Course Curriculum

for

Master of Technology Programme

in

Power Electronics and Power Systems

Department of Electrical and Electronics Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credits Distribution

Semester	Total Credits
Ι	12+4+2=18
	(4-Programme Core + 2-Labs+1-Seminar)
II	9+3+4+2=18
	(3-Programme Core +1-Elective+ 2-Labs+1- Viva)
III	06+08 =14
	(2-Electives + Major Project -I)
IV	14
	(Major Project Work-II)
Total Credits	64

	M.Tech I – Semester			
Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	EE600	Power Electronic Converters & Drives	3-0-0	3
2	EE601	Machine Modeling & Analysis	3-0-0	3
3	EE602	Advanced Power system Analysis	3-0-0	3
4	EE603	Renewable Energy Systems	3-0-0	3
5	EE604	Power Electronics Laboratory	0-0-3	2
6	EE605	Simulation Laboratory	0-0-3	2
7	EE606	Seminar	0-0-3	2
		Total Credits		18

		M.Tech II – Semester		
Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE650	Advanced Electric Drives	3-0-0	3
2	EE651	HVDC & FACTS	3-0-0	3
5	EE652	Systems & Control Theory	3-0-0	3
3	EE8xx	Elective-I	3-0-0	3
4	EE653	DSP & FPGA Laboratory	0-0-3	2
5	EE654	Electric Drives Laboratory	0-0-3	2
6	EE655	Viva		2
7	HU650	Communication Skills and Technical Writing	1-0-2	0
		Total Credits		18

NATIONAL INSTITUTE OF TECHNOLOGY GOA

	M.Tech III - Semester			
Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	EE8xx	Elective – II	3-0-0	3
2	EE8xx	Elective – III	3-0-0	3
3	EE700	Major Project-I	0-0-12	08
		Total Credits		14

	M.Tech IV- Semester			
Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	EE750	Major Project-II	0-0-21	14
		Total Credits		14

List of Electives

	Program Electives			
SI. No.	Course Code	Course Name	Total Credit (L-T-P)	Credits
		Elective-I		
1	EE 801	Modelling and Simulation of Power Electronic Systems	3(3-0-0)	3
2	EE 802	Advanced Power Electronics	3(3-0-0)	3
3	EE 803	Photovoltaic and its Applications	3(3-0-0)	3
		Elective-II		
1	EE 804	Power System Dynamics & Control	3(3-0-0)	3
2	EE805	Smart Electric Grid	3(3-0-0)	3
3	EE 806	Power Quality	3(3-0-0)	3
		Elective-III		
1	EE807	Soft Computing	3(3-0-0)	3
2	EE 808	DSP Controlled Drives	3(3-0-0)	3
3	EE 809	Digital Control Theory	3(3-0-0)	3
4	EE810	Optimal Control	3(3-0-0)	3

Course Contents

Power Electronic Converters &	Credits: 3 (3-0-0)			
Drives	Total hours: 45			
Module 1 Phase controlled converters: Single phase Half controlled and fully controlled converters, input power factor and harmonic factor, single phase dual converters, power factor Improvements. Three phase half controlled and fully controlled converters, evaluation of input power factor and harmonic factor and effect of input line inductance, power factor improvement, 12 pulse/18 pulse converter, dual converters, front end converter or synchronous link converters. Basic power electronic drive system and components, Different types of loads, shaft-load coupling systems. Stability of power electronic drive. Torque-speed characteristics of converter controlled separately excited dc motor in continuous and discontinuous mode of conduction.				
parately excited DC motor drive using DC-DC converter				
e phase inverters, three phase inverters, pulse width modula	ation techniques, multi-level			
Operation with fixed frequency and variable frequency so	• •			
 Edition, PHI, 2005. Ned Mohan, T.M. Undeland and William Electronics: Converters, Applications, 3rd Edition, John Electronics: Converters, Applications, 3rd Edition, John S.B. Dewan, Gordon R. Slemon and A. Straughe Drives, John Wiley Pub., 1996. B.K. Bose: Modern Power Electronics and AC Drives, 1st. Philip T. Krein: Elements of Power Electronics, Oxford U. John G. Kassakian, Martin F. Schlect, Geroge Cower Electronics, Pearson Education. R. Krishnan: Electronic motor drives modeling Analysis and Comparison of the second secon	n P. Robbins: Power in Wiley & Sons, 2009 en: Power Semiconductor st Edition, Pearson, 2002. niversity Press. C. Verghese: Principles of			
	Drives ed converters: Single phase Half controlled and fully contropononic factor, single phase dual converters, power factor Imple fully controlled converters, evaluation of input power factor at line inductance, power factor improvement, 12 pulse int end converter or synchronous link converters. electronic drive system and components, Different types or dility of power electronic drive. Torque-speed characteristic ited dc motor in continuous and discontinuous mode of conditive degenerative braking. erters: Study of Class - A, B, C, and D choppers, non-isseparately excited DC motor drive using DC-DC converter egenerative braking. le phase inverters, three phase inverters, pulse width modulation of drives: Equivalent circuit, speed control, slip power record Operation with fixed frequency and variable frequency so ives, A.C. Drives. 1. M.H. Rashid: Power Electronics-circuits, Device Edition, PHI, 2005. 2. Ned Mohan, T.M. Undeland and Williar Electronics: Converters, Applications, 3rd Edition, Jof 3. 3. S.B. Dewan, Gordon R. Slemon and A. Straughe Drives, John Wiley Pub., 1996. 4. B.K. Bose: Modern Power Electronics and AC Drives, 1. 5. Philip T. Krein: Elements of Power Electronics, Oxford U			

