Sample Paper

General Instructions

1. The Question Paper contains three sections.
2. Section A has 24 questions. Attempt any 20 questions.
3. Section B has 24 questions. Attempt any 20 questions.
4. Section C has $\mathbf{1 2}$ questions. Attempt any $\mathbf{1 0}$ questions.
5. All questions carry equal marks.
6. There is no negative marking.

SECTION-A

Section - A consists of 24 questions. Attempt any 20 questions from this section. The first attempted 20 questions would be evaluated.

1. In the following sketch of stomatal apparatus, parts I, II, III and IV were labelled differently by four students. The correct labelling is:

(a) I-guard cell, II-stoma, III-starch granule, IV-nucleus
(b) I-cytoplasm II-nucleus, III-stoma, IV-chloroplast
(c) I-guard cell, II-starch, III-nucleus, IV-stoma
(d) I-cytoplasm, II-chloroplast, III-stoma, IV-nucleus
2. The following picture depicts the photodecomposition of silver chloride. Photodecomposition of which compound is used in Black and white photography?

(a) silver fluoride.
(b) silver bromide.
(c) both
(d) none of these
3. When CO_{2} is passed through lime water, it turns milky. The milkiness in due to formation of -

(a) CaCO_{3}
(b) $\mathrm{Ca}(\mathrm{OH})_{2}$
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) CO_{2}
4. From the given picture of the digestive system, identify the part labelled as gastric gland.

(a) A
(b) B
(c) C
(d) D
5. Study the following figure and mark the correct matching pair.

Column I

(a) Autotrophic
(b) Heterotrophic nutrition
(c) Parasitic nutrition
(d) Digestion in food vaculoes
(q) Deer

Column II

(p) Green plant.
(r) Paramaecium
(s) Leech nutrition
6. The diagram below represents a group of organs in the human body. Urine leaves the urinary bladder by passing through this structure labelled

(a) A
(b) B
(c) C
(d) D
7. Among $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Zn}$ the metal that does not produce hydrogen gas in reaction with hydrochloric acid is
(a) Cu
(b) Zn
(c) Mg
(d) Fe
8. $\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$

The above reaction is an example of a:
(a) combination reaction
(b) double displacement reaction
(c) decomposition reaction
(d) displacement reaction.

10.

Which activity is illustrated in the diagram of an Amoeba shown above?
(a) Ingestion
(b) Digestion
(c) Egestion
(d) Assimilation
11. Chemical A is used for water softening to remove temporary hardness. ' A ' reacts with sodium carbonate to generate caustic soda. What is ' A '?
(a) Gypsum
(b) Slaked lime
(c) Quick lime
(d) Lime stone
12. Magnesium ribbon is rubbed with sand paper before making it to burn. The reason of rubbing the ribbon is to:
(a) remove moisture condensed over the surface of ribbon.
(b) generate heat due to exothermic reaction.
(c) remove magnesium oxide formed over the surface of magnesium.
(d) mix silicon from sand paper (silicon dioxide) with magnesium for lowering ignition temperature of the ribbon.
13. Identify the endothermic process from the following
(a) Addition of conc. HCl to water
(b) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(d) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
14. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is an acid which can donote only two H^{+}ions. A teacher asked Anshika and Ashima to write complete reaction between $\mathrm{H}_{3} \mathrm{PO}_{3}$ and NaOH . Which of the following are correct?
(i) Anshika wrote 3 stoichiometry for NaOH .
(ii) Ashima wrote 2 stoichiometry for NaOH .
(iii) Ahshika wrote $\mathrm{Na}_{3} \mathrm{PO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ as product.
(iv) Ashima wrote $\mathrm{Na}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ as product.
(v) According to Anshika its a double displacement reaction.
(vi) According to Ashima its a neutralization reaciton.
(a) (i), (ii), (iii) and (vi)
(b) (ii), (iv) and (vi) only
(c) (ii), (iv), (v), (vi)
(d) All are correct
15. The metal that reacts with cold water is -
(a) mercury
(b) sodium
(c) zinc
(d) tungsten
16. A student added dilute HCl to a test tube containing zinc granules and made following observations which one is correct?

(a) The zinc surface became smooth and black.
(b) A gas evolved which burns with a pop sound.
(c) The solution remained colourless.
(d) The solution becomes green in colour.
17. The relation, $\mathrm{R}=2$ fholds true for :
(a) concave mirrors only
(b) convex mirrors only
(c) all spherical mirrors
(d) lens as well as for all spherical mirrors.
18. A magnification greater than unity indicates :
(a) real image
(b) size of the image is smaller than that of object
(c) size of the object is smaller than that of image
(d) size of object is equal to that of image
19. Where should an object be placed in front of a convex lens to get a real image of the size of the object?
(a) At the principal focus of the lens
(b) At twice the focal length
(c) At infinity
(d) Between the optical centre of the lens and its principal focus.
20. Find the angle of incidence and angle of reflection from the diagram.

