

Practice, Learn and Achieve Your Goal with Prepp

UP TGT PGT

Maths B Paper

Simplifying **Government Exams**

MATHEMATICS

CODE :- 12

Time Allowed: Two Hours		Marks: 100
Name:	Roll No.	

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

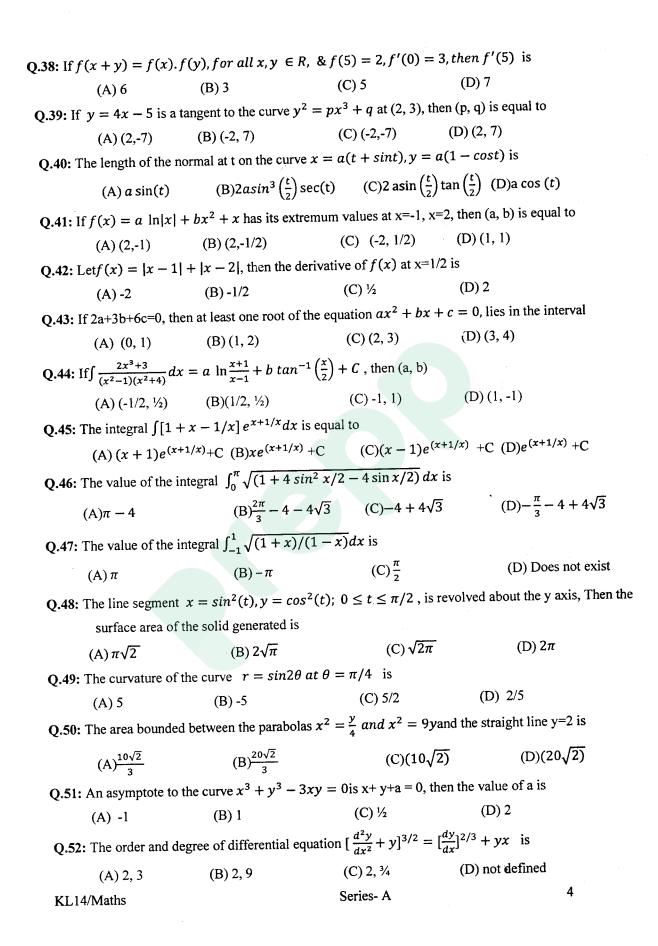
Series-A

		•		
Q.1: If A is a (3x3) non-	singular matrix such th	at $AA^T = A^T A$ and $B =$	$A^{-1}A^{T}$, then BB^{T} is	
(A) <i>I</i> +B	(B) <i>I</i>	(C) A+B	(D) AB	
Q.2: If A is a (2x2) non-	singular matrix, then th	ne value of adj(adj A) i	S	
(A) A	(B) I	(C) A ²	(D) -A	
Q.3: Let P and Q be (3x	3) matrices with P≠ Q.	If $P^3=Q^3$ and $P^2Q=Q^2P$,	then the determinant of (P ²	⊦Q²) is
(A) 1	(B) 0	(C) 2	(D) •2	
Q.4: If A & B are (nxn)	matrices, then which of	f the following statement	s is generally invalid	
(A) If A ⁴ has an	inverse, so has A	(B) If AB has an	inverse, so has B	
$(C) \alpha A = \alpha A $, for any positive value	of α (D) $ A^{-1}BA^2 $	= A B	
Q.5: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$	If $u_1 \& u_2$ are column	n matrices such that Au_1	$= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \& Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$:
then $(u_1 + u_2)$ i	s			
(A) $[-1, 1, 0]^T$	(B) $[-1,1,-1]^T$	$(C)[-1,-1,0]^{T}$	(D) $[1,-1,-1]^T$	
Q.6: If A is the singular	matrix then $A(adj A)$ i	s		
(A) Identity ma	trix (B) null matri	x (C) scalar matrix	(D) symmetric i	matrix
Q.7: If A is skew symme	etric matrix of order (n	x n), then the trace of A	is	
(A) n	(B) –n	(C) 0	(D) n ²	
$\mathbf{Q.8:} \text{ If } A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \& A$	$^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then x i	S .		
(A) 1	(B) 2	(C) ½	(D) -2	
Q.9: If $\begin{vmatrix} \sin\alpha & \cos\beta \\ \cos\alpha & \sin\beta \end{vmatrix} =$	$\frac{1}{2}$, where $\alpha \& \beta$ are ac	ute angels, then the valu	e of $(\alpha + \beta)$ is	
(A) $2\pi/3$	(B) $\pi/3$	(C) $\pi/6$	(D) $-\pi/6$	
Q.10: If A is a non-singu	ular matrix of order 3 su	adj A = 225,	then A' is	
(A) 225	(B) 25	(C) 15	(D) 20	
Q.11: The largest value	of a third order determi	nant, whose elements are	e 0 or 1 is	
(A) 1	(B) 0	(C) 2	(D) 3	
Q.12: If P(1,2), Q(4,6), I	R(5,7) and $S(a,b)$ are the	e vertices of a parallelog	gram PQRS, then (a, b) is	
(A) (2, 4)	(B)(3,4)	(C)(2,3)	(D) (3, 5)	
Q.13: The distance between	veen the parallel lines y	= 2x + 4 and $6x = 3y$	+ 5 is	
$(A)\frac{17}{\sqrt{3}}$	(B) 1	(C) 3	$(D)\frac{17\sqrt{5}}{15}$	
Q.14: If the line $y = mx$	$x + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a c	ommon tangent to the pa	$vabola y^2 = 16\sqrt{3} x \text{ and th}$	е
	= 4, then the value of			
	(B) 16	(C) 2	(D) -2	
KL14/Maths	N. · ··································	Series- A	1	