Subject Cod	^e Machine Modelling & Analysis	Credits: 3 (3-0-0)	
EE601		Total hours: 45	
Module 1			
energy conver	es of electric machine analysis: Magnetically coupled cir sion, Single and double excited systems. Machine winding ad voltage equations, Production of electromagnetic torque.	•	
Module 2			
variables obse	me theory: Equations of transformation, transformation rved from various frames. Theory of symmetrical induction ate-space model of Induction motor in'd-q-0' variables. Con e.	machines: Voltage and torque	
Module 3			
frame.Concep synchronous	nchronous machines: Voltage and torque equations, equator of sub-transients, transient armature inductances and field nachine under asynchronous running, Hunting and small or es, equal area criteria, computer simulation.	d time constant, Operation of	
Module 4			
Field analysis	Field aspects of electrical machines: Vector potential, Classical two-dimensional analysis of air gap field Field analysis and performance calculation in linear Induction motor and linear synchronous motor. Finit element method of calculation, vector potentials in machines and actual boundaries, magnetic saturation.		
Reference books	 P. C. Krause, O. Wasynczuk and S.D. Sudhoff: A and Drive Systems, 2nd Edition, IEEE Press, 2002. J. Meisel: Principles of Electromechanical Energy Conversional Structure (2014). N. Bianchi: Electrical Machine Analysis using Finite Elements. P.S. Bhimbra: Generalized Theory of Electrical Machines. 	ments, CRC Press, 2005	

Subject Code EE602	Advanced Power System Analysis	Credits: 3 (3-0-0) Total hours: 45				
Module 1	Module 1					
Algorithms for a	ling: Formation of network matrices, Singular and n formation of bus admittance and bus impedance matr y Technique and optimal ordering.	-				
Module 2						
	I flow-Newton Raphson method, Decoupled ,Fast decoup a power flow analysis, ATC assessment, DC power flow n					
Module 3						
analysis,Z Bus m	ency Analysis: Balanced and unbalanced faults, Digital s ethod in contingency analysis, Contingency Analysis of I and Fault Studies.	-				
Module 4						
 Security and State Estimation:Security assessment, State Estimation in Power Systems, Maximum Likelihood Weighted Least-Squares Estimation, State Estimation of an AC Network, Detection and Identification of Bad measurements, Network Observability and Pseudo-measurements. Stagg.G.W , El. Abiad.A.H: Computer Methods in Power System Analysis, McGraw W Hill. Kundur.P: Power System Stability and Control, McGraw Hill Wood.A.J and Wollenberg.B.F: Power Generation Operation and Control, John Wiley and sons, New York. D. P. Kothari and I. J. Nagrath: Modern Power System Analysis, Tata McGraw Hill Publishing Co. Ltd. J. Arrilaga, C. P. Arnold, B. J. Harker: Computer Modelling of Electric Power System, John Wiley & Sons. K.Mahailnaos, D. P. Kothari, S. I. Ahson: Computer Aided Power System Analysis & Control, Tata McGraw Hill Publishing Co. Ltd. G. T. Heydt: Computer Analysis Methods for Power Systems, Macmillan Publishing Company, NewYork. L. P. Singh: Advanced Power System Analysis and Dynamics, New Age International Publishers, New Delhi. 						