(a) $45^{\circ}, 40^{\circ}$
(b) $55^{\circ}, 55^{\circ}$
(c) $60^{\circ}, 60^{\circ}$
(d) $30^{\circ}, 30^{\circ}$
21. If the refractive indices for water and diamond relative to air are 1.33 and 2.4 respectively, then the refractive index of diamond relative to water is -
(a) 5.5
(b) 1.80
(c) 3.19
(d) None of these
22. Under what conditions does a diverging lens form a virtual image of a real object
(a) Only if $u>f$.
(b) Only if $u<f$.
(c) Only if $u=f$
(d) A diverging lens always forms a virtual image of a real object.
23. Focal length of a lens is 25 cm . In dioptre, power of lens will be
(a) 0.04
(b) 0.4
(c) 4
(d) 2.5
24. Which of the following is not caused by the atmospheric refraction of light?
(a) Twinkling of stars at night
(b) Sun appearing higher in the sky than it actually is
(c) Sun becoming visible two minutes before actual sunrise
(d) Sun appearing red at sunset

SECTION-B

Section - B consists of 24 questions (Sl. No. 25 to 48). Attempt any 20 questions from this section. The first attempted 20 questions would be evaluated.
25. Which of the following is a chemical method for preventing an iron frying pan from rusting?
(a) applying grease
(b) applying paint
(c) applying a coating of zinc
(d) all of the above
26.

If we added FeSO_{4} to above four test tubes, in which test tube we observe black residue?
(a) "A" and "B"
(b) "B" and "C"
(c) "A" and "C"
(d) "B" and "D"
27. A student performed a reaction between egg shell and HCl . A gas ' X ' produce in this reaction was passed through the solution of slaked lime, it turn milky. This milkiness disappeared to on passing excess of X due to formation of ' Y ' when ' Y ' is heated very strongly, above $825^{\circ} \mathrm{C}$, substance ' Z ' is formed which reacts vigorously with water. $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ respectively are:
(a) $\mathrm{CO}_{2}, \mathrm{CaCO}_{3}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(b) $\mathrm{CO}_{2}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{CaCO}_{3}$
(c) $\mathrm{CO}_{2}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{CaO}$
(d) $\mathrm{O}_{2}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{CaCO}_{3}$
28. The following observations are given for four metals:
I. Metal H does not react with dilute HCl .
II. Metal K reacts with warm water.
III. Metal L does not react with water but displaces metal H from its aqueous salt solution.
IV. Metal M reacts with cold water.

Choose the correct decreasing order of reactivity of these metals amongst the following:
(a) M $>$ L $>$ H $>$ K
(b) $\mathrm{K}>\mathrm{M}>\mathrm{H}>\mathrm{L}$
(c) $\mathrm{M}>\mathrm{K}>$ L $>\mathrm{H}$
(d) L $>$ H $>$ K $>$ M
29. Consider the following reaction :
$x \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+y \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow m \mathrm{CO}_{2}(\mathrm{~g})+n \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Which of the following set of coefficients balances the above redox reaction?

	x	y	m	n
(a)	1	3	2	2
(b)	2	7	4	6
(c)	2	3	2	2
(d)	1	7	2	3

30. CuO reacts with X , forming CuSO_{4} and $\mathrm{H}_{2} \mathrm{O}$. X and type of reaction will be
(a) $\mathrm{K}_{2} \mathrm{SO}_{4}$, Displacement reaction
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$, Acid-base reaction
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$, Combination reaction
(d) $\mathrm{K}_{2} \mathrm{SO}_{4}$, Acid-base reaction

Question No. 31 to 35 consist of two statements-Assertion (A) and Reason (R). Answer these questions selecting the appropriate option given below:
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true and R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
31. Assertion : On adding $\mathrm{H}_{2} \mathrm{SO}_{4}$ to water the resulting aqueous solution get corrosive.

Reason : Hydronium ions are responsible for corrosive action.
32. Assertion : Different metals have different reactivities with water and dilute acids.

Reason : Reactivity of a metal depends on its position in the reactivity series.
33. Assertion: During physiology of excretion, deamination does not take place in liver.

Reason: Deamination is a process to make use of excess of amino acids which can not be incorporated into protoplasm.
34. Assertion: Danger signals are made of red colour

Reason: Velocity of red light in air is maximum, so signals are visible in dark.
35. Assertion : The balancing of chemical equations is based on law of conservation of mass.

