content	Competencies
Unit 1: DevOps Introduction	
Understanding Development -	At the end of the topic student should be able to:
Developement SDLC : WaterFall &	1. Demonstrate differences between
Agile - Understanding Operations -	Waterfall and agile software development
Dev vs Ops - DevOps to the rescue -	methodologies (C2)
What is DevOps - DevOps SDLC -	
Continous Delivery model -	
DevOps tools for DevOps SDLC -	
DevOps Roles & Responsiblities.	
Unit 2: Linux	
Linux Introduction, Principles &	1. Design Ubuntu based VM using hypervisor
Linux distro — Booting - Command	to understand booting process , linux file
line utililities & Basic commands -	system , linux networking , Users , Groups
Linux Filesystem - Filters & I/O	and Permissions, tools (ssh , scp etc)(
Redirections - Users & Group	C3)
administration - File permissions &	2. Design a docker environment to
Ownerships - Sudo -	containerize web application (C3)
Software Managemen - Useful	3. Design a Kubernetes cluster to deploy
tools: ssh, telnet, scp, rsync, disk utils,	containerized application using
backups	Kubernetes deployment and service
etc - Service & Process management	models (C4)

- Shell Scripting	- Systems and HW
stats – Linux	Containers (lxc) -
Dockers –	Kubernetes
and Microservices	

Unit 3: Networking fundamentals

Components of computer networks -Classification: LAN, WAN, Peer to Peer network. Server based - Switches -Network Architecture -Routers -Protocols - Port numbers - DNS -DHCP - IP Addresses - Ip Addresses IP Address & Subnet Masks -Ranges -Subnetting - Private Vs Public networks - High Availaiblity -Firewalls & NACL - Web Application Architecture -Infrastructure -& Network layout Services Components - Architecture from a

- Design a College/ University network
 using packet tracer to understand
 computer networking devices like Hub,
 Switches, Routers and Firewalls (C3)
- Design a Network project using Packet tracer to understand Networking services like DNS , DHCP , FTP etc (C3)

Unit 4: Automation, Orchestration & Config Management

Version control system with Git:
What is VCS & why it is needed DevOps use cases - Setup your own
repo with git - Manage your code
base/source code with GIT & GITHUB

DevOps perspective.

 Create Github account and set up repository and use git commands to Clone , Fork and commit files to Github repositories (C4)

Unit 5: Continuous Integration with Jenkins

Introduction to continuous integration.Build & Release and relation withDevOps - Understanding development

Design a Continuous Integration server using Jenkins in Master Slave architecture
 (C3)

Why Continuous and developers integration Jenkins introduction and setup -Jenkins projects/jobs -Jenkins plugins **Jenkins** administration: Users Nodes/slaves - Managing plugins -Managing software versions -Introduction - Phases -Java builds Build and Release job/project setup | Nexus: Intro & Setup - Software versioning & Hosted repository -Integration with Jenkins - Continuous integration job/project setup Complete Jenkins project: Packinging Artifacts - Static code Analysis - Tomcat setup Staging & productions Artifacts deployments to webservers from Jenkins -Build Pipeline - Jenkins not just CI tool anymore - More DevOps use cases of

- Demonstrate CI/CD for JAVA/PHP/nodejs web application (C4)
- Design an Eclipse Selenium testing project to automate Web application Testing Process (C4)

Unit 6: Ansible

Jenkins

Configuration Management
& Automation - What is Ansible &
its features - Ansible setup on local &
cloud - Understanding Ansible
architecture & Execution - Inventory
| Ad hoc commands: Automating
change Management with Ad Hoc