(A) $x-2y+2z=3$ (B) $x-2y+2z=-1$ (C) $x-2y+2z=1$ (D) $x-2y+2z=-5$ Q.16: The length of the diameter of the circle which touches the x axis at the point (1,0) and passes through the point (2,3) is (A) 10/3 (B) 3/5 (C) 6/5 (D) 5/3 Q.17: An ellipse is drawn by taking a diameter of the circle $(x-1)^2+y^2=1$, as its semi minor axis and a diameter of the circle $x^2+(y-2)^2=4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2+y^2=4$ (B) $x^2+4y^2=8$ (C) $4x^2+4y^2=8$ (D) $4x^2+4y^2=8$ (D) $4x^2+4y^2=16$ Q.18: The equation of the tangent to the curve $4x^2+4x^2=16$ (D) $4x^2+4x^2=16$ Q.19: If two tangents are drawnfrom a point P to the parabola $4x^2+4x^2=16$ Q.19: If two tangents are drawnfrom a point P to the parabola $4x^2+4x^2=16$ Q.20: If the vectors $4x^2+4x^2=16$ (C) $4x^2+4x^2=16$ (D) $4x^2+4x^2+4x^2=16$ (D) $4x^2+4x^2+4x^2+4x^2+4x^2+4x^2+4x^2+4x^2+$	Q.15: An equation of	a plane parallel to t	he plane $x - 2y + 2z =$	5 and at a unit distance from	m origin is
Q.16: The length of the diameter of the circle which touches the x axis at the point (1,0) and passes through the point (2,3) is (A) $10/3$ (B) $3/5$ (C) $6/5$ (D) $5/3$ Q.17: An ellipse is drawn by taking a diameter of the circle $(x-1)^2+y^2=1$, as its semi minor axis and a diameter of the circle $x^2+(y-2)^2=4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is (A) $4x^2+y^2=4$ (B) $x^2+4y^2=8$ (D) $x^2+4y^2=16$ Q.18: The equation of the tangent to the curve $y=x+\frac{4}{x^2}$, that is parallel to x axis is (A) $y=1$ (B) $y=2$ (C) $y=3$ (D) $y=0$ Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\overline{a}=i-j+2k, \overline{b}=2i+4j+k, \overline{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ, μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point (13,32). The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 (B) 15 (C) 35 (D) -85 Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors \hat{c}=\hat{a}+2\hat{b} and \hat{d}=5\hat{a}-4\hat{b} are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) \pi/6 (B) \pi/2 (C) \pi/3 (D) \pi/4$	(A) x - 2y +	-2z=3	(B)x - 2y + 2z =	(B)x - 2y + 2z = -1	
through the point (2,3) is (A) 10/3 (B) 3/5 (C) 6/5 (D) 5/3 Q.17: An ellipse is drawn by taking a diameter of the circle($x-1$) ² + $y^2=1$, as its semi minor axis and a diameter of the circle $x^2+(y-2)^2=4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2+y^2=4 \qquad (B)x^2+4y^2=8$ $(C)4x^2+y^2=8 \qquad (D)x^2+4y^2=16$ Q.18: The equation of the tangent to the curve $y=x+\frac{4}{x^2}$, that is parallel to x axis is $(A)y=1 \qquad (B)y=2 \qquad (C)y=3 \qquad (D)y=0$ Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is $(A)2x+1=0 \qquad (B)x=-1 \qquad (C)2x-1=0 \qquad (D)x=1$ Q.20: If the vectors $\bar{a}=i-j+2k, \bar{b}=2i+4j+k, \bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is $(A)(2,-3) \qquad (B)(-2,3) \qquad (C) \qquad (3,-2) \qquad (D)(-3,2)$ Q.21: The line L is given by $\frac{x}{b}+\frac{y}{b}=1$, passes through the point (13,32). The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is $(A)\sqrt{17} \qquad (B)\sqrt{17}/12 \qquad (C)23/\sqrt{17} \qquad (D)\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if $(A)-35 Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors \hat{c}=\hat{a}+2\hat{b} and \hat{d}=5\hat{a}-4\hat{b} are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A)\pi/6 \qquad (B)\pi/2 \qquad (C)\pi/3 \qquad (D)\pi/4 Q.24: Let the line \frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2} lies in the plane x+3y-\alpha z+\beta=0, then (\alpha,\beta) is$	(C) x - 2y +	2z = 1	(D)x - 2y + 2z =	(D)x - 2y + 2z = -5	
(A) $10/3$ (B) $3/5$ (C) $6/5$ (D) $5/3$ Q.17: An ellipse is drawn by taking a diameter of the circle $(x-1)^2+y^2=1$, as its semi minor axis and a diameter of the circle $x^2+(y-2)^2=4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2+y^2=4$ (B) $x^2+4y^2=8$ (C) $4y^2+4y^2=8$ (D) $4y^2+4y^2=16$ (D) $4y^2+4y^2+4y^2=16$ (D) $4y^2+4y^2+4y^2=16$ (D) $4y^2+4y^2=16$ (D) 4	Q.16: The length of th	ne diameter of the ci	rcle which touches the x a	xis at the point (1,0) and pa	asses