Subject Co EE 603	ode	Renewable Energy Systems	Credits: 3 (3-0-0) Total hours: 45
Module 1			
Non-renewał	ble rese	erves and resources; renewable resources, Transformation	on of Energy.
Distributed C	Genera	tion, renewable energy economics.	
Solar Power	: Sola	r processes and spectral composition of solar radiati	on; Radiation flux at the
Earth's surfa	ce. Sol	ar collectors. Types and performance characteristics.	
Photo-Voltai	c pow	er plants: Solar energy, generation of electricity PV	cell characteristic, Stand
•		DC and AC loads with and without battery storage, Gi	rid connected PV systems,
Maximum Po	ower P	oint Tracking	
Fuel cells: Fu	uel cell	s, commercial and manufacturing issues, equivalent circ	cuit, Applications.
Module 2			
turbines, wir generators, g constant free	nd turb grid co quency	namics of wind rotors, power- speed and torque - spe pine control systems. conversion to electrical power: in ponnected and self-excited induction generator operation generation with power electronic control, single an appensation, characteristics of wind power plant, application	nduction and synchronous ion, constant voltage and d double output systems,
	· Way	e characteristics. Conversion systems and their performa	ance features Application
•••		: Biological conversion of Energy.	ance reatures. Apprication.
Module 4	87		
Induction ge control, perf	òrman vith fu	ce analysis, semi variable speed induction generator, Il and partial rated power converter topologies, isola	variable speed induction
Module 5			
0.	•••	tems: Parameters, lead-acid batteries, ultra-capacitors, f ystem, pumped hydroelectric energy storage, compressed	•
Reference books	2.	 S. N. Bhadra, D. Kastha, S. Banerjee: Wind Electric Press, 2005. S.A. Abbasi, N. Abbasi: Renewable Energy Sources Impact, Prentice Hall of India,2004. Felix A. Farret and M. Godoy Simões: Integration Energy, John Wiley & Sons,2006. R. Teodorescu, M. Liserre and Pedro Rodrígue Photovoltaic and Wind Power Systems, John Wiley & 	and Their Environmental of Alternative Sources of ez: Grid Converters for

Subject Cod EE604	e Power Electronics Laboratory	Credits: 2 (0-0-3) Total hours: 45
1) Single	phase Half and Full controlled Converter with R-L and R-L	-E loads.
2) Three-	phase Half and Full controlled Converter with R-L and R-L-I	E loads.
3) Single	phase AC voltage controller feeding R and R-L loads.	
4) Charac	teristics of Power Semiconductor devices (SCR, Triac etc.).	
5) DC-to-	DC Switched Mode Converters.	
6) 1-Φ &	$23-\Phi$ Inverter with square wave, quasi-square wave and SP	WM Control
Reference	1. M.H. Rashid: Power Electronics-circuits, Device Edition, PHI, 2005.	s and Applications, 3rd
books	2. Ned Mohan, T.M. Undeland and William Electronics: Converters, Applications, 3rd Edition, John	

Subject Code EE605	Power Electronics Simulation Laboratory	Credits: 2 (0-0-3) Total hours: 45	
Modelling of D	C-DC converters		
Study of differe	nt PWM techniques		
Study on the 'de	Study on the 'dq0' transformation in various frames of reference		
Modelling of D	Modelling of DC motor, Induction motor and synchronous motor drives		
	. M.H. Rashid : Power Electronics-circuits, Devices and	Applications, 3rd Edition,	

Reference	PHI, 2005.			5 ene			ioutions,	Sid Baldoll,
books	2. Ned Mohan	T.M.	Undeland	and	William	P.Robbins:	Power	Electronics:
	Converters,	Applic	cations, 3rd I	Edition	ı, John Wi	ley & Sons, 2	.009.	

Subject Code EE 606	Seminar	Credits: 2 (0-0-3)	
	Students will have to choose a current research topic in Power Electronics and Power Systems related areas or industry practices and prepare a write up along with suitable presentation and demonstration.		

Subject Coc EE650	Advanced Elec	Advanced Electric Drives		
Module 1				
*	Basic power electronic drive system and components, Different types of loads, shaft-load coupling systems. Stability of power electronic drive.			
Scalar and Ve	or control of Induction motor, Dire	ect torque and flux contr	ol of Induction motor.	
Module 2				
Self-controlle	synchronous motor drive, Vector c	ontrol of synchronous n	notor drive.	
Module 3				
Switched reluctance motor drive, Brushless DC motor drive, Permanent magnet drives and Industrial drives.				
Reference books	Pearson, 2002.		Drives, IEEE Press, John	