- Design a Configuration management service using Ansible to administer group of nodes in lab (C2)
- Demonstrate installation of Software packages like git , Eclipse , Mysql on group of nodes using Ansible (C4)
- 3. Design a Continuous monitoring server

commands - Playbook Introduction -Ansible configuration with ansible.cfg Ansible documentation - Modules, modules & lots of modules - Writing playbook for webserver & DB server deployments - Tasks - Variables -Templates - Loops -Handlers -Conditions - Register - Debugging -Ansile Roles - Identify server roles -Roles structure - Creating, Managing and executing roles - Ansible Galaxy -Exploring Roles from Galaxy -Download Galaxy roles and integrate with your code - Ansible Advanced Execution - Improving execution time - Limiting and selecting tasks -**Troubleshooting and Testing**

using Nagios to monitor group of servers for different dervices like CPU Utilization , RAM Usage , Network Bandwidth , Apache server logs , Database server logs etc (C5)

Learning strategies, contact hours and student learning time			
Learning strategy	Contact hours	Student learning time	
		(Hrs)	
Lecture	12	-	
Seminar	-	-	
Quiz	-	-	
Small Group Discussion (SGD)	-	-	
Self-directed learning (SDL)	-	-	
Problem Based Learning (PBL)	-	-	
Case Based Learning (CBL)	03	-	
Clinic	-	-	

Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
Lab Assignment & Viva	Viva	

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*	*	
Assignment/Presentation		*	*	
Laboratory Examination	*	*	*	

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Eric Foster-Johnson , John C. Welch , Micah Anderson,
		Beginning Shell Scripting (Programmer to
		Programmer), Wrox Publications
	2.	Randal K. Michael "Mastering Unix Shell Scripting: Bash,
		Bourne, and Korn Shell Scripting for Programmers, System
		Administrators, and UNIX Gurus", 2nd Edition, Wiley
		Publications
	3.	Bintu Harwani, "UNIX & Shell Programming", Oxford
		Publications, 2013
	4.	John Ferguson Smart, "Jenkins: The
		Definitive Guide",O'reilly Publications

- 5. Mitesh Soni, "Jenkins Essentials", Packt Publications
- Rafal Leszko, "Continuous Delivery with Docker and Jenkins", Packt Publications
- Veselin Kantsev, "Implementing DevOps on AWS", Packt Publications
- 8. Randall Smith, "Docker Orchestration", Packt Publications
- Alan Berg, "Jenkins Continuous Integration Cookbook", Packt Publications
- 10. Kumaran S., Senthil, "Practical LXC and LXD Linux Containers for Virtualization and Orchestration", Apress Publications
- Konstantin Ivanov, "Containerization with LXC"
 Packt Publications
- 12. Karl Matthias, Sean Kane, "Docker: Up & Running:Shipping Reliable Containers in Production", O'Reilly Media

Name of the F	Program: ME (Big Data and Data Analytics)			
Course Title:		Natural Language and Text Processing Lab		
Course Code: BDA 621L		Course Instructor:		
Academic Year: 2020-2021		Semester: First Year, Semester 2		
No of Credits:	1	Prerequisites: BDA 621		
Synopsis:	This course provides	an introduction to programming principles for natural		
	language and text pro	ocessing.		
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
CO 1:	Access text corpora from different media			
CO 2:	Use regular expressions for analysing and extracting patterns in text data			
CO 3:	Perform text processing using state of the art software libraries			
CO 4:	Classify text documents			
CO 5:	Implement models for sentiment and semantic analysis from text			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*				*						
CO 2		*	*		*						
CO 3			*		*						
CO 4			*	*	*						
CO 5		*	*	*	*						

Course content and outcomes:							
Content			Competencies				
Unit 1:	Natural Langua	age Basics; A	accessing, Processing and Understanding Text;				
Categorizi	ing and Tagging	Words					
Natural	Language,	Linguistics,	At the end of the topic student should be able to:				
Language	Semantics, Text	Corpora.	1. Understand how to access text corpora				

Accessing Text Corpora, from the Web and from Disk, Conditional Frequency Distributions, Regular Expressions for Detecting Word Patterns, Tokenization.

Using a Tagger, Tagged Corpora, Automatic Tagging, N-Gram Tagging, Transformation-Based Tagging. from different media (C2).