Q.17: An ellipse is drawn by taking a diameter of the circle $(x-1)^2 + y^2 = 1$, as its semi minor axis and a diameter of the circle $x^2 + (y-2)^2 = 4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2 + y^2 = 4$ (B) $x^2 + 4y^2 = 8$ (C) $4x^2 + y^2 = 8$ (D) $4x^2 + 4y^2 = 16$ (D) $4x^2 + 4y^2 + 4y^2 + 4y^2 + 4y^2 + 4y^2 + 4y^2 + $	through the poi	nt (2,3) is			
and a diameter of the circle $x^2 + (y - 2)^2 = 4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2 + y^2 = 4$ $(B)x^2 + 4y^2 = 8$ $(C)4x^2 + y^2 = 8$ $(D)x^2 + 4y^2 = 16$ Q.18: The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to x axis is $(A)y=1$ $(B)y=2$ $(C)y=3$ $(D)y=0$ Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is $(A)2x+1=0$ $(B)x=1$ $(C)2x-1=0$ $(D)x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is $(A)(2,-3)$ $(B)(-2,3)$ $(C)(3,-2)$ $(D)(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is $(A)\sqrt{17}$ $(B)\sqrt{17}/12$ $(C)23/\sqrt{17}$ $(D)\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if $(A)-35 < m < 15$ $(B)15 < m < 65$ $(C)35 < m < 85$ $(D)-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is $(A)\pi/6$ $(B)\pi/2$ $(C)\pi/3$ $(D)\pi/4$	(A) 10/3	(B) 3/5	(C) 6/5	(D) 5/3	
the origin and its axis are the coordinate axis, then the equation of the ellipse is $(A)4x^2+y^2=4 \qquad (B)x^2+4y^2=8 \qquad (D)x^2+4y^2=16$ Q.18: The equation of the tangent to the curve $y=x+\frac{4}{x^2}$, that is parallel to x axis is $(A)y=1 \qquad (B)y=2 \qquad (C)y=3 \qquad (D)y=0$ Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is $(A)2x+1=0 \qquad (B)x=1 \qquad (C)2x-1=0 \qquad (D)x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is $(A)(2,-3) \qquad (B)(-2,3) \qquad (C) \qquad (3,-2) \qquad (D)(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is $(A)\sqrt{17} \qquad (B)\sqrt{17}/12 \qquad (C)23/\sqrt{17} \qquad (D)\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if $(A)-35: Let \hat{a} and \hat{b} are two unit vectors. If the vectors \hat{c}=\hat{a}+2\hat{b} and \hat{d}=5\hat{a}-4\hat{b} are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A)\pi/6 \qquad (B)\pi/2 \qquad (C)\pi/3 \qquad (D)\pi/4 Q.24: Let the line \frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2} lies in the plane x+3y-\alpha z+\beta=0, then (\alpha,\beta) is$	Q.17: An ellipse is dra	wn by taking a dian	heter of the circle $(x-1)^2$	$+y^2=1$, as its semi min	or axis
(A) $4x^2 + y^2 = 4$ (B) $x^2 + 4y^2 = 8$ (C) $4x^2 + y^2 = 8$ (D) $x^2 + 4y^2 = 16$ Q.18: The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to x axis is (A) y=1 (B) y=2 (C) y=3 (D) y=0 Q.19: If two tangents are drawnfrom a point P to the parabola $y^2 = 4x$ are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -9$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α,β) is	and a diameter	of the circle $x^2 + (y)$	$(-2)^2 = 4$, as semi major	r axis. If the centre of the e	llipse is
(C) $4x^2 + y^2 = 8$ (D) $x^2 + 4y^2 = 16$ Q.18: The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to x axis is (A) $y=1$ (B) $y=2$ (C) $y=3$ (D) $y=0$ Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\overline{a} = i - j + 2k$, $\overline{b} = 2i + 4j + k$, $\overline{c} = \lambda i + j + \mu k$ are mutually orthogonal, then (λ, μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point (13,32). The K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -9$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	the origin and its	axis are the coordin	ate axis, then the equation	n of the ellipse is	
Q.18: The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to x axis is (A) y=1 (B) y=2 (C) y=3 (D) y=0 Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is	$(A)4x^2 + y^2 =$	= 4	$(B)x^2 + 4y^2 = 8$		
(A) y=1 (B) y=2 (C) y=3 (D) y=0 Q.19: If two tangents are drawnfrom a point P to the parabola y^2 =4x are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is	$(C)4x^2 + y^2 =$	8	$(D)x^2 + 4y^2 = 1$	6	
(A) y=1 (B) y=2 (C) y=3 (D) y=0 Q.19: If two tangents are drawnfrom a point P to the parabola y^2 =4x are at right angles, then the locus of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is	Q.18: The equation of	of the tangent to the	curve $y = x + \frac{4}{x^2}$, that is j	parallel to x axis is	