Reason : Total mass of reactants is equal to total mass of products.
36. In respiration, air passes through
(a) Pharynx \rightarrow nasal cavity \rightarrow larynx \rightarrow trachea \rightarrow bronchi \rightarrow bronchioles \rightarrow Lungs
(b) Nasal cavity \rightarrow pharynx \rightarrow laryn $x \rightarrow$ trachea \rightarrow bronchi \rightarrow bronchioles \rightarrow Lungs
(c) Larynx \rightarrow nasal cavity \rightarrow pharynx \rightarrow trachea
(d) Larynx \rightarrow pharynx \rightarrow trachea \rightarrow lungs
37. The process of transpiration in plants helps in:
(a) Opening of stomata
(b) Absorption of CO_{2} from atmosphere
(c) Upward conduction of water and minerals
(d) Absorption of O_{2} from atmosphere.
38. The autotrophic mode of nutrition requires
(a) carbon dioxide and water
(b) chlorophyll
(c) sunlight
(d) all of the above
39. The figures represent three cases of a ray passing through a prism of angle A . The case corresponding to minimum deviation is

(1)

(2)

(3)
(a) 1
(b) 2
(c) 3
(d) None of these
40. Which of the following lenses would you prefer to use while reading small letters found in a dictionary?
(a) A convex lens of focal length 50 cm .
(b) A concave lens of focal length 50 cm .
(c) A convex lens of focal length 5 cm .
(d) A concave lens of focal length 5 cm .
41. The rate at which oxygen moves from the alveoli of our lungs into our blood
(a) depends on the difference in oxygen concentration between the alveoli and the blood.
(b) depends on the color of the alveoli.
(c) depends on the availability of energy to transport gases across the membrane.
(d) none of the above
42. Which one of the following animals has two separate circulatory pathways?
(a) Lizard
(b) Whale
(c) Shark
(d) Frog
43. Find out the correct option from the following.
(A) The magnification is positive for all virtual images and is negative for all real images.
(B) The magnification of concave lens and convex mirror is always positive where as the magnification of convex lens and concave mirror can be positive or negative depending on the position of the object before the lens.
(a) Only A is true
(b) Only B is true.
(c) Both A and B are true
(d) Both A and B are false
44. A pin $A B$ of length 2 cm is kept on the axis of a convex lens between 18 cm and 20 cm as shown in figure. Focal length of convex lens is 10 cm . Find magnification produced for the image of the pin.

(a) 0.83
(b) 1.00
(c) 1.25
(d) 6.78
45. In an experiment to determine the focal length of a concave lens, a student obtained the image of a distant window on the screen. To determine the focal length of the lens, she/he should measure the distance between the
(a) lens and the screen only
(b) lens and the window only
(c) screen and the window only
(d) screen and the lens and also between the screen and the window
46. Which statement best describes the property of light waves illustrated in the diagram below?

(a) Some materials absorb light waves.
(b) Some materials reflect light waves.
(c) Light waves are refracted by some materials.
(d) Light waves are emitted by some materials.
47. Light is incident on an air-water interface at an angle of 25° to the normal. What angle does the refracted ray make with the normal
(a) 19°
(b) 34°
(c) 25°
(d) 90°
48. You are provided with aqueous solutions of three salts - A, B and $C, 2-3$ drops of blue litmus solution, red litmus solution and phenolphthalein were added to each of these solution in separate experiments. The change in colours of different indicators were recorded in the following table:

Sample	With blue litmus solution	With red litmus solution	With phenolphthalein solution
A	No change	No change	No change
B	Turns red	No change	No change
C	No change	Turns blue	Turns pink

On the basis of above observations, identify A, B, and C from the following options:
(a) $\mathrm{A}=\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{B}=\mathrm{NaCl}, \mathrm{C}=\mathrm{CH}_{3} \mathrm{COONa}$
(b) $\mathrm{A}=\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{B}=\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{C}=\mathrm{NaCl}$
(c) $\mathrm{A}=\mathrm{NaCl}, \mathrm{B}=\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}=\mathrm{CH}_{3} \mathrm{COONa}$
(d) $\mathrm{A}=\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{B}=\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}=\mathrm{NaCl}$

SECTION-C

$\overline{\text { Section - C consists of three Cases followed by questions. There are a total of } 12 \text { questions in this section. Attempt any } 10}$ questions from this section. The first attempted 10 questions would be evaluated.