- Use software libraries for text tokenization
 (C3).
- Implement regular expressions for detecting word patterns (C3).
- 4. Implement different types of word tagging (C3).

Unit 2: Classification and Information Extraction; Text Similarity and Clustering

Automated Text Classification, TF-IDF Model, Advanced Word Vectorization Models, Classification Algorithms - Multinomial Naïve Bayes, Support Vector Machines. Text Summarization and Information Extraction - Text Normalization, Feature Extraction, Keyphrase Extraction, Topic Modelling, Automated Document Summarization. Term Similarity, Analysing Document Similarity, Document Clustering.

- Implement different techniques to represent words as vectors, compare and contrast them (C6).
- 2. Apply classification algorithms for text data (C3).
- 3. Implement building blocks of text summarization (C4).
- 4. Perform document clustering using software libraries (C3).

Unit 3: Semantic and Sentiment Analysis

Exploring WordNet, Word Sense
Disambiguation, Named Entity
Recognition, Analysing Semantic
Representations, Sentiment Analysis.

- 1. Access the WordNet lexical database (C3).
- 2. Perform semantic analysis of natural language expressions (C3).
- Perform sentiment analysis of text documents (C3).

Learning strategies, contact hours and student learning time

Learning strategy	Contact hours	Student learning time
		(Hrs)
Lecture	-	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	4	10
Problem Based Learning (PBL)	4	10
Case Based Learning (CBL)	4	10
Clinic	-	-
Practical	28	56
Revision	2	10
Assessment	6	-
TOTAL	48	96

Assessment Methods:					
Formative:	Summative:				
Internal practical Test – yes	Sessional examination				
Theory Assignments	End semester examination –				
	yes				
Lab Assignment & Viva – yes	Viva				

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1							
Sessional Examination 2							
Assignment/Presentation	*	*	*	*	*		
End Semester Examination	*	*	*	*	*		
Laboratory examination	*	*	*	*	*		

Feedback Process	•	End-Semester Feedback
Reference Material	1.	Text Analytics with Python: A Practitioner's Guide to Natural
		Language Processing, Dipanjan Sarkar; Publisher: Apress, 2nd
		Edition, 2019.
	2.	Natural Language Processing with Python: Analyzing Text with the
		Natural Language Toolkit, by Steven Bird, Ewan Klein, Edward
		Loper, O'Reilly Media, Inc, 1st edition 2009.
	3.	Hands-On Natural Language Processing with Python: A practical
		guide to applying deep learning architectures to your NLP
		applications, Rajesh Arumugam, Rajalingappaa Shanmugamani,
		Packt Publishing Limited, 2018.

Name of the Program:	ME (Big Data and Data Analytics)
Course Title:	Entrepreneurship Lab

Course Code: I	ENP-601L	Course Instructor:					
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2					
No of Credits: 1		Prerequisites: -					
Synopsis:	This Course provides	insight on					
	This course introduce	es students to the theory of entrepreneurship and its					
	practical implementa	ation. It focuses on different stages related to the					
	entrepreneurial proce	ess, including business model innovation, monetization,					
	small business manag	gement as well as strategies that improve performance					
	of new business vent	ures. Cantered on a mixture of theoretical exploration					
	as well as case studie	es of real-world examples and guest lectures, students					
	will develop an und	derstanding of successes, opportunities and risks of					
	entrepreneurship. Th	nis course has an interdisciplinary approach and is					
	therefore open to stu	dents from other Majors.					
Course							
Outcomes	On successful comple	tion of this course, students will be able to					
(COs):							
CO 1:	Understand the conce	ept of entrepreneurship					
CO 2:	To appraise the ent	repreneurial process starting with pre-venture stage					
CO 2.	through group discussion						
	To Build a mind-set focusing on developing novel and unique approaches to						
CO 3:	market opportunities by considering case studies and understand the						
	complete flow of entr	repreneurship					