of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is					
of P is (A) $2x+1=0$ (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$ Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is (A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is	Q.19: If two tangents	are drawnfrom a po	oint P to the parabola y ² =4	x are at right angles, then t	he locus
Q.20: If the vectors $\bar{a}=i-j+2k$, $\bar{b}=2i+4j+k$, $\bar{c}=\lambda i+j+\mu k$ are mutually orthogonal, then (λ,μ) is $(A) (2,-3) \qquad (B) (-2,3) \qquad (C) \qquad (3,-2) \qquad (D) (-3,2)$ Q.21: The line L is given by $\frac{x}{5}+\frac{y}{b}=1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$, then the distance between L and K is $(A)\sqrt{17} \qquad (B)\sqrt{17}/12 \qquad (C)23/\sqrt{17} \qquad (D)\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2+y^2=4x+8y+5$, intersect the line $3x-4y=m$ at two distinct points if $(A)-35 < m < 15 \qquad (B)\ 15 < m < 65 \qquad (C)\ 35 < m < 85 \qquad (D)-85 < m < -15$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c}=\hat{a}+2\hat{b}$ and $\hat{d}=5\hat{a}-4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is $(A)\pi/6 \qquad (B)\pi/2 \qquad (C)\pi/3 \qquad (D)\pi/4$ Q.24: Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is					
then (λ, μ) is $(A)(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is $(A)\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if $(A) - 35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -9$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is $(A)\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	(A) $2x+1=0$	(B) $x=-1$	(C) $2x-1=0$	(D) $x=1$	
(A) $(2,-3)$ (B) $(-2,3)$ (C) $(3,-2)$ (D) $(-3,2)$ Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point $(13,32)$. The K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -15$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	Q.20: If the vectors \bar{a}	$\bar{i}=i-j+2k, \bar{b}=$	$2i + 4j + k, \bar{c} = \lambda i + j +$	μk are mutually orthogon	al,
Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point (13,32). The K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is					
has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is (A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	(A)(2,-3)	(B) (-2,3)	(C) (3,-2)	(D) (-3,2)	
(A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C) $23/\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$ Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	Q.21:The line L is gi	$ven by \frac{x}{5} + \frac{y}{b} = 1,$	passes through the point	(13,32).The K is parallel to	L and
Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line $3x - 4y = m$ at two distinct points if (A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	has the equation	$ \sin\frac{x}{c} + \frac{y}{3} = 1, \text{ then} $	n the distance between L	and K is	
(A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	$(A)\sqrt{17}$	$(B)\sqrt{17}/12$	(C)23/ $\sqrt{17}$	$(D)\sqrt{17}/\sqrt{15}$	
(A) $-35 < m < 15$ (B) $15 < m < 65$ (C) $35 < m < 85$ (D) $-85 < m < -2$ Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angles between \hat{a} and \hat{b} is (A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	Q.22: The circle x^2 +	$y^2 = 4x + 8y + 5,$	intersect the line $3x - 4y$	v = m at two distinct point	s if
each other, then the angles between \hat{a} and \hat{b} is $(A) \pi/6 \qquad (B) \pi/2 \qquad (C) \pi/3 \qquad (D) \pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is					
(A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	Q.23: Let \hat{a} and \hat{b} are	two unit vectors. If	the vectors $\hat{c} = \hat{a} + 2\hat{b}$ an	$d \hat{d} = 5\hat{a} - 4\hat{b}$ are perpendic	cular to
Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is	each other, then	the angles between	\hat{a} and \hat{b} is		
	$(A)\pi/6$	(B) $\pi/2$	(C) $\pi/3$	(D) $\pi/4$	
(A) $(6,-17)$ (B) $(-6,7)$ (C) $(5,-15)$ (D) $(5,-15)$	Q.24: Let the line $\frac{x-2}{3}$	$\frac{2}{z} = \frac{y-1}{-5} = \frac{z+2}{2} \text{ li}$	ies in the plane $x + 3y -$	$\alpha z + \beta = 0$, then (α, β) is	
	(A) (6,-17)	(B) (-6,7)	(C) (5,-15)	(D) (5,-15)	

