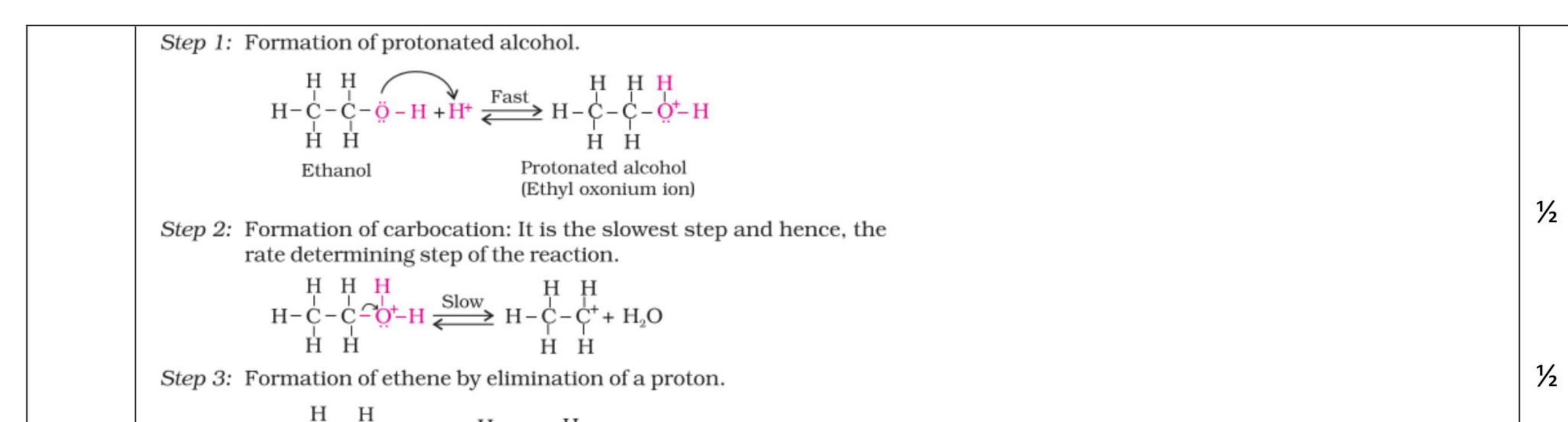
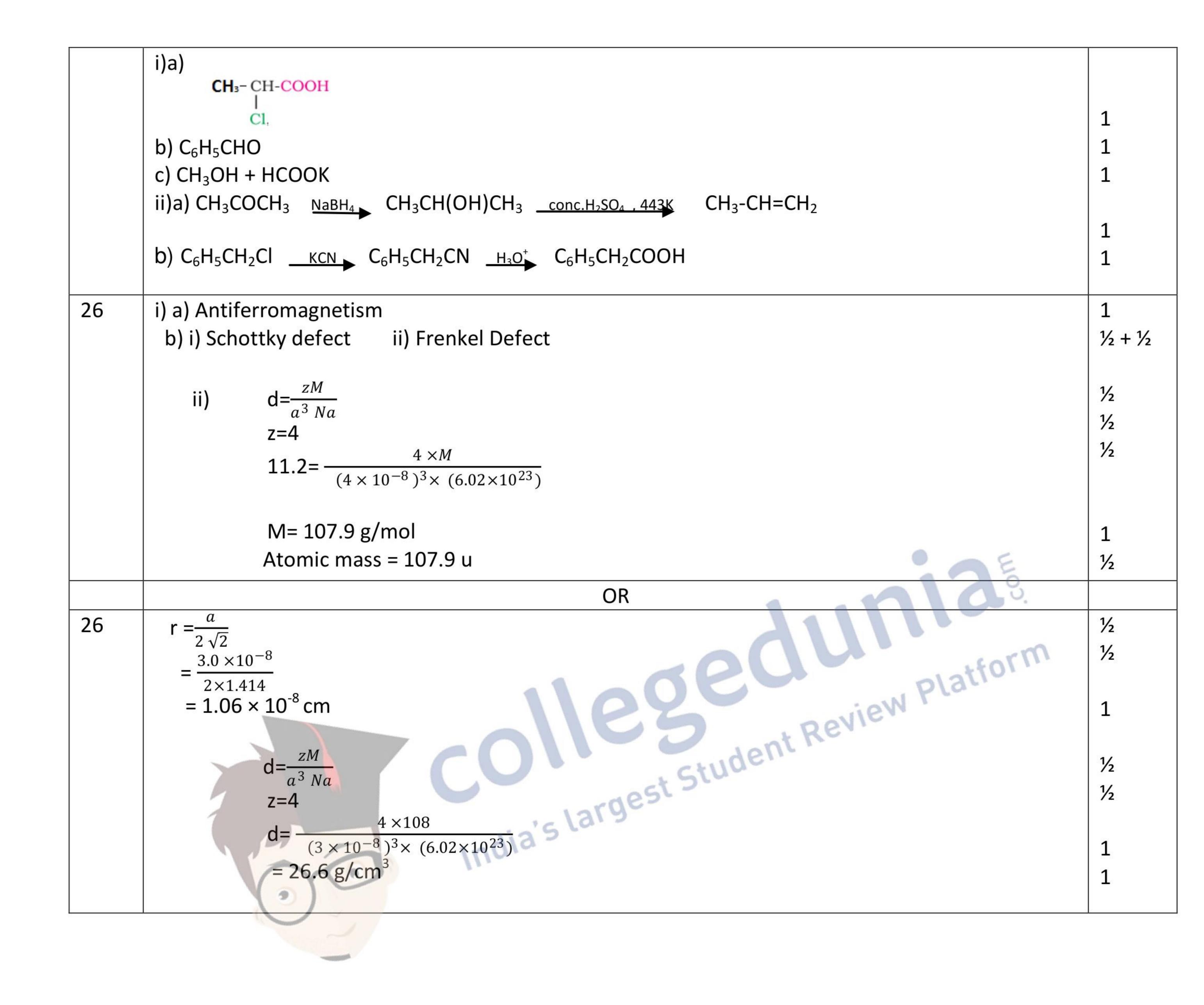

