CBSE Class 12 Mathematics Compartment Answer Key 2017 (July 17, Set 2 - 65/1/2)

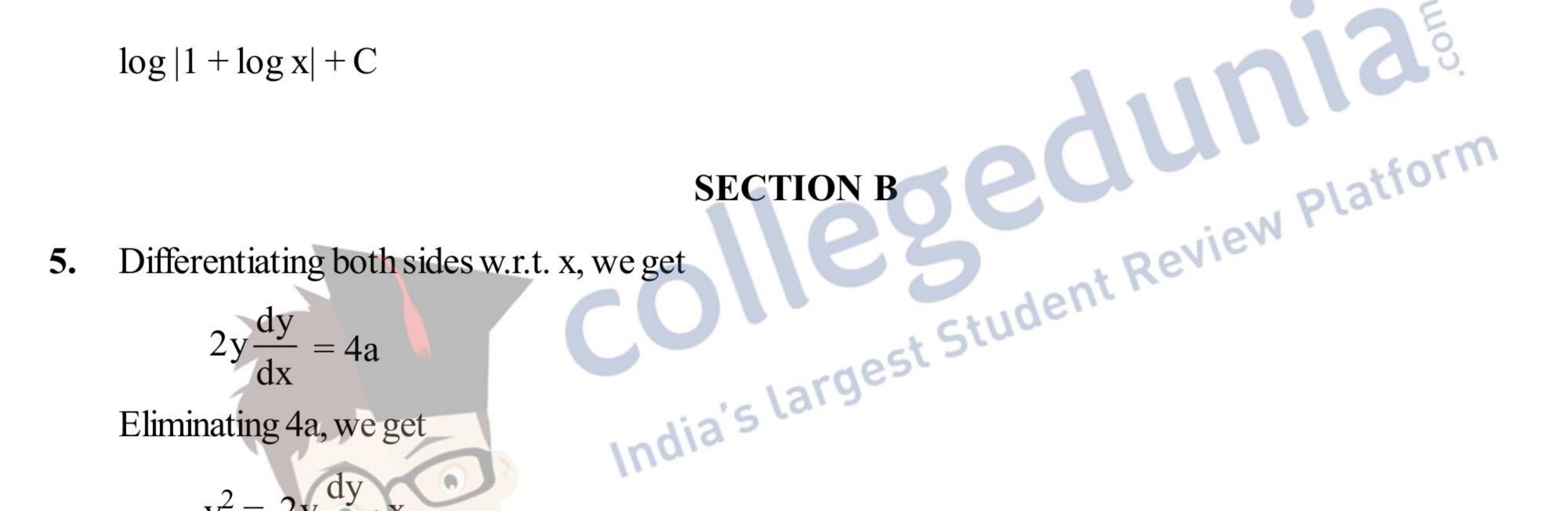
65/1/2 QUESTION PAPER CODE 65/1/2 **EXPECTED ANSWER/VALUE POINTS SECTION A**

 $1. \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$ Slope of tangent at (0, 0) is 1

Equation of tangent is y = x

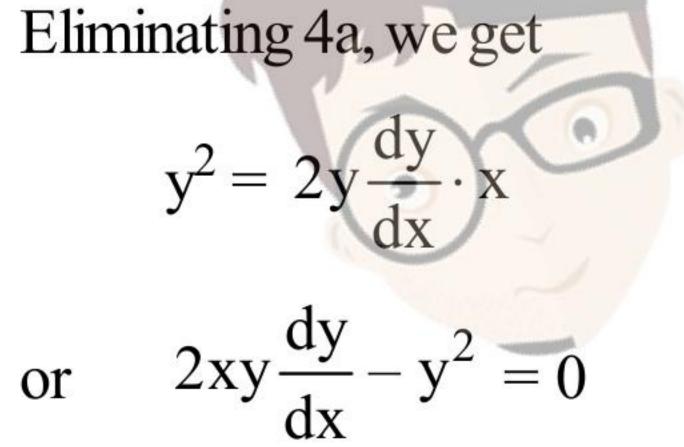
2. π

- Order of AB is 3×4 3.
- Putting $(1 + \log x)$ or $\log x = t$ 4.



dx

2y



=4a

Let number of large vans = x6. and number of small vans = y

Minimize $\cot z = 400x + 200y$

Subject to constraints

 $200x + 80y \ge 1200 \text{ or } 5x + 2y \ge 30$

$x \le y$ $400x + 200y \le 3000 \text{ or } 2x + y \le 15$ $x \ge 0, y \ge 0$

(16)

