
JEE-Main-29-06-2022-Shift-2 (Memory Based)

Physics

Question: Two point charge each of same magnitude 'Q' are placed as shown in figure determine distance from O at equatorial axis where force on q is maximum.

Options:

(a)
$$\frac{d}{\sqrt{3}}$$

(b)
$$\frac{d}{\sqrt{2}}$$

(c)
$$\frac{d}{\sqrt{5}}$$

(d)
$$\frac{d}{\sqrt{7}}$$

Answer: (b)


Solution:

Force on q is

$$F = qE$$

$$\Rightarrow F = q \frac{2kQx}{\left(x^2 + d^2\right)^{\frac{3}{2}}}$$

for F = Fmax.

$$E = 2E_0 \cos \theta$$

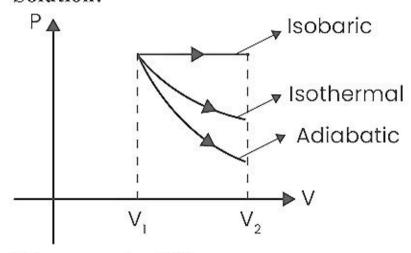
$$=\frac{2kQx}{\left(x^2+d^2\right)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{d}{dx} \left[\frac{2x}{\left(x^2 + d^2\right)^{\frac{3}{2}}} \right] = 0 \Rightarrow x = \frac{d}{\sqrt{2}}$$

Question: A gas is expanded from volume ' V_1 ' to ' V_2 ' by three different process these three process are isothermal, adiabatic and isobaric. Work done by gas in isothermal is W_1 and that in adiabatic is W_2 and that in isobaric is W_3 . Select the correct option?

Options:

(a) $W_1 > W_2 > W_3$


(b) $W_2 > W_1 > W_3$

(c) $W_1 = W_2 = W_3$

(d) $W_1 > W_2 = W_3$

Answer: (b)

Solution:

W= area under P-V curve

so according to graph

 $W_3 > W_1 > W_2$

 $V_1 \rightarrow V_2$ in three different ways

 $W_1 \rightarrow Isothermal W_2 \rightarrow Adiabatic$

W₃ → Isochoric

 $W_1 > W_2 > W_3$

 $W_1 < W_2 < W_3$

Question: Time period of earth rotating in orbit is 7 hr. If radius is thrice then new time period of earth:

Options:

(a) 36 hr

(b) 30 hr

(c) 21 hr

(d) 28 hr

Answer: (a)

Solution:

$$T^{2} \times r^{3}$$

$$\frac{7^{2}}{T^{2}} = \left(\frac{R}{3R}\right)^{3}$$

$$\frac{49}{T^{2}} = \frac{1}{27}$$

$$T^{2} = 49 \times 27$$

$$T = 7 \times 3\sqrt{3} = 21 \times 1.732$$

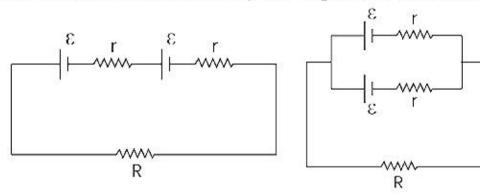
$$= 35.7$$

Question: The Height of T.V. tower is 125 m if its range is doubled for signal, find the new height:

Options:

- (a) 125 m
- (b) 250 m
- (c) 500 m
- (d) 300 m

Answer: (c)


Solution:

$$d = \sqrt{2hR}$$

$$2d = \sqrt{2h'R}$$

$$h' = 4h = 4 \times 125 = 500 \,\mathrm{m}$$

Question: Two Identical cell give same current across R resistance when they are in series combination and when they are in parallel combination. Find internal resistance of cell?