KL14/Maths

Series- A


2

Q.25: If \bar{a} , \bar{b} , \bar{c} are three	mutually perpendicula	ar vectors each of mag	mitude unity, then $ \bar{a} + \bar{b} + \bar{c} $ is
equal to			
(A) 3	(B) 1	(C)√3	(D) 2
Q.26: If θ is the angle by	between $ar{a}$ and $ar{b}$ such	that $\bar{a} \cdot \bar{b} > 0$, then	
$(A)0 \le \theta \le \pi$	$(B)\pi/2 \le \theta \le \pi$	$(C)0 \le \theta \le \pi/2$	$(D)0 \le \theta \le 2\pi$
Q.27: The point of inter	rsection of the curves	$r^2 = 4 \cos\theta$ and $r =$	$= 1 - \cos\theta$ is
(A) $(2\sqrt{2}-2,8)$	(B) $(2, 60^\circ)$	(C) (3, 70	$(D) (-2\sqrt{2}, 80^{\circ})$
Q.28: If $f: R \to R$ is given	$ext{ven by } f(x) = 3x - 5$, then $f^{-1}(x)$ is	
$(A)\frac{1}{3x-5}$		$(B)\frac{x+}{3}$	<u>-5</u>
(C) Does not ex	ist because $f(x)$ is not	t one-one (D) Do	bes not exist because $f(x)$ is not on to
Q.29: If $f(x) = \sin^2 x$	$x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos^2\left(x + \frac{\pi}{3}\right)$	$sx.\cos\left(x+\frac{\pi}{3}\right)$ and g	$\left(\frac{5}{4}\right) = 1$, then $gof(x)$ is
(A) 1	(B) 0	(C) $\sin x$	(D) $\cos x$
Q.30: If the non-zero r	numbers x, y, z are in A	A.P. and $tan^{-1}(x)$, tan	$n^{-1}(y)$, $tan^{-1}(z)$ are also in A.P., then
(A)x = y =	z (B)xy = yz	$(C)x^2 = yz$	$(D)z^2 = xy$
Q.31: If $a^x = b^y = c^z$	and a, b, c are in G.P	, then x, y, z are in	
(A) AP	(B) GP	(C) HP	(D) x=y=z
_			cometric mean G satisfy the
	27, then the numbers as		
. , ,		(C) 5,-5/2	
Q.33: If $\lim_{n\to\infty} \left(\frac{x^2}{x+1}\right)$	-ax-b = 0, then	the value of (a, b) is ed	qual to
(A)(1,-1)	(B) (2,-1)	(C) (-1,2)	(D)(2,2)
Q.34: The value of lir	$n_{x\to 0} \{ \tan\left(\frac{\pi}{4} + x\right) \}^{1/x}$	is	
(A) 1	(B) -1	$(C)e^2$	(D) <i>e</i>
Q.35: If f(x) = a sin	$ x + be^{ x } + c x ^3$ and	d if $f(x)$ is differentia	ble at x=0, then
(A) $a = b =$	$c = 0$ (B) $a=b=0$, $c \in C$	$\equiv R$ (C) b=c=	$0, a \in R$ (D) $a=c=0, b \in R$
Q.36: Let $f(x) = \begin{cases} \frac{1}{ x } \\ ax \end{cases}$	$ x \ge 1$ $ x \le 1$; if $f(x)$	r) is continuous and di	ifferentiable at any point, then
			1 (D) $a=-1$, $b=1$
Q.37: Let $f(x)$ be a twi	ice differentiable funct	ion such that $f''(x) =$	= -f(x) and f'(x) = g(x),
$h(x) = \{f(x)\}$	$^{2} + \{g(x)\}^{2}$, If h (5)	= 11, then h (10) is eq	ual to
(A) 22	(B) 11	(C) 0	(D) -22
,			