65/1/2

*These answers are meant to be used by evaluators

 $\overline{2}$

2

2

2

 $\overline{2}$

7. $R_2 \rightarrow R_2 + R_1$ implies

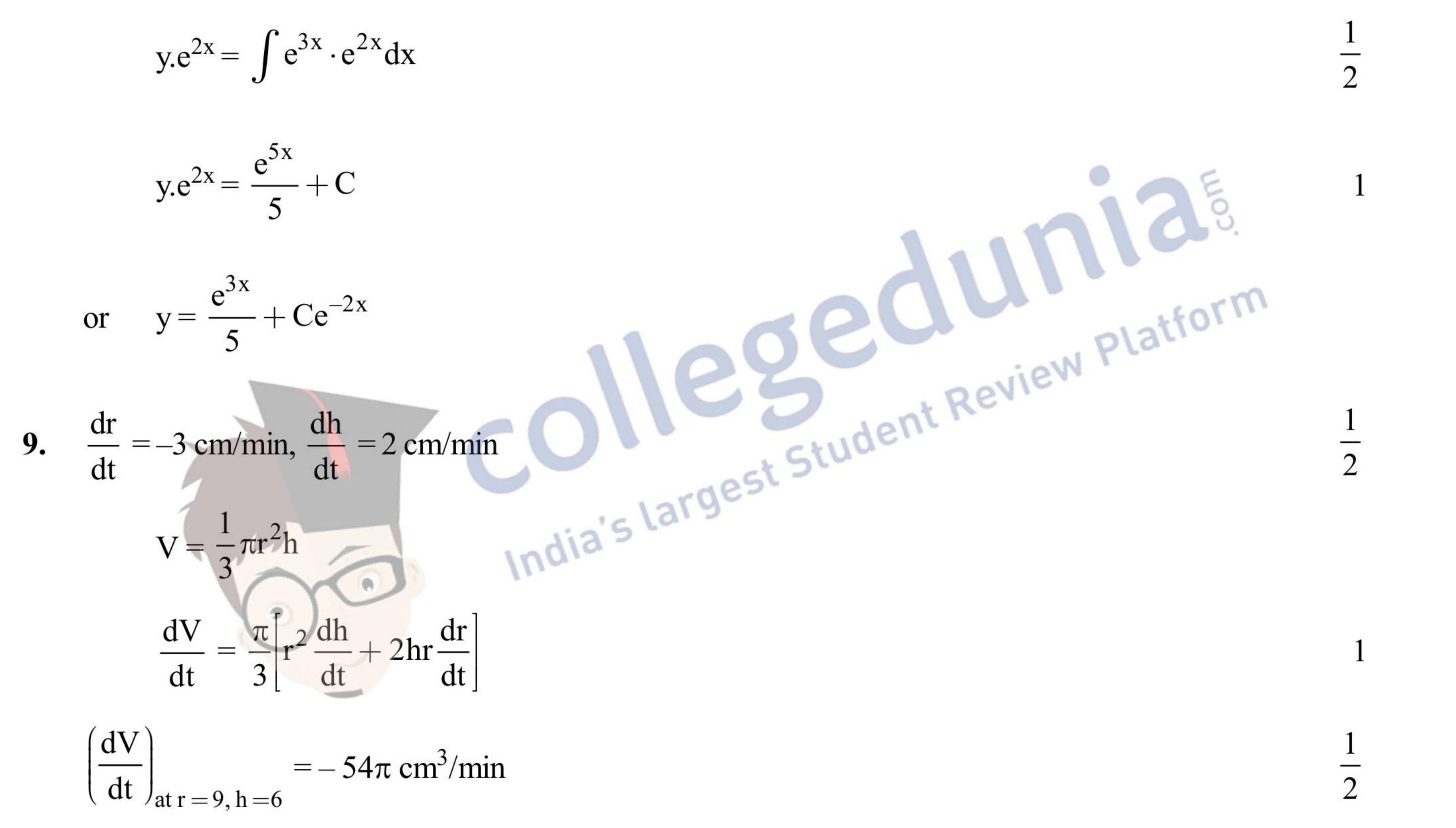
$$\begin{pmatrix} 2 & 3 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 8 & -3 \\ 17 & -7 \end{pmatrix}$$

1 mark for pre matrix on LHS and 1 mar for matrix on RHS

8. Integrating factor is
$$e^{\int 2dx} = e^{2x}$$

2

1 + 1



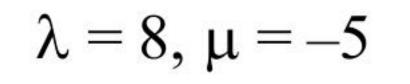
(17)

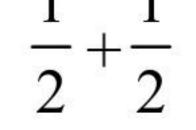
 $\frac{1}{2}$

Volume is decreasing at the rate 54π cm³/min. \Rightarrow

10.
$$11\hat{i} - 3\hat{j} = \frac{3(12\hat{i} + \mu\hat{j}) + 1(\lambda\hat{i} + 3\hat{j})}{4}$$