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*					*		*			
CO 2						*					
CO 3								*		*	

Course content and outcomes:

Content	Competencies			
Unit 1: Introduction to Entrepreneurs	hip			
Meaning and Definition of	At the end of the topic student should be able to:			
Entrepreneurship-Employment vs	1. Discuss the theories of Entrepreneurship			
Entrepreneurship, Theories of	(C1)			
Entrepreneurship, approach to	2. Discuss the approaches to			
entrepreneurship, Entrepreneurs VS	Entrepreneurship (C1)			
Manager				
Unit 2: Process of Entrepreneurship				
Factors affecting Entrepreneurship	1. Exemplify one's capabilities in relation to			
process	the rigors of successful ventures (C3)			
	2. Identify and differentiates the different			
	characteristics and competencies of an			
	entrepreneurs (C2)			
Unit 3: Business Plan writing				
Points to be considered, Model	Identify different business models (C3)			
Business plan	2. Describe different parts of a business			
	plan(C2)			
Unit 4: Case studies				
Indian and International	1. Perform self-assessment and analyse			
Entrepreneurship	entrepreneurial personal traits and			
	competencies (C4)			
	2. Evaluate oneself and plan courses of			
	action to help develop one's			
	entrepreneurial characteristics and			
	competencies. (C5)			

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time			
		(Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos										
Nature of assessment	CO 1	CO 2	CO 3							
Sessional Examination 1	*	*								
Sessional Examination 2			*							
Assignment/Presentation		*	*							
Laboratory Examination	*	*	*							

Feedback Process	•	End-Semester Feedback										
Reference Material	1.	NVR Naidu and T. Krishna Rao, "Management and										
		Entrepreneurship", IK International Publishing House Pvt. Ltd										
		2008.										
	2.	Mohanthy Sangram Keshari, "Fundamentals of										
		Entrepreneurship", PHI Publications, 2005										
	3.	Butler, D. (2006). Enterprise planning and development. USA:										
		Elsevier Ltd. Gerber, M.E. (2008) Awakening the										
		entrepreneur within. NY: Harper Collins.										

Name of the Program:		ME (Big Data and Data Analytics)							
Course Title:		Project Work							
Course Code:	BDA 799	Course Instructor:							
Academic Yea	r: 2020 - 2021	Semester: Second Year, Semester 3, 4							
No of Credits:	25	Prerequisites: SDLC, Communication Skills, technical skills.							
Synopsis:	The project work ain	ns to challenge analytical, creative ability and to allow							
	students to synthesiz	e, apply the expertise and insight learned in the core							
	discipline.								
	Students build self-o	confidence, demonstrate independence, and develop							
	professionalism on su	accessfully completion of the project.							
Course									
Outcomes	On successful comple	etion of this course, students will be able to							
(COs):									
CO 1:	To be acquainted with	h working environment and processes that in place at							
CO 1.	the relevant Industrie	es.							
CO 2:	To familiarize the cha	llenges as relevant professionals.							
CO 3:	Review the literature	and develop solutions for real time onboard projects.							
CO 4:	Write technical repor	Write technical report and deliver presentation.							
CO 5:	Apply engineering and	nd management principles to achieve project goal.							

Mappi	Mapping of COs to POs												
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1						*	*	*	*	*	*		
CO 2					*								
CO 3	*	*	*	*	*								
CO 4	*	*	*	*									
CO5:						*	*	*	*	*	*		

Course content and outcomes:										
Content	Competencies									
Phase 1:										
Problem identification, synopsis	At the end of the topic student should be able to:									
submission, status submission, mid	1. Identify the problem/specification (C1)									
evaluation.	2. Discuss the project (C2)									
	3. Prepare the outline (C3)									
	4. Prepare a mid-term project presentation									
	report (C3)									
	5. Prepare and present mid-term project									
	presentation slides (C3, C5)									
	6. Develop project implementation in									
	hardware/software or both in chosen									
	platform (C5)									
Phase 2										
Status submission, final evaluation.	1. Prepare the progress report (C3)									
	2. Prepare the final project presentation									
	report (C3)									
	3. Prepare and present final project									
	presentation slides (C3, C5)									
	4. Modify and Develop implementation in									
	hardware/software or both in chosen									
	platform (C3, C5)									
	5. Justify the methods used and obtained									
	results (C6)									