KL14/Maths

Series- A

3

(A) $3/2 + \frac{c}{x^2}$	(B) $-3/2 + \frac{c}{x^2}$	$(C) cx^2 - 1/x$	$(D) cx^2 + 1/x$
Q.54: The particular in	ntegral of y'' + y = tar	$\mathbf{n}(x)$ is	
$(A) - \cos(x) \ln$	a(secx + tanx)	(B) $\cos(x) \ln($	secx + tanx)
$(C)-\sin(x)\ln x$	(secx + tanx)	(D) $\sin(x) \ln($	secx + tanx)
Q.55: The singular sol	ution of the differential	equation $y = xy' + y'^2$	is
$(A)x^2 + 4y =$	$0 \qquad (B)x^2 - 4y = 0$	(C) $-x^2 - 4y =$	$= 0 (D) - x^2 + 4xy = 0$
Q.56: The curve in w	hich the slope of the tar	ngent at any point equal	to the ratio of abscissa to the
ordinate of the p	point is an		
(A) Ellipse	(B) Parabola	(C) Rectangular hyper	rbola (D) Circle
	& $f(1) = 2$, then $f(3)$	_	
` '	$(B)2e^2$	$(C)3e^2$	(D) $3e^3$
Q. 58: The value of i^{14}		where $i = \sqrt{-1}$) is	
(A) 1	(B)-1	(C) 0 (D	•
		ation $ x ^2 + 2 x + 2 =$	0 are
(A) 4	(B) 3	$(C) 2 \qquad (D)$	_
Q. 60: If the ratio of the	roots of the equation a	$x^2 + bx + c = 0 \text{ is } r \text{ th}$	en $\frac{(r+1)^2}{r}$ is equal to
$(A)_{bc}^{a^2}$	$(B)\frac{b^2}{ca}$	$(C)\frac{c^2}{ab}$	$(D)\frac{1}{abc}$
Q. 61: If <i>Z</i> is a complex			,
(A) 5, 0			0) 9, 0
Q. 62: The smallest posi	tive integral value of n	for which $\left(\frac{1+i}{n}\right)^n = 1$ is	
		-	0) 4
Q.63: If $1, \omega, \omega^2,$		` '	,
	$(1-\omega^{n-1})$ i $(1-\omega^{n-1})$ i		
(A) 0	(B) 1 ((C)n (I	$O)n^2$
Q. 64: The complex num	bers Sin x + ; Cos2x an	d Cos x - ; Sin2x are cor	jugate to each other for
(A) x = (n +	$1/2) \pi$ (B) $x = \pi/2$	(C) x = 0	(D) no value of x
Q. 65: Let $f(x) = \sqrt{2}x$	$^2 + 3x - \sqrt{3}$ and $g(x)$	$x = x - \sqrt{2}$ are two polyr	nomials in x with real
coefficients, whe	$\operatorname{en} f(x)$ is divided by $g(x)$) the remainder is $5\sqrt{2}$ –	$\sqrt{3}$. The quotient is given by
$(A) \sqrt{2}x -$	-5 (B) $\sqrt{2}$	$x + 5$ (C) $\sqrt{2}x -$	$3 \qquad \qquad \text{(D) } \sqrt{2}x + 3$
Q. 66: Let $(a^*(B)^2 = a^2 * b^2)$	² for 'a' and 'b' are in a	a group G, then a*b equa	ls
(A) b*a	(B) e	(C) a*e	(D) b*c
KL14/Maths		Series- A	5