 $44 = 36 + \lambda, -12 = 3\mu + 3$





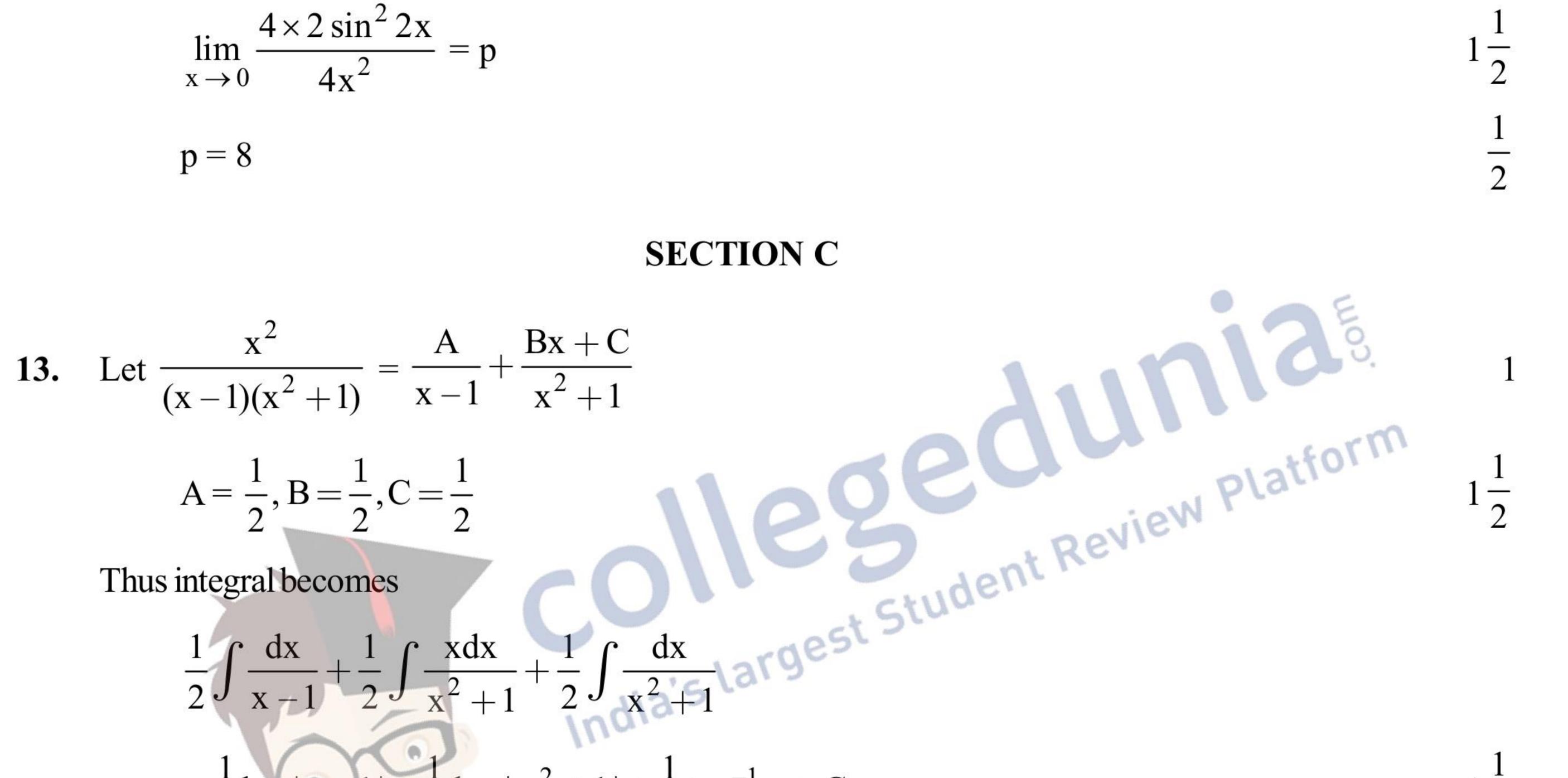
65/1/2

Given integral becomes 11.

$$\int \sqrt{1 - (x - 1)^2} \, dx$$

= $\frac{(x - 1)}{2} \sqrt{2x - x^2} + \frac{1}{2} \sin^{-1}(x - 1) + C$

12.
$$\lim_{x \to 0} f(x) = f(0)$$



(18)

$$= \frac{1}{2} \log |x - 1| + \frac{1}{4} \log |x^{2} + 1| + \frac{1}{2} \tan^{-1} x + C$$

14. $\overrightarrow{AB} = \hat{i} + (x-3)\hat{j} + 4\hat{k}$

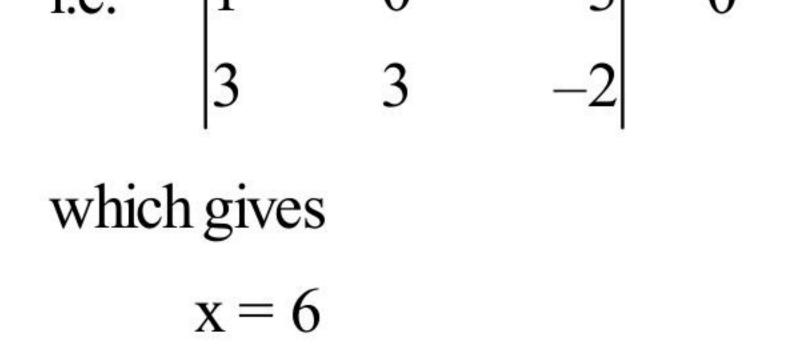
 $\overrightarrow{AC} = \hat{i} - 3\hat{k}$

$$\overrightarrow{AD} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$

As A, B, C & D are coplanar

$$\therefore \quad \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = 0$$
i.e.
$$\begin{vmatrix} 1 & x - 3 & 4 \\ 1 & 0 & -3 \end{vmatrix} = 0$$

2



65/1/2

Given differential equation can be written as 15.

65/1/2

(19)

....(i)

$$\frac{dy}{dx} = \frac{y\cos\frac{y}{x} + x}{x\cos\frac{y}{x}}$$

Clearly it is homogenous

Let
$$\frac{y}{x} = v, \frac{dy}{dx} = v + \frac{dv}{dx}$$

(1) becomes

$$v + x \frac{dv}{dx} = v + \sec v$$

$$\Rightarrow \cos v \, dv = \frac{dx}{x}$$

integrating both sides we get

$$\sin v = \log |x| + C$$

 $\frac{y}{x} = \log|x| + C$

Putting $x = \cos \theta$ 16.

$$\frac{1}{2}$$

$$\Rightarrow \cos v \, dv = \frac{dx}{x}$$
integrating both sides we get
$$\sin v = \log |x| + C$$

$$\sin \frac{y}{x} = \log |x| + C$$
Putting $x = \cos \theta$
LHS becomes
$$\tan^{-1}\left(\frac{\sqrt{1 + \cos \theta} - \sqrt{1 - \cos \theta}}{\sqrt{1 + \cos \theta} + \sqrt{1 - \cos \theta}}\right)$$

$$= \tan^{-1}\left(\frac{\sqrt{2}\cos \theta/2 - \sqrt{2}\sin \theta/2}{\sqrt{2}\cos \theta/2 + \sqrt{2}\sin \theta/2}\right)$$

$$1$$

$$= \tan^{-1}\left(\frac{1 - \tan \theta/2}{1 + \tan \theta/2}\right)$$

$$1$$

$$1$$

2

θ π

4 $=\frac{\pi}{4}-\frac{1}{2}\cos^{-1}x=RHS$

 $\overline{2}$

65/1/2

17. Taking x, y, z common from C_1 , C_2 , C_3 respectively, we get

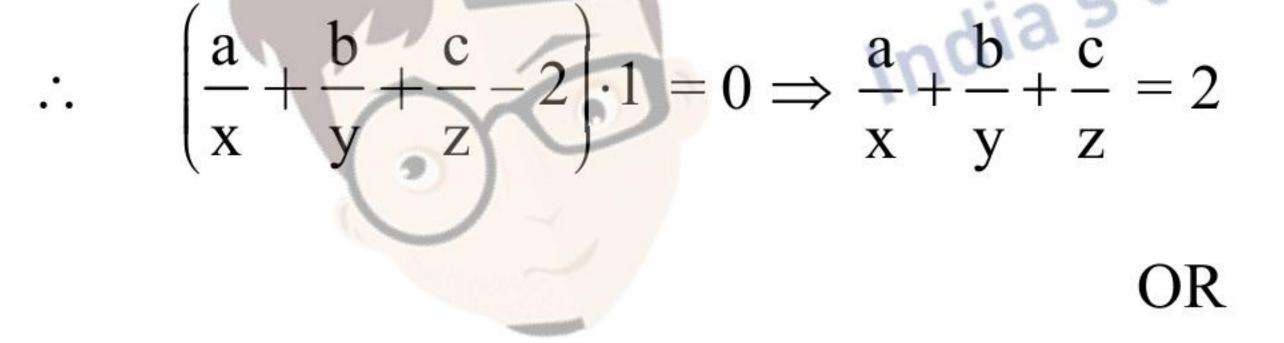
$$\begin{array}{cccc} xyz \begin{vmatrix} a/x & b/y-1 & c/z-1 \\ a/x-1 & b/y & c/z-1 \\ a/x-1 & b/y-1 & c/z \end{vmatrix} = 0$$