CBSE Class 12 Chemistry Compartment Answer Key 2018 (July 16, Set 1 - 56/1)

Marking scheme – 2017-18


CHEMISTRY (043)/ CLASS XII (Compartment Exam)

56/1

Q.No	Value Points	Marks	
1	Order of reaction = ½		
2	Due to the bond formation between the adsorbent and the adsorbate.		
3	[Pt(NH ₃) ₄][CuCl ₄]		
4	$C_6H_5COCH_3$	1	
5	2-Methylprop-1-ene / isobutene / structure	1	
6	Intermolecular forces of attraction between carbon disulphide and acetone are weaker than the pure components.	1	
	Minimum boiling azeotrope at a specific composition	1	
7	CH ₃ CH ₂ CH ₂ Cl , due to primary halide which has less steric hindrance	1,1	
8	Quantity of charge required to deposit 108 g of silver = 96500 C	1/2	
	Quantity of charge required to deposit 1.50 g of silver $=\frac{96500}{108} \times 1.50 = 1340.28$ C	1/2	
	Time taken = $\frac{Q}{I} = \frac{1340.28}{1.50} = 893.5$ s (or by any other suitable method)	1	
	OR FOLL		
8	$\Delta m = \frac{1000 k}{1000 k}$	1/2	
	$1.65 \times 10^{-4} \times 1000$	1/2	
	$Am = \frac{1.05 \times 10^{-1} \times 1000}{0.01}$ = 16.5 S cm ² mol ⁻¹	1	
9	F F F (square pyramidal)	1,1	
10.	i) Mn	1	
	i) Mischmetall	1	
11	i) Propene	1	
	ii) 4-nitrochlorobenzene and 2-nitrochlorobenzene / structures	1/2 + 1/2	
	iii) Methylcyanide / Ethanenitrile / structure	1	
12	Moles for MgBr ₂ = $\frac{10.5}{184}$ = 0.0571 mol		
	Molality = $\frac{0.0571}{200}$ × 1000 = 0.2855 m		
	i=3	1/2	
	$\Delta T_f = i K_f m$	1/2 1/2	
	$= 3 \times 1.86 \times 0.2855$		