Case-I

Ionic compounds are usually formed when metals react with non-metals. In other words, Elements can gain or lose electrons in order to attain their nearest noble gas configuration. Formation of ions (either by gaining or losing electrons) for the completion of octet helps them gain stability.following are some general properties for ionic compounds:
(i) Physical Nature: Ionic compounds are solids and are somewhat hard because of the strong force of attraction between the positive and negative ions. These compounds are generally brittle and break into pieces when pressure is applied.
(ii) Melting and Boiling points: Ionic compounds have high melting and boiling points (see Table). This is because a considerable amount of energy is required to break the strong inter-ionic attraction.
(iii) Solubility: Electrovalent compounds are generally soluble in polar solvent and insoluble in non polar solvent.
(iv) Conduction of Electricity: Ionic compounds in the solid state do not conduct electricity because movement of ions in the solid. Ionic compounds conduct electricity in the molten state. This is possible in the molten state since the elecrostatic forces of attraction between the oppositely charged ions are overcome due to the heat. Thus, the ions move freely and conduct electricity.

Melting and Boiling Points of Some Ionic Compounds

Compound	$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{b p}\left({ }^{\circ} \mathbf{C}\right)$
CsBr	636	1300
Nal	661	1304
MgCl_{2}	714	1412
KBr	734	1435
CaCl 2	782	>1600
NaCl	801	1413
LiF	845	1676
KF	858	1505
MgO	2852	3600

49. Ionic bonds could be best described as:
(a) A bond formed when 2 atoms share electrons
(b) A firm handshake
(c) An electrostatic attraction between oppositely charged ions
(d) An electrostatic attraction between anions
50. In what form can an ionic compound conduct electricity?
(a) when dissolved in water
(b) when warmed slightly
(c) as a crystal
(d) All of these forms
51. Which of the following compound will be best to make electrical insulator
(a) CsBr
(b) MgCl_{2}
(c) MgO
(d) KF
52. Which of the following compounds are not ionic compounds?
(i) CaCl_{2}
(ii) NaCl
(iii) NaHCO_{3}
(iv) HCl
(v) Sugar crystals
(a) (iv) and (v)
(b) (iii), (iv) and (v)
(c) only (iv)
(d) only (v)

Case-II

The main exretory system in humans is the urinary system. The skin also acts as an organ of excretion by removing water and small amounts of urea and salts. They remove urea, toxins, medications and excess ions and farm urine. The kidneys also balance water and salts as well as acids and bases.
Nephron is called as functional unit of kidney. It is the structure that actually produces urine in the process of removing waste and excess substances from the blood.
53. What is the approximate length and thickness of kidneys?
(a) 10 cm and 5 cm
(b) 11 cm and 3 cm
(c) 5 cm and 3 cm
(d) 15 cm and 5 cm
54. Which structure allows the entry of blood vessels, lymph vessels and nerves to enter kidney?
(a) cortex
(b) fibrous capsule
(c) hilum
(d) major calyx
55. The correct order of processes that occur in urine formation is
(a) glomerular filteration \rightarrow secretion \rightarrow reabsorption
(b) secretion \rightarrow glomerular filteration \rightarrow reabsorption
(c) glomerular filteration \rightarrow reabsorption \rightarrow secretion
(d) secretion \rightarrow reabsorption \rightarrow glomerular filteration
56. Order of toxicity among ammonia, urea and uric aicd (from lower to higher is)
(a) uric acid $<$ urea $<$ ammonia
(b) uric acid $<$ ammonia $<$ urea
(c) uric acid $<$ uric acid $<$ ammonia
(d) uric acid $<$ urea $<$ uric acid

Case-III
Light travels through a vacuum at a speed $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It can also travel through many materials, such as air, water and glass. Atoms in the material absorb, reemit and scatter the light, however. Therefore, light travels through the material at a speed that is less than c , the actual speed depending on the nature of the material. To describe the extent to which the speed of light in a material medium differs from that in a vacuum, we use a parameter called the index of refraction (or refractive index).
57. Figure shows a ray of light as it travels from medium A to medium B. Retractive index of the medium B relative to medium A is

(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{\sqrt{2}}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{2}}$
(d) $\sqrt{2}$
58. A light ray enters from medium A to medium B as shown in the figure. The refractive index of medium B relative to A will be

(a) greater than unity
(b) less than unity
(c) equal to unity
(d) zero
59. On the basis of experiment 'to trace the path of a ray of light passing through a rectangular glass slab' four students arrived at the following interpretations:
I. Angle of incidence is greater than the angle of emergence.
II. Angle of emergence is less than the angle of refraction.
III. Emergent ray is parallel to the incident ray.
IV. Emergent ray is parallel to the refracted ray.

The correct interpretation is that of the student.
(a) I
(b) II
(c) III
(d) IV
60. You are given water, mustard oil, glycerine and kerosene. In which of these media, a ray of light incident obliquely at same angle would bend the most?
(a) Kerosene
(b) Water
(c) Mustard oil
(d) Glycerine