 $C_1 \rightarrow C_1 + C_2 + C_3$ $|a/x + b/y + c/z - 2 \qquad b/y - 1 \qquad c/z - 1|$

$$\begin{vmatrix} a/x + b/y + c/z - 2 & b/y & c/z - 1 \\ a/x + b/y + c/z - 2 & b/y - 1 & c/z \end{vmatrix} = 0$$

(20)

65/1/2



We know that

IA = A

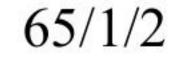
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - R_1$$

$$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -5 \end{pmatrix}$$

 $\begin{pmatrix} 2 & 1 \end{pmatrix}$

 $R_2 \rightarrow \frac{R_2}{-5}$



*These answers are meant to be used by evaluators

2

$$\begin{pmatrix} 1 & 0 \\ 2/5 & -1/5 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$R_1 \rightarrow R_1 - 2R_2$$

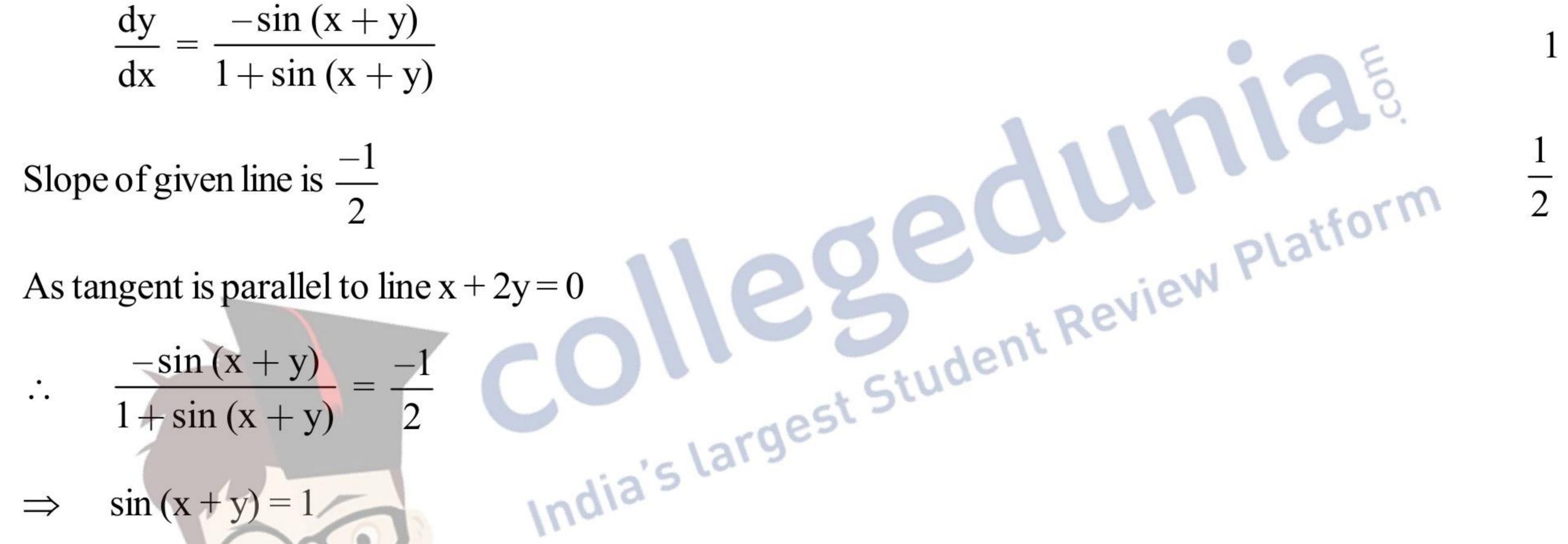
$$\begin{pmatrix} 1/5 & 2/5 \\ 2/5 & -1/5 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\therefore \quad A^{-1} = \begin{pmatrix} 1/5 & 2/5 \\ 2/5 & -1/5 \end{pmatrix}$$

2

Full marks for finding correct A^{-1} using column transformations with AI = A

18. Differentiating y = cos(x+y) wrt x we get



(21)

$$\Rightarrow \sin(x+y) = 1 \qquad \text{india 3}$$

$$\Rightarrow x+y = n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z} \qquad \dots(1)$$

Putting (1) in y = cos(x+y)

we get y = 0

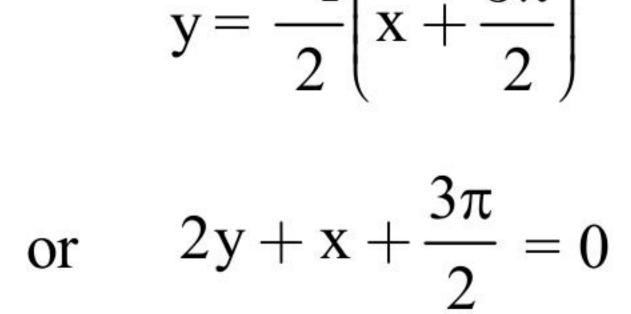
 \Rightarrow x = n π + (-1)ⁿ $\pi/2$, n \in Z

$$\mathbf{x} = \frac{-3\pi}{2} \in [-2\pi, 0]$$

.: Required equation of tangent is

$$-1(3\pi)$$

65/1/2



Given equation of lines can be written as 19.

