JEE-Main-26-07-2022-Shift-2 (Memory Based)

Physics

Question: Two projectiles are thrown with same initial velocity at angle 30° & 45° with horizontal. Find ratio of their ranges.

Options:

(a)
$$\frac{\sqrt{5}}{2}$$

(b)
$$\frac{\sqrt{7}}{2}$$

(c)
$$\frac{\sqrt{3}}{2}$$

(d)
$$\frac{\sqrt{6}}{2}$$

Answer: (c)

Solution:

$$R = \frac{u^2 \sin 2\theta}{g}$$

$$\Rightarrow \frac{R_1}{R_2} = \frac{\sin 60^{\circ}}{\sin 90^{\circ}} = \frac{\sqrt{3}}{2}$$

Question: Find radius of gyration of solid cylinder about an axis perpendicular to cylinder axis & passing through centre is

Options:

(a)
$$\sqrt{\frac{L^2}{2^2} + \frac{R^2}{4}}$$

(b)
$$\sqrt{\frac{L^2}{3^2} + \frac{R^2}{4}}$$

(c)
$$\sqrt{\frac{L^2}{1^2} + \frac{R^2}{4}}$$

(d)
$$\sqrt{\frac{L^2}{1^2} - \frac{R^2}{2}}$$

Answer: (c)

Solution:

Moment of inertia of a solid cylinder about transverse axis.

$$= \frac{1}{4}MR^2 + \frac{1}{12}ML^2$$

$$\therefore K = \sqrt{\frac{I}{M}} = \sqrt{\frac{R^2}{4} + \frac{L^2}{12}}$$

Question: Two bodies m_1 and m_2 are attracting each other with gravitational force. Acceleration of m_1 is a_1 when $m_1 = 2$ m_2 and a_2 when $m_1 = 3$ m_2 . Find ratio of a_1 and a_2 .

- Options: (a) $\frac{6}{2}$
- (b) $\frac{4}{2}$
- (c) $\frac{5}{2}$
- (d) $\frac{3}{2}$

Answer: (d)

Solution:

$$a = \frac{F}{m_1} = \frac{Gm_2}{r^2}$$

So
$$a_1 = \frac{G(m_1/2)}{r^2}$$
 and $a_2 = \frac{G(m_1/3)}{r^2}$

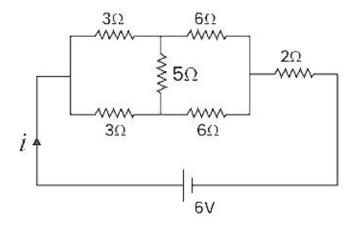
$$\frac{a_1}{a_2} = \frac{3}{2}$$

Question: A mass 0.5 kg moving with 12 m/s collides with a wall elastically. Find time of collision if F = 100 N acts during collision.

Options:

- (a) t = 0.16 s
- (b) t = 0.12 s
- (c) t = 0.10 s
- (d) t = 0.15 s

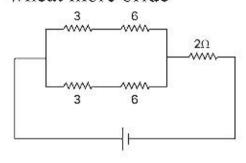
Answer: (b)

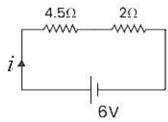

Solution:

Change in momentum = $2mu = 2 \times 0.5 \times 12 = 12 \text{ kg m/s}$

$$F = \frac{dp}{dt} \ 100 = \frac{12}{t}$$
$$t = 0.12s$$

Question: Find i




Options:

- (a) 0.723 A
- (b) 0.523 A
- (c) 0.923 A
- (d) 0.623 A
- Answer: (c)

Solution:

wheat more bride

$$i = \frac{6}{4.5 + 2} = 0.923A$$

Question: Two springs connected with spring constant 3k and k in series have time period T_1 , and in parallel have time period T_2 . Ratio of T_1/T_2 is?

Options:

- (a) 7.31
- (b) 2.31
- (c) 5.30
- (d) 4.31

Answer: (b)

$$\frac{1}{k_s} = \frac{1}{3k} + \frac{1}{k} = \frac{4}{3k} \Longrightarrow k_s = \frac{3k}{4}$$

$$k_p = 3k + k = 4k \Longrightarrow k_p = 4k$$

$$T = 2\pi \sqrt{\frac{m}{k}} \operatorname{so} T\alpha \frac{1}{\sqrt{k}}$$

So,
$$\frac{T_1}{T_2} = \sqrt{\frac{k_p}{k_s}} = \sqrt{\frac{4k}{3k/4}} = \frac{4}{\sqrt{3}}$$

= 2.31

Question: A coil having resistance 8Ω has flux varying with time as $\phi = \frac{2}{3}(9-t^2)$. Find heat produced in coil until flux becomes zero.