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Subject Co EE 651	HVDC and FACTS	Credits:3 (3-0-0) Total hours: 45
Module 1	i	
technical per Transmission	velopment of HVAC and HVDC links, comparison, economics of formance, reliability, limitations, application of dc transmission System, types of DC links and converter station, planning for s in DC transmission.	, description of DC
Module 2		
converter bri starting and s	nission analysis of HVDC converters, pulse number, analysis with lge characteristics, converter and HVDC system control, principle topping of dc link, power control. o harmonics & filters, generation of harmonics, types of ac filters.	es of dc link control-
Module 3		
transmission	n AC Systems. Definition of FACTS, power flow control, cons line loading. Benefits of FACTS transmission line compensation: asation. Series compensation, phase angle control.	
Module 4		
	compensators: SVC and STATCOM. Operation and control of T compensator control, comparisons between SVC and STATCOM.	TSC, TSR, TCR and
Static series	ompensation: TSSC, SSSC, TCBR, TCPAR. Operation and control	ol applications
Module 5		
of P and Q c	or Flow Controller: circuit arrangement, operation and control of U control, independent real and reactive power flow control, applicate er flow controller.	
Reference books	 K. R. Padiyar: HVDC Power transmission System, New age N.G Hingorani, L. Gyugyi: Understanding FACTS: Concept Flexible AC Transmission Systems, IEEE Press Book, Star Distributors, Delhi, 2001. J. Arrillaga: HVDC transmission, IET, 1998. E.X. Kimbark: Direct Current Transmission, Vol. I, Newyork, 1971. K. R. Padiyar: Power System Dynamics, Stability and Contr Publishers. 1994. X.P. Zang, C. Rehtanz and B. Pal: Flexible AC Transmission and Control, Birkhauser,2006. Y. H. Song and A. T. Johns: Flexible AC Transmission System 	ts and Technology of ndard Publishers and Wiley Interscience, rol, 2nd Edition, B.S. n Systems: Modeling

Subject Coo EE652	le	Systems and Control Theory	Credits: 3 (3-0-0) Total hours: 45		
Module 1					
Review of ma	trice	s, vector space, group, rings, and fields.			
Module 2					
^	sfer f	iption: State space representations of systems, state varia functions, solution of state equation, transient responses s.	•••		
Module 3					
•	-	controllability, observability, duality, equivalent syste ontrollable and observable canonical forms, state space	•		
Module 4					
systems, optin	mal o	esign: Linear State variable feedback, pole placement control concept, solution of linear quadratic regulator petion design procedures.	0		
Module 5					
		and Servo Control: State observer, reduced order obs integral control, asymptotic tracking and regulation, robu			
Module 6					
Principles of	f lin	Dynamics & Control: Analysis of Modelling equa nearization, Describing function methods, Introducting ag mode control, feedback linearization methods.	· · ·		
Deference	1.S.H. Zak: Systems and Control, Oxford Univ. Press, 2003.2. H.K. Khalil: Nonlinear Systems, Prentice Hall, N.J., 2002.				
Reference books		R. C. Dorf and R. H. Bishop: Modern Control Systems, P. K. Ogata: Modern Control Engineering, Pearson, 2006.	rentice Hall, 2001.		

Subject Coc EE653	e DSP & FPGA Laboratory	Credits: 2 (0-0-3) Total hours: 45
CCS introduc	ion, aliasing, quantization	
Saw tooth wa	ve generation	
Single pulse,	multiple pulse, sin-triangle and space vector modulation PWN	M generation
Digital filter d	esign	
FPGA based 1	notor control applications	
	1. Hamid A. Toliyat: DSP Based Electromechanical Motion	n Control, 1st Edition, CRC
Reference	Press, 2004.	
books	2. Bin-Wu: High-power Converters and AC Dr Wiley & Sons, 2006	ives, IEEE Press, John
	3. Wolf: FPGA based system design, Dorling kindersley, 20	04.

Subject Cod EE654	e Electric Drives Laboratory	Credits: 2 (0-0-3) Total hours: 45			
Thyristorised	Thyristorised drive for 1hp DC motor with closed loop control				
Single phase & motor drive	Single phase & three phase half control and fully controlled bridge rectifier fed separately excited DC motor drive				
Four quadrant	chopper drive for separately excited DC motor drive				
Speed control	of 3 phase wound rotor Induction motor				
*	on of single pulse, multiple pulse, sine-triangle and space vect DSP controller.	tor modulation PWM			
Reference	I. M.H. Rashid : Power Electronics-circuits, Devices and Applications, 3rd Edition, PHI, 2005.				
books	 Ned Mohan, T.M. Undeland and William P.Robbins: Power Electronics: Converters, Applications, 3rd Edition, John Wiley & Sons, 2009. 				