$$\frac{x-1}{-3} = \frac{y-2}{2p/7} = \frac{z-3}{1} \qquad \dots(1)$$
$$\frac{x-1}{-3p/7} = \frac{y-5}{-1} = \frac{z-11}{-7} \qquad \dots(2)$$

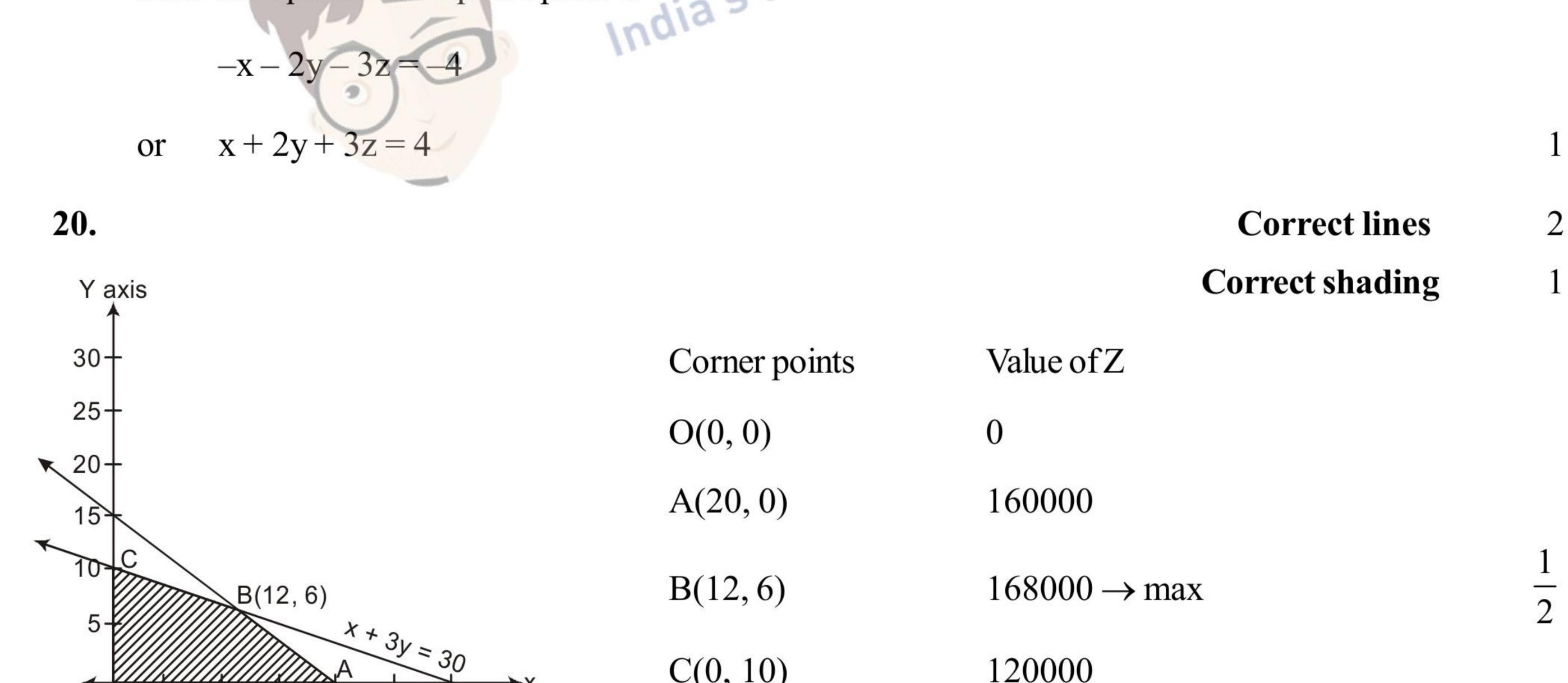
(1) & (2) are perpendicular

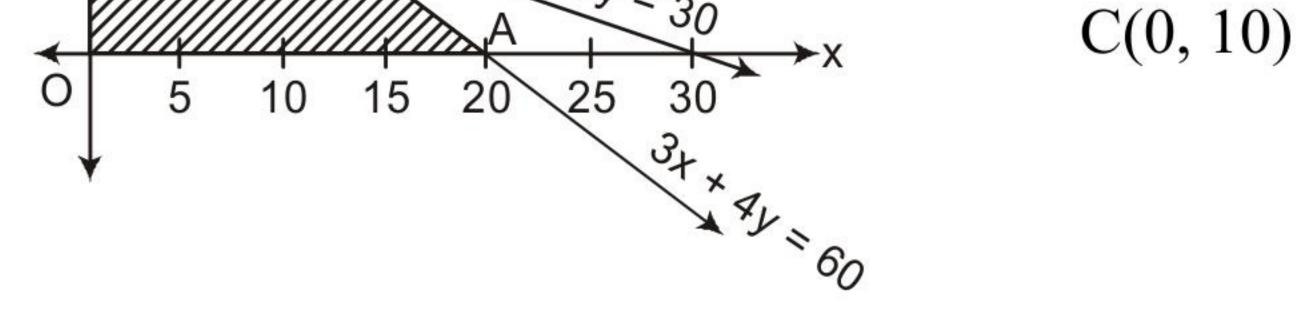
So
$$-3\left(\frac{-3p}{7}\right) + \frac{2p}{7}(-1) + 1(-7) = 0$$

which gives $p = 7$

OR

Required equation of plane is $x + y + z - 1 + \lambda(2x + 3y + 4z - 5) = 0$ for some λ . $(1+2\lambda)x + (1+3\lambda)y + (1+4\lambda)z = 1+5\lambda$ i.e. Ared plane is according to question $2\left(\frac{1+5\lambda}{1+3\lambda}\right) = 3\left(\frac{1+5\lambda}{1+4\lambda}\right)$ Solving we get $\lambda = -1$ Thus the equation of required plane is



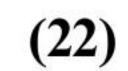


120000

Maximum Z = 168000

at x = 12, y = 6

65/1/2



21. Given integral =
$$\int \frac{x+7}{(3x+4)(x+7)} dx$$

= $\int \frac{1}{3x+4} dx$
= $\frac{1}{3} \log |3x+4| + C$

22.
$$\frac{dx}{dt} = -3 \operatorname{sint} + 6 \operatorname{cos}^2 t \operatorname{sint}$$