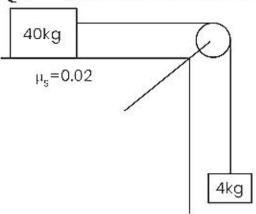
Options:

- (a) R
- (b) 3R
- (c) $\frac{R}{2}$
- (d) 5R

Answer: (a)

Solution:

$$\frac{2\varepsilon}{R+2r} = \frac{\varepsilon}{R+\frac{r}{2}}$$


$$\Rightarrow 2R+r = R+2r$$

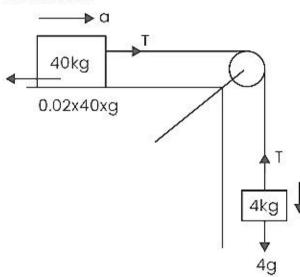
$$\Rightarrow r = R$$

$$r = R$$

Question: Find the acceleration of system shown.

Options:

(a)
$$\frac{4}{3}$$
 m/s²


(b)
$$\frac{8}{12}$$
 m/s²

(c)
$$\frac{8}{9}$$
 m/s²

(d)
$$\frac{8}{11}$$
 m/s²

Answer: (d)

Solution:

$$T - 8 = 40a$$

$$4g - T = 4a$$

$$32 = 44a$$

$$a = \frac{8}{11} \, \text{m/s}^2$$

Question: A particle starts from rest along straight-line path with cost acceleration. If covers 10 m distance in first t, sec. Find distance covered by it in nest t sec:

Options:

- (a) 20 m
- (b) 30 m
- (c) 40 m
- (d) 50 m

Answer: (b)

Solution:

$$t = 0 \qquad t = t_1 \qquad t = 2t_1$$

$$S_i = \frac{1}{2}at_i^2$$

$$\Rightarrow S_1 + S_2 = \frac{1}{2}a(2t_1)^2 = \frac{1}{2}a4t_1^2$$

$$\Rightarrow$$
 S₁: S₁ + S₂ = 1:4

$$\Rightarrow$$
 S₁:S₂ =1:3

Here
$$S_1 = 10 \,\text{m}$$

So,
$$S_2 = 30 \,\text{m}$$

Question: Electric Potential varies as $V = 3x^2$ find electric field at the point having Coordinates (1, 0,3).

Options:

- (a) -6 V/m
- (b) -8V/m
- (c) 9V/m
- (d) 10 V/m

Answer: (a)

Solution:

We know that

$$E = -\frac{dv}{dx}$$

$$\Rightarrow E = -\frac{d}{dx} (3x^2) = -6x$$

at
$$(1,0,3)$$
, $E = -6$

Question: If maximum possible range of a projectile is 100 m what will be the maximum possible height for same speed:

Options:

- (a) 100 m
- (b) 200 m
- (c) 50 m
- (d) 25 m

Answer: (a)

Solution:

$$R_{\text{max}} = u^2 / g = 100 \,\text{m}$$

$$H_{\max} = u^2 / 2g = 50m$$

Question: Electric field of light is given by $E = 200 \left[\sin \left(6 \times 10^{15} t \right) + \sin \left(9 \times 10^{15} \right) \right]$. It is incident on a metal surface of work function 2.5 eV find the maximum kinetic energy of emitted electrons:

Options:

- (1) 3.4 eV
- (2) 2.5 eV
- (3) 3.8 eV
- (4) 4 eV

Answer: (a)

Solution:

$$\begin{split} KE_{\text{max}} &= E - \phi \\ &= \frac{h\omega}{2\pi} - \phi \\ &= \frac{4.14 \times 10^{-15} \times 9 \times 10^{15}}{2 \times 3.14} - 2.5 = 5.9 - 2.5 = 3.4 \text{eV} \end{split}$$

Question: A block of mass M is released from rest from height of y. When it fall down by y. its kinetic energy is:

Options:

- (a) $mg(y-y_0)$
- (b) $1/2 \, \text{mgy}_0$
- (c) mg y₀
- (d) mgy_{0^2}

Answer: (a)

Solution:

W by gravity = mgh

$$h = y - y_0$$

Question: In the decay process ${}^{182}_{74}D \xrightarrow{\alpha} D_1 \xrightarrow{\beta} D_2 \xrightarrow{\alpha} D_3 \xrightarrow{\gamma} D_4$ find the atomic number and mass number of element D_4 :

Options:

- (a) 174, 171
- (b) 176, 72
- (c) 174, 70
- (d) 176, 71

Answer: (a)

Solution:

$$\stackrel{182}{_{74}}D \xrightarrow{\quad \alpha \quad} \stackrel{178}{_{72}}D_1 \xrightarrow{\quad \beta \quad} \stackrel{178}{_{73}}D_2 \xrightarrow{\quad \alpha \quad} \stackrel{174}{_{71}}D_3 \xrightarrow{\quad \gamma \quad} \stackrel{174}{_{71}}D_4$$

Question: Equation of a simple pendulum is $\theta = \theta_0 \sin(\pi t + \phi)$. Find the length of pendulum:

Options:

- (a) 1 m
- (b) 2 m
- (c) 0.5 m

(d) 4 m

Answer: (a)

Solution:

$$\omega = \pi$$

$$\sqrt{\frac{g}{\ell}} = \pi$$

$$g = \pi^2 \ell$$

$$\ell = \frac{g}{\pi^2} = 1 \ m$$

Question: Statement-1: Electric field changes the speed of change particle but magnetic field does not change the speed.

Statement-2: Charge particle travels perpendicular to electric field and parallel to magnetic field

Options:

(a) Statement-1 is false, statement-2 is true

(b) Both statement is true & statement 2 is not the correct explanation of statement-1.

(c) Statement-1 is true, statement-2 is false.

(d) Statement-1 is true, statement-2 is true and statement-2 is the correct explanation of statement -1

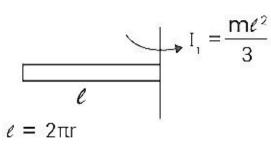
Answer: (c)

Solution:

Question: Moment of inertia of a rod about its and is I_1 Rod is bent into a ring and its moment of inertia about diameter is I_2 Find the $I_1 - I_2$.

Options:

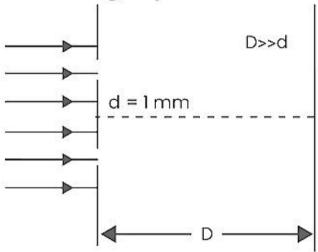
(a)
$$m\ell^2 \left[\frac{1}{3} + \frac{1}{4\pi^2} \right]$$


(b)
$$m\ell^2 \left[\frac{1}{3} - \frac{1}{2\pi^2} \right]$$

(c)
$$m\ell^2 \left[\frac{1}{3} + \frac{1}{8\pi^2} \right]$$

(d)
$$m\ell^2 \left[\frac{1}{3} - \frac{1}{8\pi^2} \right]$$

Answer: (d) Solution:



$$l_{z} = \frac{mr^{2}}{2} = \frac{m}{2} \frac{\ell^{2}}{4\pi^{2}}$$

$$I_2 = \frac{m\ell^2}{\delta\pi^2}$$

$$I_1 - I_2 = m\ell^2 \left[\frac{1}{3} - \frac{1}{8\pi^2} \right]$$

Question: If in YDSE set up screen is shifted towards plane of slit by 0.3 metre then fringe width changes by 0.4 mm. Determine wavelength ' λ ' of light.

Options:

(a)
$$\frac{10^{-3}}{3}$$
 mm

(b)
$$\frac{7}{3} \times 10^{-3} mm$$

(c)
$$\frac{4}{3} \times 10^{-3} mm$$

(d)
$$\frac{5}{3} \times 10^{-3} mm$$

Answer: (c) Solution:

$$\beta = \frac{\lambda D}{d}$$

$$\beta' = \frac{\lambda (D - 0.3)}{d}$$

$$\beta - \beta' = \frac{\lambda \times 0.3}{d}$$

$$0.4 = \frac{\lambda \times 0.3 \times 10^3}{1}$$

$$\lambda = \frac{4}{3} \times 10^{-3} mm$$

Question: Time taken by a capacitance to reduce its energy by half is t_1 & time taken by the same capacitor to reduce its charge by $1/8^{th}$ is t_2 . The value of t_1/t_2 will be