Subject Code	Communication Skills and Technical	Credits: 0 (1-0-2)	
HU650 [*] (Audit		Total hours: 15 Hrs	
Course)	Writing		
,			
Module 1		12 hours	
Communication-	Definition-Types-Classifications, Presentation Skills-Do's an	d Don'ts, Reports-	
Types-Format-Et	thics to be followed.		
Module 2		12 hours	
Writing Skills: T	echnical Document-Reports-Instruction Manuals-Project Proposa	ıl	
Module 3		10 hours	
Writing Exercise	s: Precis-Summary/Executive Summary/Abstract		
Module 4		8 hours	
Preparation of Re	eport- Prefatory Part- Main Part- Terminal Section		
	1. Raman & Sharma, Communication Skills, New Delhi: C	OUP, 2011.	
	2. Mandel, Steve, Technical Presentation Skills: A Practi	cal Guide for Better	
Reference	Speaking (Revised Edition), Crisp Learning, 2000.		
Books:	3. Wood, Millett, <i>The Art of Speaking</i> , New York: Drake	Publishers 1971	
	Sons, 2006.		

Subject Code EE 655	Viva	Credits: 2
	end for a viva-voce in front of all the faculty of the department f e first year (I and II semesters) with a suitable demonstration.	or the evaluation of

Electives

Subject Cod EE801	he Modeling and Simulation of Power Electronic Systems	Credits: 3 (3-0-0) Total hours: 45
Module 1		
	o ODE solvers, steps of using ODE solvers, Types of mathematical ematical modeling of simple electrical, Mechanical and electro mech	10
Module 2		
Simulation of N method.	power electronic converters: State-space representation, Trapezoi	dal integration, M and
Module 3		
modeling, PV conduction me Simulation of	eady state analysis of converters, dynamic analysis of converters WM modeling, modeling of converters operating in continuous ode, converter transfer functions. f electric drives: Modeling of different PWM Techniques, Model tor, V/f Control of Induction motor and Vector controlled 3-Ph Indu	us and discontinuous ling and simulation of
Module 4		
conventional state feedback	niques in Power Electronics: State space modelling and simulat controllers using small signal models, Fuzzy control, Hysteresis c k switching controllers. Modeling, simulation of switching conve ate Space Averaging Technique and its application in simulation	ontrollers, Output and erters with state space
Reference books	 M. B. Patil, V. Ramnarayanan and V. T. Ranganathan: Electronic Converters, 1st Edition, Narosa Publishers, 2010. Ned Mohan, T.M. Undeland and William P.Robbins: Power E Applications, 3rd Edition, John Wiley & Sons, 2009. <u>Chee-Mun Ong</u>: Dynamic Simulation of Electric 	Simulation of Power lectronics: Converters,

Subject Code EE802	Advanced Power Electronics	Credits: 3 (3-0-0) Total hours: 45
Module 1		
	-dc converters: Buck, boost, buck-boost, Cuk, SEPIC, Zeta	
	s: Flyback, forward, Cuk, half bridge, push-pull and bridge	Ũ
	age converters (SSSSC), power factor correction. Their	application in SMPS, UPS,
welding and light Module 2	lung systems.	
	proved power quality ac-dc converters: Buck, boost, buck	hoost DWM VSC (Voltage
0 1	rs), multilevel VSCs, PWM CSC (Current voltage source c	· · · · ·
Module 3		
*	proved power quality ac-dc converters: VSC, multileve	· · ·
	urrent voltage source converters). Multipulse ac-dc conv	verters: Diode and thyristor
based converter	s, power factor correction.	
Module 4		
Solid state cor	trollers for motor drives: Vector control and direct to	orque control of induction,
•	rmanent magnet sine fed, synchronous reluctance motors,	e
	and switched reluctance motors, LCI (load commutated	
synchronous mo	tor drives, Energy conservation and power quality improve	ements in these drives.
	. M.H. Rashid : Power Electronics-circuits, Devices and	d Applications, 3rd Edition,
	PHI, 2005.	
	2. Ned Mohan, T.M. Undeland and William P. Ro	obbins: Power Electronics
	Converters, Applications, 3rd Edition, John Wiley & S	
Reference		
books	 Marian K. Kazimierczuk: Pulse-width Modulated DC-I Wiley & Sons Ltd., 1st Edition, 2008. 	JC Power Converters, John
	whey & Sons Etu., 1st Eutholi, 2008.	
	 Robert W. Erickson and DraganMaksimovic: Fundame Springer, 2nd Edition,2001. 	entals of Power Electronics,