 $1\frac{1}{2}$

 $\frac{1}{2}$

 $=+3 \operatorname{sint} \cos 2t$ $\frac{\mathrm{dy}}{\mathrm{dt}} = 3\mathrm{cost} - 6\mathrm{sin}^2\mathrm{t} - \mathrm{cost}$ $=3\cos 2t$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot t$ Lategory A Lategory A Lategory B E₃: Student selected from category C 'udent could not get good marks

ui

23.

$$P(E_1) = \frac{1}{6} \quad P(E_2) = \frac{3}{6} \quad P(E_3) = \frac{2}{6}$$

 $\frac{2}{5} \times 0.2$

 $\frac{1}{6} \times .002 + \frac{3}{6} \times .02 + \frac{2}{6} \times 0.2$

$$P(S/E_1) = 0.002 P(S/E_2) = 0.02, P(S/E_3) = 0.2$$

$$P(E_3/S) = \frac{P(E_3) P(S/E_3)}{P(E_1) P(S/E_1) + P(E_2) P(S/E_2) + P(E_3) P(S/E_3)}$$

(23)

200231

Value: Hardwork and Regularity

*These answers are meant to be used by evaluators

65/1/2

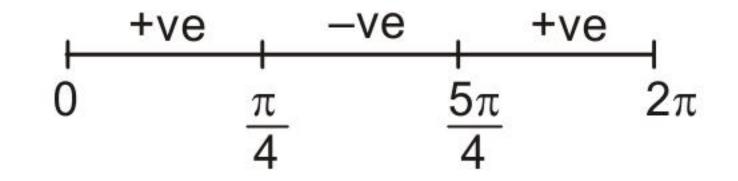
65/1/2 **SECTION D**

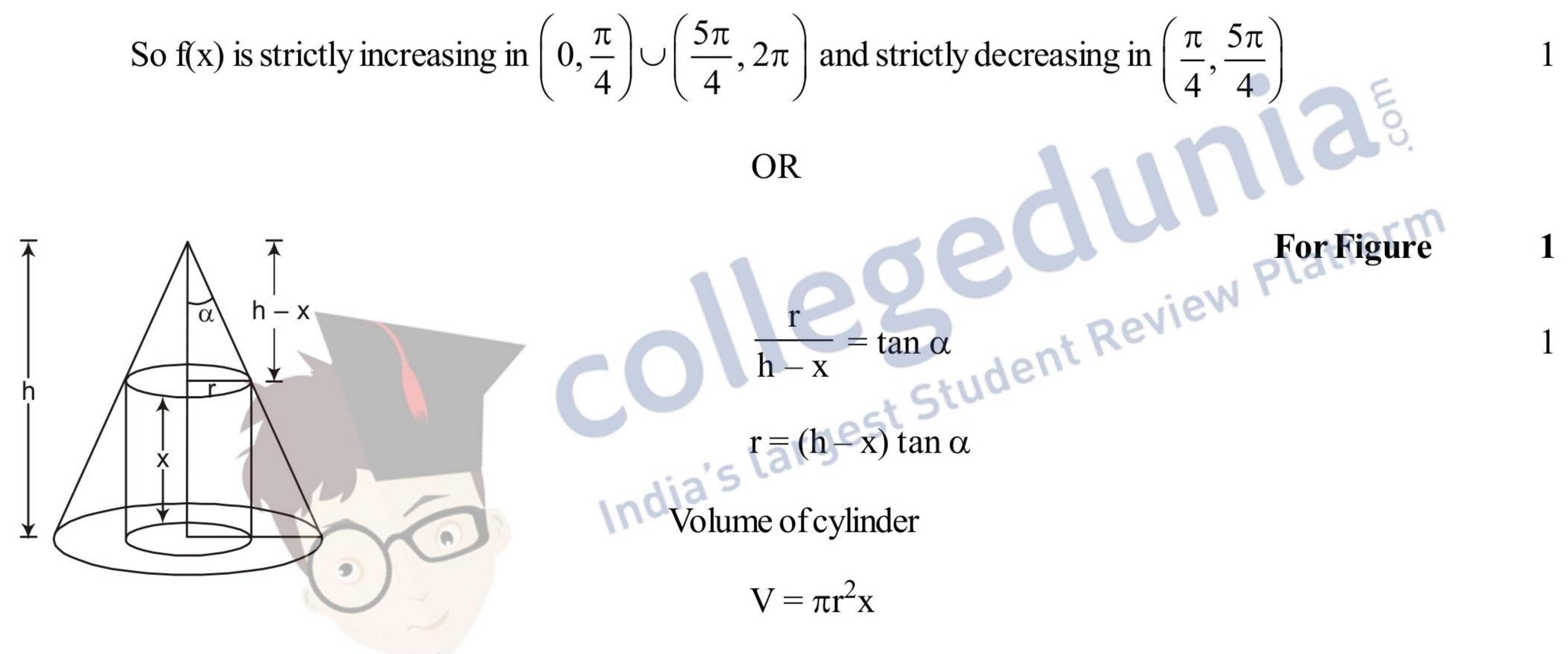
24. $f(x) = \sin x + \cos x$ $0 \le x \le 2\pi$

 $f'(x) = \cos x - \sin x$

$$f'(x) = 0 \Longrightarrow \cos x = \sin x$$
$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$