Options:

- (a) 1/3
- (b) 1/6
- (c) 1/2
- (d) 1/4

Answer: (b)

Solution:

$$q = Qe^{-\frac{t}{t}} \qquad U = \frac{q^2}{2C}$$

$$\frac{Q}{\sqrt{2}} = Qe^{-\frac{t_1}{\tau}}$$

$$t_1 = \tau \ell n \sqrt{2}$$

$$\frac{Q}{8} = Qe^{-\frac{t_2}{r}}$$

$$t_2 = \tau \ell n 8$$

$$\frac{t_1}{t_2} = \frac{\tau \ell n \sqrt{2}}{\tau \ell n 8} = \frac{\frac{1}{2} \tau \ell n 2}{3\tau \ell n 2} = \frac{1}{6}$$

Question: Verneir constant of verneir scale = 0.1 mm on measuring diameter of shaft. Main scale reading = 1.7 cm. If main scale coincides with 5 division of verneir scale & zero error is -0.05 cm. Diameter of shaft in cm is:

Options:

- (a) 1.80 cm
- (b) 2.80 cm
- (c) 4.80 cm
- (d) 6.80 cm

Answer: (a)

Solution:

 $\begin{aligned} &Reading = MSR + L.C \times V_{S.R + correction} \\ &Correction = -zero\ error = 0.05\ cm \\ &Reading = 1.7 + 0.1 \times 10^{-1}\ (5) + 0.05 \\ &= 1.7 + 0.05 + 0.05 \end{aligned}$

 $\Rightarrow 1.80 \text{ cm}$

Question: Two long wires are separated by 8 cm the magnetic field at the mid-point is 300 μ T. Two wire carries current of same value which is:

Options:

- (a) 30 A in opposite direction
- (b) 30 A in same direction
- (c) 60 A in same direction
- (d) 60 A in opposite direction

Answer: (a)

Solution:

Current is opposite direction

$$B = \frac{2\mu_0 i}{2\pi 4cm} \Rightarrow 300 \times 10^{-6} = \frac{2 \times 2 \times 10^{-7} \times i}{4 \times 10^{-2}} \Rightarrow I = 30 Amp$$

Question: If normal force exerted is 1/4th weight of box find acceleration of lift.

Options:

- (a) 3g/4
- (b) g/4
- (c) g/2
- (d) g

Answer: (a)

Solution:

$$mg - N = ma$$

$$\frac{mg - mg}{4} = mg$$

$$a = \frac{3g}{4}$$

Question: Half-life of a radioactive sample is 5 years. Find time taken to reduce the sample 6.25% of its initial value.

Options:

- (a) 20 years
- (b) 15 years
- (c) 25 years

(d) 50 years

Answer: (a)

Solution:

Time taken in 50% is T_H

Time take in 25% is 2TH

Time take in 12.5% is 3TH

Time take in 6.25% is 4TH

So $4T_H = 4 \times 5 = 20$ years

Question: In resonance tube first resonance is obtain at 20 cm, then third resonance length will be: (frequency of source = 400 Hz, speed of sound in air = 336 m/s)

Options:

(a) 60 cm

(b) 104 cm

(c) 64 cm

(d) 100 cm

Answer: (b)

Solution:

Wavelength of wave
$$\Rightarrow \lambda = \frac{V}{f} = \frac{336}{400} = 84 \, cm$$

At first resonance

$$\frac{\lambda}{4} = \ell + e \Longrightarrow \frac{84}{4} = 20 + e$$

$$\Rightarrow e = 1$$

So third resonance length

$$5\frac{\lambda}{4} = \ell_2 + e$$

$$5(21) = \ell_2 + 1$$

$$\ell_2 = 104\,cm$$