Q.53: The general solution of the first order equation $x^2y' - 2xy = 3$ is

Q. 67: The sum of 23 an	d 31 modulo 45 is			
(A) 5	(B) 6	(C) 7	(D) 9	
Q. 68: If 'a' is a generat	or of a finite cyclic ground	up G of order n, then the	other generators of	f G are the
elements of the fo	orm a ^r , where r is a			
(A) Prime	number (B) Compo	site number (C) Relat	ively prime to n	(D) Zero
Q. 69: What is the order	of the cyclic (1, 4, 5, 7))		
(A) 4	(B) 1	(C) 3	(D) 2	
Q. 70: How many differ	rent signals can be give	n with 5 different flags b	y hosting any num	per of them at
a time				
(A) 325	(B) 626	(C) 253	(D) 352	
Q. 71: What is the chan	ce of getting multiple of	f 2 on one and multiple of	of 3 on the other in	a single throw
of dice				
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36	
Q. 72: A person draws t	wo cards with replacem	ent from a pack of 52 ca	rds. What is the pro	obability that
he gets both the c	ards of same suit.			
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16	
Q. 73: The value of $P(x=0)$	=2) in a binomial distrib	oution when p= 1/6 and n		
$(A)^{\frac{3125}{7776}}$	$(B)\frac{250}{7776}$	$(C)\frac{12}{77}$	$\frac{50}{76}$ (I	$0)\frac{25}{7776}$
Q.74: A purse contains	s 4 copper coins and 3 s	ilver coins; the second p	urse contains 6 cop	per coins
and 2 silver coins.	A coin is taken out of a	ny purse, the probability	that it is a copper of	coin is
(A) 4/7	(B) 3/4	(C) 3/7	(D) 37/56	
Q.75: If the probability	of a defective bolt is $\frac{1}{1}$	$\frac{1}{0}$, then the moment of	coefficient of ske	wness is
(A) 0.0178	(B) 0.178	(C) 1.78	(D) 0.00178	
		out day by day. The numl		
Day is distribut	ed as a poisson distribu	tion with mean 1.5. The	value of the propor	tion of days on
which neither ca	r is used.			
(A) 0.2231	(B) 0.2131	(C) 0.2321	(D) 0.223	
Q.77: Area of the norm	nal curve between mear	ordinate and ordinates a	at 3 sigma distances	from the
mean percentage	e of the total area is			
(A) 48.865	(B) 49.865	(C) 47.865	(D) 46.865	
Q.78: The numbers 3.3	2, 5.8, 7.9, and 4.5 have	the frequencies x , $(x+2)$	(x-3) and $(x+6)$ re	spectively. If
the arithmetic me	ean is 4.876, then the vo	olume of x is		
(A) 4	(B) 3	(C) 0	(D) 5	
KL14/Maths		Series- A		6