Sign of $f^{l}(x)$





$$V = \pi (h - x)^2 x \tan^2 \alpha$$

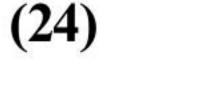
$$\frac{\mathrm{dV}}{\mathrm{dx}} = \pi \tan^2\left(h - x\right)\left(h - 3x\right)$$

$$\frac{dV}{dx} = 0 \Longrightarrow h = x \text{ or } h = 3x$$

i.e.
$$x = \frac{h}{3}$$

L

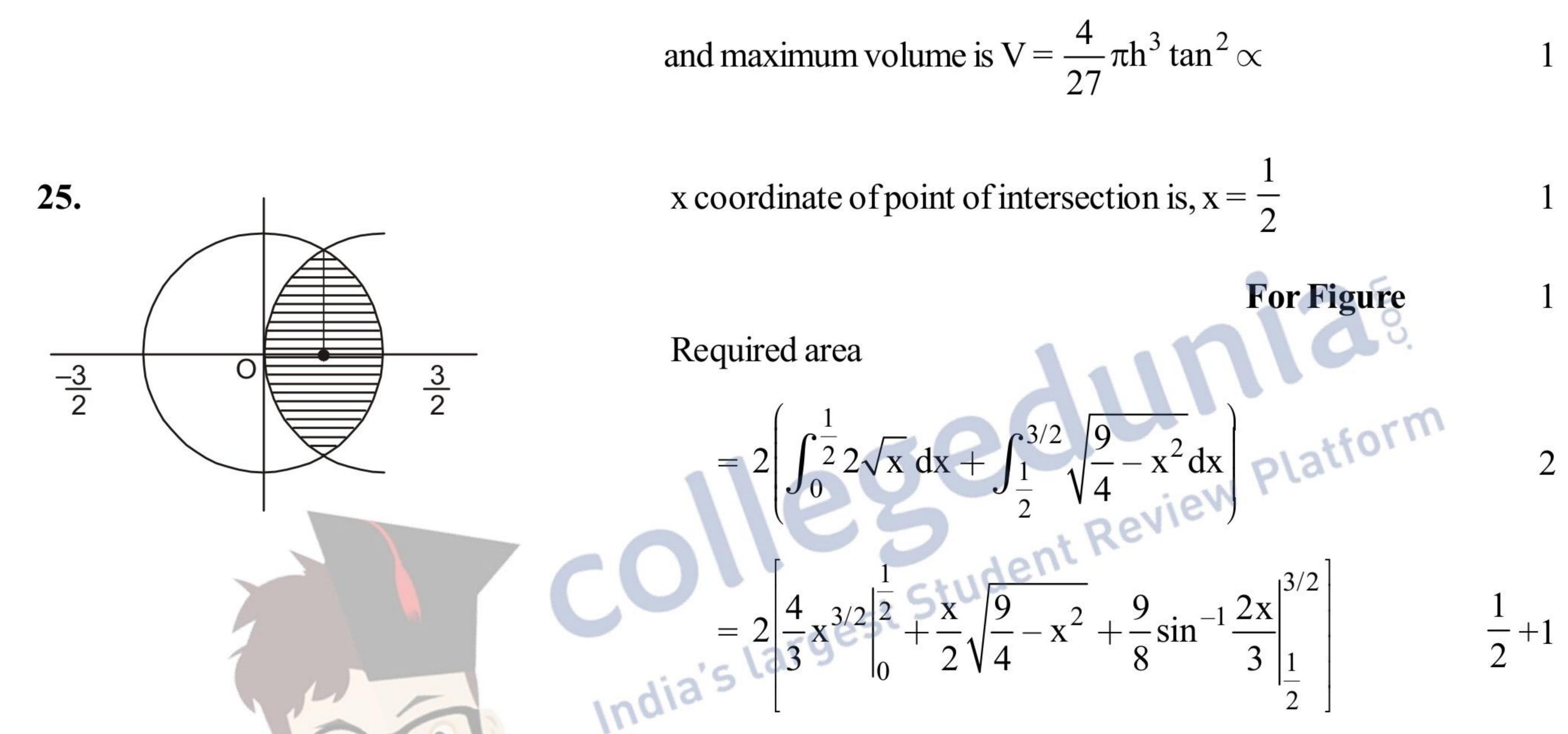
2



$$\frac{d^2 V}{dx^2} = \pi \tan^2 \alpha \ (6x - 4h)$$

$$\therefore \quad \frac{d^2 V}{dx^2} < 0 \quad \text{at} \quad x = \frac{h}{3}$$

$$\therefore \quad V \text{ is maximum at } x = \frac{h}{3}$$



(25)

.

•

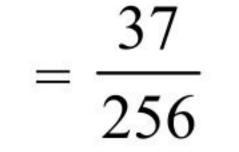
$$= {}^{8}C_{6} \left(\frac{1}{2}\right)^{8} + {}^{8}C_{7} \left(\frac{1}{2}\right)^{8} + {}^{8}C_{8} \left(\frac{1}{2}\right)^{8}$$

(ii)
$$P(X \ge 6) = P(X = 6) + P(X = 7) + P(X = 8)$$

(i) P(X = 5) = 8C₅
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^5 = \frac{7}{32}$$

26.
$$n = 8, P = \frac{1}{2}, q = \frac{1}{2}$$

$$= \frac{\sqrt{2}}{6} + \frac{9}{4} \left(\frac{\pi}{2} - \sin^{-1} \frac{1}{3} \right) \quad \text{or} \quad \frac{\sqrt{2}}{6} + \frac{9}{4} \cos^{-1} \frac{1}{3}$$