Learning strategies, contact hours and	student learning time	
Learning strategy	Contact hours	Student learning time
		(Hrs)
Lecture	-	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	14	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	-	-
Clinic	-	-
Practical	-	-
Revision	-	-
Assessment	-	-
TOTAL	14	-

Assessment Methods:								
Formative:	Summative:							
Project Problem Selection	Mid-Term Presentation							
Synopsys review	Second status review							
First status review	Demo & Final Presentation							

Mapping of assessment with Cos										
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5					
Mid Presentation	*	*								
Presentation	*	*	*	*	*					

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING

Sl.No.	Course Code	Course Name	Credits	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1	BDA 601	Fundamentals of Machine Learning	3	*	*	*	*							
2	BDA 602	Algorithms and Data Structures for Big Data	3	*	*	*	*					*		
3	BDA 623	Architecture of Big Data Systems	3	*	*	*		*	*	*			*	
4	MCL 601	Applied Probability and Statistics	3	*	*	*	*		*		*		*	
5	CSE-625	Mobile Web Application Development	3	*	*	*	*	*						
6	BDA-622	Principles of Data Visualization	3	*	*	*	*	*	*		*			
7	BDA 601L	Fundamentals of Machine Learning Lab	1	*	*	*								
8	BDA 602L	Algorithms and Data Structures for Big Data Lab	1	*	*	*		*	*			*		
9	BDA 623L	Architecture of Big Data Systems Lab	1	*	*	*		*	*			*	*	
10	MCL 601L	Applied Probability and Statistics Lab	1	*	*	*	*	*	*		*		*	
11	CSE-625L	Mobile Web Application DevelopmentLab	1	*	*	*	*							
	BDA-622L	Principles of Data Visualization Lab	1	*	*	*	*	*	*		*	*	*	
12	BDA 695	Mini Project - 1	4				*	*	*	*	*		*	*
13	BDA 697	Seminar - 1	1	*							*	*		*
14	BDA 605	Machine Learning for Big Data	3	*	*	*	*							
15	BDA 616	Modern Databases for Big Data	3	*	*	*		*						
16	MCL 602	Advanced Applications of Probability and Statistics	3	*	*	*	*	*	*		*			
17	BDA 618	Multimedia Analytics	3	*	*	*	*	*	*				*	

18	CDC-607	DevOps for Cloud	3	*	*	*		*	*	*	*	*	*	*
19	BDA-621	Natural Language and Text Processing	3	*	*	*	*	*						
20	ENP-601	Entrepreneurship	3	*		*	*		*		*		*	
21	BDA 605L	Machine Learning for Big Data Lab	1	*	*	*	*							
22	BDA 616L	Modern Databases for Big DataLab	1	*	*	*		*	*	*			*	
23	MCL 602L	Advanced Applications of Probability and StatisticsLab	1	*	*	*	*	*	*		*			
24	BDA 618L	Multimedia Analyticslab	1	*	*	*	*	*	*			*	*	
25	CDC-607L	DevOps for CloudLab	1	*	*	*		*		*	*			
26	BDA-621L	Natural Language and Text Processing Lab	1	*	*	*	*	*						
27	ENP-601L	Entrepreneurship Lab	1	*					*		*		*	
28	BDA 696	Mini Project - 2	4				*	*	*	*	*		*	*
29	BDA 698	Seminar - 2	1	*							*	*		*
30	BDA 799	Project Work	25	*	*	*	*	*	*	*	*	*	*	*