Subject Code EE 803	Photovoltaic and its appl	lications	Credits: 3 (3-0-0) Total hours: 45
Module 1			
•••	blar insolation vs world energy demand, cu Imental and health effects. Sustainable Energ	•••	•
Module 2			
gap theory, abso cell properties a depletion layer, and other losse metal-semicond solar cell applic circuits, load m alone PV system	V): Fundamentals of solar cells, types of so orption of photons, excitation and photoemiss and design, p-n junction photodiodes, deple electron and holes transports, device physics s, I-V characteristics, output power, single uctor hetero junctions and semiconducting ma vations: pv cell interconnection, module stru atching, efficiency, fill factor and optimizations, system sizing, device structures, device ersion, inverters, on-site storage and grid conre-	sion of electrons ation region, electrons , charge carrier g junction and trip aterials for solar of acture and modu on for maximum construction, in	, band engineering, Solar ctrostatic field across the generation, recombination ple-junction solar panels cells. le fabrication, equivalent n power; design of stand-
Module 3	Asion, inverters, on site storage and grid com		
maximum light concentrators, f maximum pow calculations for	ring: Optical design, anti-reflection coatin absorption, operating temperature Vs. con- resnel lenses and fresnel reflectors, operatin er output. Cost analysis and environment different types of solar panels and colle nd safety issues, protection systems, performa	version efficienc ng solar cells at al issues: Cost ectors, installati	y, types of solar energy high incident energy for analysis and pay back
Module 4			
telluride thin-fi applications, n production. Pho	cells: Single crystal, polycrystalline and m solar cells, conversion efficiency; curr anotechnology applications, quantum dots to electrochemical cells for hydrogen produ hemical cells for hydrogen production, sola my.	rent trends in p s, solution base action: photo election	hotovoltaic research and ed processes solar cell ctrochemical electrolysis,
	1. Jenny Nelson: The Physics of Solar Cells,	, Imperial Colleg	e Press, 2003
	2. Stephen J. Fonash: Solar Cell Device Phy		
Reference books	 Soteris A. Kalogirou: Solar Energy Engin Press, 2009 	eering: Processe	s and Systems, Academic

Subject Code	Power System Dynamics and	Credits: 3 (3-0-0)
EE804	Control	Total hours: 45
Module 1		

Modelling: Synchronous machine theory and modelling:- armature and field structure, Parks transformation, machine with multiple pole pairs-mathematical description, d-q transformation, per unit representation, equivalent circuit for d-q axes, steady state analysis- voltage-current and flux linkage, phasor representation, rotor angle – steady state equivalent circuit, Excitation system modelling-excitation systems block diagram - system representation by state equations- State space representation concept, Eigen properties of the state vectors.

Module 2

Stability Analysis: Small signal stability analysis -small signal stability of a single machine connected to infinite bus system, classical representation of generator, small signal stability of a multi machine connected to infinite bus system. Characteristics of small - signal stability problems.

Transient stability- Concept of transient stability, response to a step change in mechanical power input, Swing equation, multi-machine analysis, factors influencing transient stability, numerical integration method, Euler method, R-K method (4rth order), critical clearing time and angle, methods for improving transient stability.

Voltage stability:- Basic concept, transmission system characteristics, generator characteristics, load characteristics, PV curve, QV curve and PQ curve, characteristics of reactive power compensating devices. Voltage collapse and prevention of voltage collapse.

Module 3

Power System Stabilizer: Block diagram of PSS, system state matrix including PSS, analysis of stability, small-signal stability improvement methods: delta-omega and delta P-omega stabilizers. Frequency-based stabilizers, Digital Stabilizer, Excitation control design Exciter gain, Phase lead compensation, Stabilizing signal washout stabilizer gain, Stabilizer limits

Reference books	 Kundur: Power System Stability and Control, McGraw-Hill Anderson.P.M and Fouad: Power System Control and Stability", IEEE Press Power Engineering Series K R Padiyar: Power system Dynamics Stability and Control, B S Publication. Peter W. Sauer and M APai: Power system Dynamics Stability, Pearson Education Asia. Nasser Tleies: Power Systems Modelling and Fault Analysis, Elsevier, 2008.
--------------------	--