65/1/2

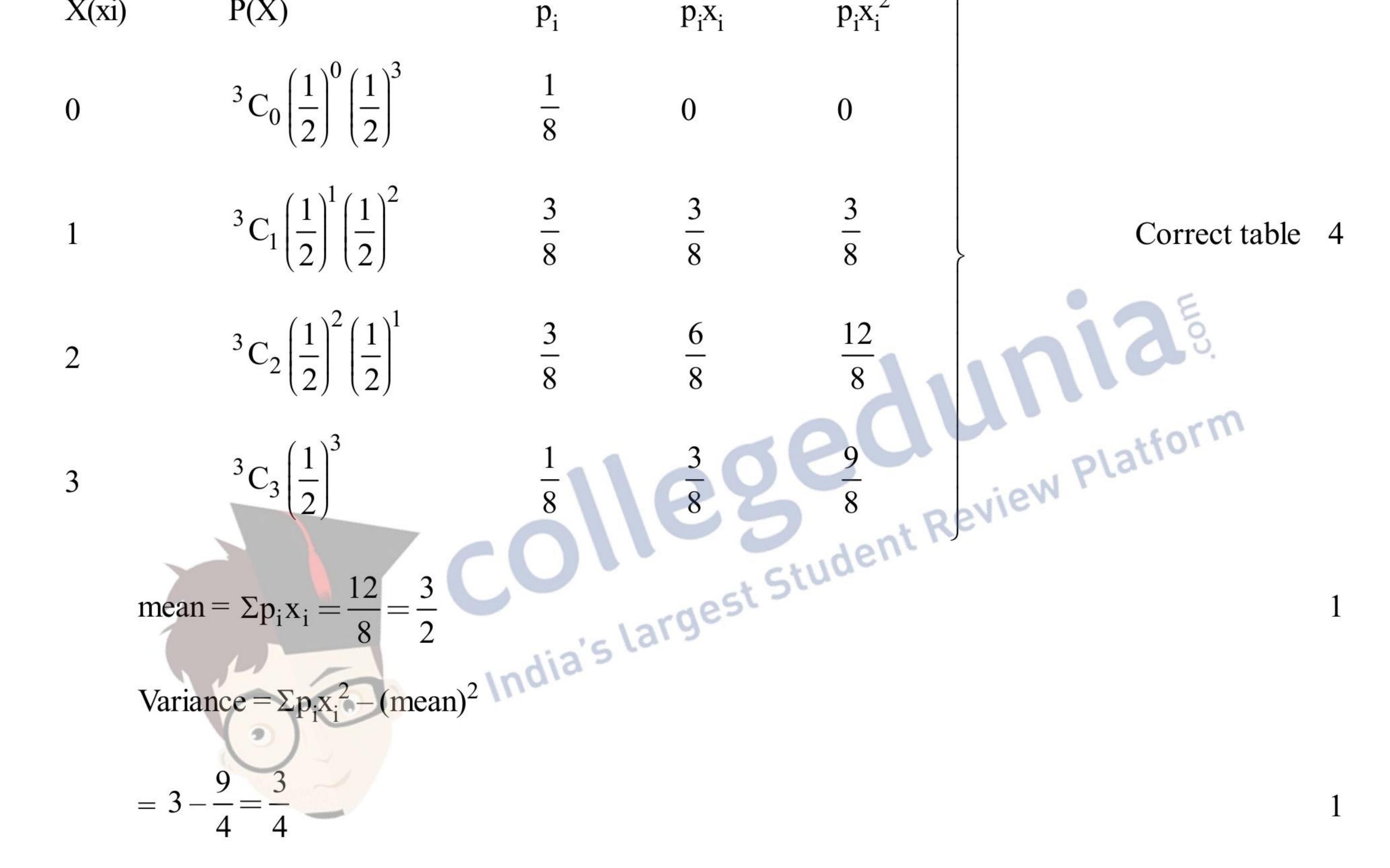
65/1/2 (iii) $P(X \le 6) = 1 - [P(X = 7) + P(X = 8)]$

$$=1-\frac{9}{256}=\frac{247}{256}$$

OR

Let X denote number of red cards drawn

X(xi) P(X)p_i p_ix_i



(26)

For one-one 27.

Let
$$x_1, x_2 \in \mathbb{R} - \left\{-\frac{4}{3}\right\}$$
 such that

$$f(x_1) = f(x_2)$$

$$\Rightarrow \quad \frac{4x_1}{3x_1 + 4} = \frac{4x_2}{3x_2 + 4}$$

$$\Rightarrow 12 x_1 x_2 + 16 x_1 = 12 x_1 x_2 + 16 x_2$$

$$\Rightarrow x_1 = x_2$$

f is one-one . .

65/1/2

*These answers are meant to be used by evaluators

3

Clearly f: R – $\left\{-\frac{4}{3}\right\}$ \rightarrow Range f is onto Let f(x) = yi.e. $\frac{4x}{3x+4} = y$ $\Rightarrow x = \frac{4y}{4-3y}$

65/1/2

So f⁻¹: Range f
$$\rightarrow$$
 R $-\left\{-\frac{4}{3}\right\}$ is
f⁻¹(y) = $\frac{4y}{4-3y}$

OR (a, b) * (c, d) = (a + c, b + d)Review Platform (c, d) * (a, b) = (c + a, d + b)(a, b) * (c, d) = (c, d) * (a, b)Student * is commutative

2

2

65/1/2

((a, b) * (c, d)) * (e, f) = (a + c, b + d) * (e, f) = (a + c + e, b + d + f)(a, b) * ((c, d) * (e, f)) = (a, b) * (c + e, d + f) = (a + c + e, b + d + f)

(27)

- As ((a, b) * (c, d)) * (e, f) = (a, b) * ((c, d) * (e, f))
- * is associative ...

·..

- Let (e_1, e_2) be identity
 - $(a, b) * (e_1, e_2) = (a, b)$ $(a + e_1, b + e_2) = (a, b)$
 - $e_1 = 0, e_2 = 0$

 $(0, 0) \in \mathbb{R} \times \mathbb{R}$ is the identity element.

28. Clearly order of X is 3×2

Let X =
$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$$

So
$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \\ 11 & 10 & 9 \end{pmatrix}$$

 $a + 4b = -7 \quad c + 4d = 2 \quad e + 4f = 11$
 $2a + 5b = -8 \quad 2c + 5d = 4 \quad 2e + 5f = 10$

Solving we get

2

$$a = 1$$
, $b = -2$, $c = 2$, $d = 0$, $e = -5$ $f = 4$

Thus
$$X = \begin{pmatrix} 1 & -2 \\ 2 & 0 \\ -5 & 4 \end{pmatrix}$$

29. Consider $\begin{vmatrix} -1+3 & 2-1 & 5-5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix}$
 $= \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix}$

65/1/2

: Lines are coplanar.

Equation of plane is given by

$$\begin{vmatrix} x+3 & y-1 & z-5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = 0$$

Which gives

$$-x + 2y - 3 = 0$$
 or $x - 2y + z = 0$