Options:

(a)
$$H = 2J$$

(b)
$$H = 5J$$

(c)
$$H = IJ$$

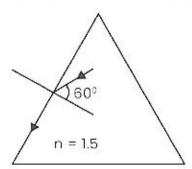
(d)
$$H = 3 J$$

Answer: (a)

Solution:

$$\phi$$
 is zero at t = 3s

$$\varepsilon = -\frac{d\phi}{dt} = \frac{2}{3} \times 2t = \frac{4}{3}t$$


current
$$i = \frac{\varepsilon}{R} = \frac{4t}{3 \times 8} = \frac{t}{6} A$$

$$H = \int_{0}^{3} i^{2}R \, dt = \int_{0}^{3} \frac{t^{2}}{36} \times 8 \, dt = \frac{8}{36} \times \frac{t^{3}}{3} \bigg]_{0}^{3}$$

$$=\frac{8}{36}\times\frac{3^3}{3}=\frac{8}{36}\times9$$

$$H = 2J$$

Question: A ray is incident inside glass prism, grazes after refraction as shown. Find refractive index of liquid.

Options:

(a)
$$\frac{4\sqrt{4}}{3}$$

(b)
$$\frac{4\sqrt{3}}{4}$$

(c)
$$\frac{3\sqrt{3}}{4}$$

(d)
$$\frac{3\sqrt{5}}{4}$$

Answer: (c)

Solution:

Snell's law

$$v_1 \times \sin 60^\circ = v_2 \sin 90^\circ$$

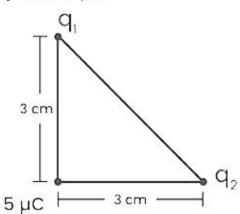
$$1.5 \times \frac{\sqrt{3}}{2} = v_2 \times 1$$

$$v_2 = \frac{3\sqrt{3}}{4}$$

Question: Two Nuclei have masses in ratio 4:3. Find ratio of there Nuclear Density?

Options:

- (a) 4:1
- (b) 1:1
- (c) 6:1
- (d) 2 : 2


Answer: (b)

Solution:

Nuclear density is independent of nuclear mass.

Question: In the given figure, find the magnitude of force on $5\mu C$ charge is:

- $q_1 \text{ is } 0.16 \mu C$
- q_2 is $0.3~\mu C$



Options:

- (a) 14 N
- (b) 12 N
- (c) 17 N
- (d) 10 N

Answer: (c)

$$\frac{9\times10^{9}\times5\times0.3\times10^{-12}}{9\times10^{-4}}$$

$$\frac{9 \times 10^{9} \times 5 \times 0.16 \times 10^{-12}}{9 \times 10^{-4}}$$
$$F = \sqrt{8^{2} + 15^{2}} = 17N$$

Question: A body is projected from surface of earth with velocity $\frac{1}{3}rd$ of escape velocity.

Find maximum height achieved.

Options:

- (a) $\frac{R}{2}$
- (b) $\frac{R}{6}$
- (c) $\frac{R}{8}$
- (d) $\frac{R}{10}$

Answer: (c)

Solution:

Escape velocity =
$$\sqrt{\frac{2GM}{R}}$$

Velocity of projection = $\frac{1}{3}v_e = \frac{1}{3}\sqrt{\frac{2GM}{R}}$

$$E_i = K + U$$

$$=\frac{1}{2}m\frac{1}{9}\left(\frac{2GM}{R}\right)-\frac{GmM}{R}$$

$$=\frac{GmM}{9R} - \frac{GmM}{R} = \frac{-8}{9} \frac{GmM}{R}$$

At maximum height (h)

$$E_f = 0 - \frac{GmM}{\left(R + h\right)}$$

$$E_{i} = E_{f} \Rightarrow -\frac{8}{9} \frac{GmM}{R} = -\frac{GmM}{(R+h)}$$

$$\Rightarrow (R+h) = \frac{9R}{8}$$

$$\Rightarrow 8R + 8h = 9R$$

$$h = \frac{R}{8}$$

Question: Maximum amplitude of AM modulated wave is 6 and minimum amplitude of AM modulated wave is 2, modulation index in percentage is x% find x.

Options:

- (a) 10%
- (b) 25%
- (c) 35%
- (d) 50%

Answer: (d)

Solution:

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{6 - 2}{6 + 2} = \frac{1}{2} = 50\%$$

Question: Two bodies with mass m and 8m have same kinetic energy. The ratio of their momentum is?

Options:

- (a) 0.5
- (b) 0.8
- (c) 0.25
- (d) 0.35

Answer: (d)

Solution:

$$P = \sqrt{2mKE}$$

$$\frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{m}{9m}} = \frac{1}{2\sqrt{2}}$$

$$\frac{P_1}{P_2} = 0.35 \, (\text{Approx.})$$

Question: 0.5A nucleus of mass M splits into daughter nuclei $\frac{m'}{3}$ and $\frac{2m'}{3}$ (m' < M). Find

the ratio of de-Broglie wavelength of two daughter nuclei.