Q.79: If the mean and	median of moderately as	ymmetrical series are 3	26.8 and 27.9 respectively w	. .
would be its most	probable mode	2	27.9 respectively w	nat
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33.1	
Q.80: If mean 30, S.D =	8, Karl Pearson's coeff	icient of skewness = +	0.40 the value of Mode is	
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8	
Q.81: In a frequency di	stribution the coefficient	S of skewness based or	n quartiles is 0.6. If the sum of	
the upper and lower	r quartiles is 100 and me	dian is 38, then the val	ue of upper questile is)Î
(A) 50	(B) 70	(C) 60	(D) 80	
Q.82: Given $\mu_1 = 0, \mu_2$	$=40, \mu_3=-100, \mu_4=$	200 , then the value of	of the skewness in the distrib	
is	2 · · ·	y men the value (of the skewliess in the distrib	ution
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64	
Q.83: If the value of coef	ficient of correlation bet	ween two series is + 0	9 and its probable errors is	
0.0128, what would t	be the value of n	of the series is a figure of the series is a	and its probable errors is	
(A) 100	(B) 10	(C) 105	(D) 95	
Q.84: The coefficient of c	correlation between the d	ebenture prices and she	are prices of a company was	
+ 0.8. If the sum of the	e squares of the difference	es in ranks was 33 the	en the value of n is	
(A) 10	(B) 11	(C) 9	(D) 8	
Q.85: Given that the regres	ssion equations of 'Y' on	'X' and 'X' on 'V' ar	ereconcitively. V. V.	
4X = 3+Y, and that the	ne second moment of x a	bout the origin is 2. Th	en the S.D. of V:-	
(A) 0	(B) 1	(C) 2	(D) -2	
Q.86: The angle between tw	vo forces each equal to 'I		is also equal to D:	
$(A) 60^{0}$	(B) 180°	(C) 120°		
Q.87: The components of a f	force of magnitude 10 N	in the direction making	(D) 90°	
on its sides are		one direction making	gangles of 30° and 60°	
$(A) 5\sqrt{3} N,$	(B) 5 N,	(C) 5√2 N, 51	-	
Q.88: Three coplanar forces		(C) 5V2 /V, 5/	V (D) $5\sqrt{5}N$, $5N$	
second is 60° and that	between the second and	the third is 1500 41	the first and the the first and the the ratio of the magnitudes o	
forces is	are become and	the tilid is 150, then	the ratio of the magnitudes o	f
(A) 1: 2: $\sqrt{3}$	(B)1:3: $\sqrt{3}$	(0) 4 4		
Q.89: The resultant of two un		(C) 1:1:	$\sqrt{3}$ (D) 2:1:	√3
distance of 12 cm. from	the line of action of the	amallan f	acts along a line at a	
lines of actions of the ty	vo forces is	smaller forces, then the	e distance between the	
$(A)\frac{16}{3}$ cm		14		
(A) 3 cm	$(B)\frac{17}{3}cm$	$(C)^{\frac{14}{3}}$ cn	$(D)\frac{13}{3}cm$	
VI 140.6 3				
KL14/Maths	S	Series- A	7	

Q.90: The moment of a force of mag	gnitude 25N acting alo	ng the positive direction of	x-axis about the
point (-1,3) is		•	(D) 45 II '4-
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units
Q.91: A couple of moment -60 units	act in the plane of the	paper. The arm of the coupl	e if each force
is of magnitude 10 units is		·	(D) 2 II ii-
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units
Q.92: The average speed of a bicycl		Km, if it travels the first 10	Km. at 20 km/nr,
second 12 km in 1 hr and third		(C) 001 //	(D) 06 lcm/hr
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/hr
Q.93: A particle starts with a velocit	y of 30m/s and moves	in a straight live with const	ant acceleration. If
its velocity at the end of 6 second	onds be 18 m/s, then the	e distance traveled by the pa	article before
it comes to rest is			(D) 215
(A) 224m	(B) 225m	(C) 220m	(D) 215m
Q.94: A ball is projected vertically u			t rise
(A) 640m	(B) 630m	(C) 635m	(D) 639m
Q.95: A man walking at the rate of			downward. Actual
direction of the rain if its actua		S	(D) 55 ⁰
(A) 50°	(B) 60°	(C) 45°	(D) 55
Q.96: The path of projectile in vacu		(m. n 1. 1	(D) Ellipse
(A) Circle	(B) Straight line	(C) Parabola	, , <u> </u>
Q.97: A particle is projected with a	velocity of 24m/s. at a	n angle of elevation of 60°,	inen its time of
flight is			
(A) $(2.4)\sqrt{3}$ Seconds (B) $(2.3)\sqrt{3}$ Seconds		•	
(C) $(2.2)\sqrt{3}$ Seconds (D) $(2.1)\sqrt{3}$ Seconds			
Q.98: A particle is projected up a sr	nooth inclined plane of	f inclination 60° along the li	ne of greatest
slope. If it comes to instanta	neous nest after 2 seco	onds, then the velocity of pro	ojection is (g=9.8m/s ²)
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se
Q.99: Like parallel forces act at the	vertices A, B, C of a t	riangle and are proportional	to the lengths
BC, CA and AB respectively	The centre of the force		
(A) Centroid		(B) Circum Centre	
(C) In-Centre			
Q.100: A horizontal rod AB is suspe	ended at its ends by tw	o vertical strings. The rod is	s of length 0.6
meter and weight 3 units. Its	s centre of gravity is at	a distance 0.4 meter from for	orce A, then the
tension of the string at A in	the same unit, is		
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0
KL14/Maths	Ser	ries- A	

KL14/Maths

Prepp

Latest Sarkari jobs, Govt Exam alerts, Results and Vacancies

- Latest News and Notification
- Exam Paper Analysis
- ► Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy & Subject-wise Books

To know more Click Here