Subject Code EE805	Smart Electric Grid	Credits: 3 (3-0-0) Total hours: 45	
Module 1			
Introduction to S for Smart Grid	mart Grid-Smart Grid Functions - Advantages - Indian Smar	t Grid - Key Challenges	
Module 2			
Distribution Au Technologies.	itecture -Components and Architecture of Smart Grid Des tomation - Computational Intelligence Techniques - I	•	
Module 3			
Introduction to Renewable Energy Technologies - Micro grids - Storage Technologies - Electric Vehicles andplug - in hybrids - Environmental - Synchro Phasor Measurement Units (PMUs) - Wide Area MeasurementSystems (WAMS) - Control of Smart Power Grid System			
Module 4			
Industrial Autom introduction to S between SCAD	Cactory & Process Automation, PLC, Networking standards. ation, field bus and Ethernet.Supervisory Control and Data CADA: grid operation and Control.Distributed Control Sys A system and DCS, architecture, local control unit, H acilities, operator interface, engineering interfaces.	Acquisition (SCADA), tems (DCS), difference	
Reference books	 Stuart Borlase: Smart Grids: Infrastructure, Technology, Electric Power and Energy Engineering Published: October Gil Masters: Renewable and Efficient Electric Power Syst 2004. A.G. Phadke and J.S. Thorp: Synchronized Phasor M Applications, Springer, 2008. T. Ackermann: Wind Power in Power Systems, 2nd H Sons, 2012 Michael P. Lukas: Distributed Control Systems, Van Nost 1995. 	24, 2012 by CRC Press em , Wiley-IEEE Press, leasurements and their Edition, John Wiley &	

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Department of Electrical and Electronics Engineering (EEE) Master of Technology in Power Electronics and Power Systems

Subject Code EE806	Power Quality	Credits: 3 (3-0-0) Total hours: 45
Module 1		

Introduction to power quality: terms and definitions: overloading, under voltage, over voltage. Concepts of transients: short duration variations such as interruption, long duration variation such as sustained interruption. Voltage sag, voltage swell, voltage imbalance, voltage fluctuation, over voltages, under voltages, power frequency variations. Harmonics: harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics: harmonics Vs transients. Effect of harmonics, harmonic distortion, voltage and current distortion, harmonic indices, inter harmonics, resonance. Harmonic distortion evaluation, devices for controlling harmonic distortion, passive and active filters. IEEE and IEC standards of power quality.

Module 2

Introduction to APF technology, solutions for mitigation of harmonics, classification of power filterspassive filters, active filters, hybrid filters; active filters applications depending on power quality issues; selection of power filters; categorization of active power filter: converter based categorization, topology based categorization, supply system based categorization, selection considerations of APFS; technical and economic considerations.

Module 3

Introduction to active power filter control strategies: shunt active filter basic compensation principle, Clark's transformations, parks transformations, active power filter control strategies, signal conditioning, current control techniques for derivation of gating signals, generation of gating signals to the devices of the APF, hysteresis current control scheme and adaptive hysteresis current control scheme, derivation of compensating signals, compensation in frequency domain, compensation in time domain.

Module 4

Control strategies: Instantaneous active and reactive power (p-q) control strategy, Instantaneous active and reactive current (I_d-I_q) control strategy and perfect harmonic cancellator.

Introduction to Dc link voltage regulation: DC link voltage regulation with PI Controller, Type-1 fuzzy logic controller, Type-2 fuzzy logic controller, and neural networks.

0	
	 H. Akagi: Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press, 2007.
Reference books	 G.T. Heydt: Electric Power Quality, 2nd Edition, West Lafayette, IN, Stars in a Circle Publications, 1994.
DUUKS	 M.H.J Bollen: Understanding Power Quality Problems: Voltage Sags and Interruptions, NewYork, IEEE Press, 1999.

Subject Co	de		Credits: 3 (3-0-0)	
EE 807		Soft Computing	Total hours: 45	
Module 1				
Introduction	to b	viological and artificial neuron models, operations of art	ificial neuron, types of	
neuron activ	vatio	n function, history of artificial neural systems develop	ment, Mc-culloch-Pitts	
neuron mode	el, A	NN architectures, neural dynamics (activation and synap	otic), neural processing,	
learning strat	tegie	s, learning rules.		
Module 2				
Classification	n mo	odel, features, and decision regions, discriminant function	ns, models of Artificial	
Neural Netw	vorks	: feed forward network, feedback network, single and r	nultilayer feed forward	
neural netw	orks	- introduction, perceptron models: discrete, continuou	is and multi-category,	
training alg	orith	ms: discrete and continuous perceptron networks, p	erceptron convergence	
theorem, lim	nitati	ons of the single layer perceptron model (XOR Probler	n), Applications; credit	
assignment	prob	lem, generalized delta rule, Back Propagation Algor	rithm (BPA), learning	
difficulties a	nd ir	nprovements.		
Module 3				
Associative	men	nories: Hebbian learning, general concepts of associativ	ve memory (associative	
matrix, asso	ociat	ion rules, hamming distance, Bidirectional Associa	tive Memory (BAM)	
architecture,	arch	itecture of Hopfield network: discrete and continuous vers	sions, storage and recall	
algorithm. N	Jeura	l network applications: process identification, control, fa	ault diagnosis and load	
forecasting.				
Module 4				
		classical sets - properties, operations and relations; fu	• • •	
•	-	erations, properties, fuzzy relations, cardinalities, r	*	
		embership value assignment, development of rule base	-	
•	•	nference systems: Mamdani max-min and max-produc	*	
		o crisp sets, defuzzification methods: COA, BOA, Mo		
e e		l rules: trapezoidal MF, triangular MF and Gaussian MF	• •	
	applications: fuzzy logic control and fuzzy classification. Applications of fuzzy systems.			
Module 5				
Evolutionary Computation: Different variants, Genetic Algorithm. ; Hybrid Systems: ANFIS,				
Fuzzy Filtered NN & Neural Fuzzy Systems, GA tuned Fuzzy System. Introduction to Type-2				
FLC: The structure of Type-2 FLC, Type-2 fuzzy inference system with different fuzzy MFs				
(Trapezoidal membership function, Triangular membership function and Gaussian MF).				
		J. M. Zurada: Introduction to artificial neural networks, Ja	1 '	
Reference		Simon Haykin: Neural Networks A Comprehensive Found		
books		J. S. R. Jang, C. T. Sun , E. Mizutani: Neuro-Fuzzy a		
DOOR2		Computational Approach to Learning and Machine Intellig		
	4. ′	Timothy J Ross: Fuzzy Logic with Engineering Application	ons, TMH, 2007.	