Options:

- (a) λ are same
- (b) λ of smaller part is more
- (c) λ of bigger part is more

(d) Data insufficient

Answer: (a)

Solution:

As initially m' at rest,

 $\frac{m'}{3}$, $\frac{2m'}{3}$ will have some momentum.

$$\lambda = \frac{h}{p}$$

Hence, λ are same.

Question: Find γ in terms of degree of freedom f.

Options:

(a)
$$1 + \frac{2}{f}$$

(b)
$$\frac{2}{f}$$

(c)
$$1 - \frac{2}{f}$$

(d)
$$1 - f$$

Answer: (a)

Solution:

$$\gamma = 1 + \frac{2}{f}$$

Question: $y = 2\sin(\omega t - kx)$ find λ such that wave velocity = maximum velocity of particle

Options:

(a)
$$2\pi$$

(b)
$$4\pi$$

(c)
$$7\pi$$

(d) 10π

Answer: (b) Solution:

Wave velocity $=\frac{\omega}{k}$

Particle velocity (maximum) = ωA

$$\frac{\omega}{k} = \omega A$$

$$\frac{1}{k} = A = 2$$

$$k = \frac{1}{2}$$

$$\therefore \frac{2\pi}{\lambda} = \frac{1}{2}$$

$$\lambda = 4\pi$$

Question: Breaking stress of a wire is increased by 2.5 times and tensile force is increased from 10 to 25 metric tonnes. If initial minimum cross section is $2.5 \times 10^{-4} m^2$ the minimum area to sustain the new load is

Options:

(a)
$$2.5 \times 10^{-4} m^2$$

(b)
$$1.5 \times 10^{-4} m^2$$

(c)
$$2.5 \times 10^4 m^2$$

(d)
$$2.5 \times 10^2 m^2$$

Answer: (a)

Solution:

$$\sigma = \frac{F}{A} \Rightarrow A = \left(\frac{F}{\sigma}\right)$$

$$\frac{A_1}{A_2} = \frac{2.5 \times 10^{-4}}{A_2} = \frac{\frac{10 \times 10^3 g}{\sigma}}{\frac{25 \times 10^3 g}{2.5 \sigma}} = \frac{10}{25} \times 2.5$$

$$\frac{A_1}{A_2} = 1$$
 so $A_2 = A_1 = 2.5 \times 10^{-4} m^2$

Question: A light ray has speed $1.5 \times 10^8 \, m/s$ in medium 1 and $2 \times 10^8 \, m/s$ in medium 2. Find critical angle for system

Options:

(a)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

(b)
$$\sin^{-1}\left(\frac{2}{3}\right)$$

(c)
$$\sin^{-1}\left(\frac{3}{4}\right)$$

(d)
$$\cos^{-1}\left(\frac{1}{2}\right)$$

Answer: (c)

$$\mu = \frac{C}{V}; \frac{\mu_1}{\mu_2} = \frac{v_2}{v_1} = \frac{2 \times 10^8}{1.5 \times 10^8} = \frac{4}{3}$$

Also,
$$\sin i_c = \frac{\mu_2}{\mu_1}$$

$$\therefore i_c = \sin^{-1}\left(\frac{3}{4}\right)$$

Question: The magnitude of magnetic field associated with an EM wave is 5×10^{-6} . The electric field magnitude is going to be;

Options:

(a)
$$1\frac{KN}{C}$$

(b)
$$1.5 \frac{KN}{C}$$

(c)
$$2.5 \frac{KN}{C}$$

(d)
$$3.5 \frac{KN}{C}$$

Answer: (b)

Solution:

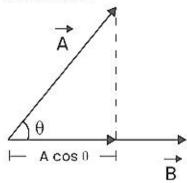
$$E = BC$$

$$E = 5 \times 10^{-6} \times 3 \times 10^8$$

$$=15 \times 10^{2}$$

$$=1.5\frac{KN}{C}$$

Question: Projection of vector \vec{A} on vector \vec{B} is:


Options:

(a)
$$(\vec{A}.\hat{B})\hat{A}$$

(b)
$$(\vec{A}.\hat{B})\hat{B}$$

(d)
$$|A|\hat{A}$$

Answer: (b)

$$\vec{A}.\vec{B} = AB\cos\theta$$

$$A\cos\theta = \frac{\vec{A}.\vec{B}}{B}$$

$$A\cos\theta = \vec{A}.\hat{B}$$

In vector from $(\vec{A}.\hat{B})\hat{B}$