Subject Coc EE808	DSP Controlled Drives	Credits: 3 (3-0-0) Total hours: 45	
Module 1			
Overview of TMSLF2407 or Advanced DSP controllers: Instruction Set, Interrupts, ADC, Event managers.			
Module 2	Module 2		
Implementation of PWM schemes: Single pulse, Multiple pulse, Sine triangle PWM, Space vector PWM.			
Module 3			
Clarke's and park's transformations: Implementation of Clarke's and Park's transformation,			
Module 4			
DSP-Based Control of Stepper Motors, BLDC Motors, synchronous motors, Induction Motor			
Reference books	1. Hamid A. Toliyat: DSP Based Electromechanical Motio Press, 2004.	n Control, 1st Edition, CRC	
DOOKS	2. Bin-Wu: High-power Converters and AC Dr Wiley & Sons, 2006	rives, IEEE Press, John	
	3. R. Krishnan: Electric Motor drives - Modelling, Analysis and Control, PHI India		

Subject Coo EE809	de	Digital Control Theory	Credits: 3 (3-0-0) Total hours: 45
Module 1	I	· · · ·	
Vs Digital Sig time System	gnal Pi Anal	ital Control Systems: Continuous-time Vs Discrete-tim rocessing (DSP),Signal Discretization, Continuous-time ysis, Continuous-time Controller Design, Controller Implementation.	System Analysis, Discrete-
Module 2			
	ction N	proach to Discrete time Systems: Definition of the Matrix $G(z)$, State Transformations, Observability and	
Module 3			
0		Digital Control Systems Using Transform Techniques sign by Discrete Equivalent, Root Locus Design in the z	* *
Module 4			
-	-	Control Systems: A State Space Approach, Control La legulator Design.	aw Design, State Feedback,
Module 5			
	-	ntization, Analysis of Finite Precision Errors, Limit n, Adaptive control.	t Cycles, Optimal control,
		Zhou, J. Doyle, and K. Glover: Robust and Optimal Con Zhou andJ. C. Doyle: Essentials of Robust Control, Pren	

Subject Code EE810	Optimal Control	Credits: 3 (3-0-0) Total hours: 45		
Module 1				
	Calculus of Variations: problems of Lagrange, Mayer and Bolza, Euler-Language equation and transversality conditions, Lagrange multiplier technique			
Module 2				
Dynamic prog optimization	ramming, Numerical solution techniques, Static and dynar	nic optimization, Parameter		
Module 3				
Pontryagin's principle: theory, application to minimum time, control problems, and terminal control problem				
Module 4				
Dynamic progr	Dynamic programming: Belaman's principle of optimality, multistage decision processes			
Module 5				
Ũ	or problem: matrix Riccati equation and its solution, Tracking in the solution, Application of mathematical programming, sin			
	1. M. Athans and P.L. Falb: Optimal Control, McGraw Hi	11, 2007.		
	2. S.P. Sethi and G.L. Thompson: Optimal Control Theory, 2nd editi Kluwer Academic Publishers, 2000			
Reference books	 D.P. Bertsekas: Dynamic Programming and Opt. 3rd edition, Athena Scientific, 2005 	imal Control, Volume I,		
	 M. Green, D.E. Johnson and D.J. N. Limebeer: Linear Robust Con Prentice Hall, Digitized Dec 2007 			