	$H - C = C + H + H^{+}$ $H - C = C + H + H^{+}$		
	ii) o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while p-nitrophenol is less volatile due to intermolecular hydrogen bonding.		
14	 i) Rate = k[A][B]² ii) Rate becomes 9 times iii) Rate becomes 8 times 	1 1 1	
15	i) ii) iii) Cu(s) $ Cu^{2+}(aq) Ag^{+}(aq) Ag(s)$ Current will flow from silver to copper electrode in the external circuit. Cathode : $2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$ Anode : $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$	$ \begin{array}{c} 1 \\ 1 \\ \frac{1}{2} + \frac{1}{2} \end{array} $	
16	 i) The precipitated silver iodide adsorbs iodide ions from the dispersion medium resulting in the negatively charged colloidal solution. ii) Due to large surface area iii) If the dispersion medium is separated from the dispersed phase , the sol can be reconstituted by simply remixing with the dispersion medium. That is why these sols are also called reversible sols. 	1 1	
17	i) $(CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$ ii) A: $C_6H_5N_2^+Cl^-$ B: C_6H_5OH $R-NH_2 + CHCl_3 + 3KOH \xrightarrow{Heat} R-NC + 3KC1 + 3H_2O$	1 1 1	
18	 i) Due to the formation of zwitter ion. ii) The two strands are complementary to each other because the hydrogen bonds are formed between specific pairs of bases iii) CHO CHO COOH Or glucose gets oxidised to gluconic acid on reaction with mild exidising agent like 	1	
	(CHOH) ₄ $\xrightarrow{\text{Br}_2 \text{ water}}$ (CHOH) ₄ CH ₂ OH CH ₂ OH CH ₂ OH Gluconic acid reaction with mild oxidising agent like	1	
19.	i) $\begin{array}{c} CN \\ H \\ H_{2}C + CH_{2} + CH$	1	
20.	a) Gold is leached out in the form of a complex with dil. solution of NaCN in the presence of air/ NaCN acts as leaching agent.	1	

	ii)	$Cr^{2+} < Fe^{2+} < Mn^{2+}$	1
		b) $\operatorname{Cr_2O_7^{2-}}$ + 14 H ⁺ + 6 Fe ²⁺ \rightarrow 2 Cr ³⁺ + 6 Fe ³⁺ + 7 H ₂ O	1
	1)		
22		a) $5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$	1
	iii)	Tris(ethane-1,2-diamine)cobalt(III) ion	1
	ii)	Potassium hexacyanidoferrate(III)	1
	1)	Hexaamminenickel(II) chloride	L .
21	;)		1
	c) CO form	is a volatile complex with nickel which is further decomposed to give pure Ni metal.	1
	b) It lower	s the melting point of alumina and makes it a good conductor of electricity.	1
8			10 C

	OR	
22	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	(or any other correct equation)	
	4 FeCr.O. + 8 Na.CO. + 7 O. \rightarrow 8 Na.CrO. + 2 Fe.O. + 8 CO.	1
	ii) $1 \operatorname{CCr}_{2}O_{4} + O \operatorname{Ra}_{2}O_{3} + P O_{2} + O \operatorname{Ra}_{2}O_{4} + 2 \operatorname{Cr}_{2}O_{3} + O OO_{2}$::) $2 \operatorname{Cr}_{4}O_{4}^{2-} + 2\operatorname{H}^{+} \rightarrow \operatorname{Cr}_{2}O_{7}^{2-} + \operatorname{H}_{2}O$	1
23	 a) Tranquilizers b) It may cause harmful offects and may acts as poison in case of everdese. Therefore, a 	1
	 b) It may cause harmful effects and may acts as poison in case of overdose. Therefore, a doctor should be always consulted. 	
	c) Phenacetin	1
	d) Empathetic , Caring , sensitive (or any other two relevant values)	1
24	$2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$	1
	i)a) (cold and dilute)	
	2XeF ₂ (s) + 2H ₂ O(l) \rightarrow 2Xe (g) + 4 HF(aq) + O ₂ (g)	1
	ii) a) Sulphur is sterically protected by six F atoms, hence does not allow the water	
	molecules to attack.	
	b) It contains only two ionisable H-atoms which are present as -OH groups, thus behaves	1
	as dibasic acid.	
	c) Xe has least ionization energy among the noble gases and hence it forms chemical	1
	compounds particularly with O_2 and F_2 .	
24	OK	
24	 i) a. Fluorine has less negative electron gain enthalpy than chlorine, b. Fluorine has low enthalpy of dissociation than chlorine 	1/2 ×4
	c. Fluorine has very high enthalpy of hydration than chlorine.	
	d. Fluorine is stronger oxidizing agent than chlorine.	
	ii) a)	
	iii) $3Cu + 8 HNO_3(dilute) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$	1
	b) $2 \text{ Fe}^{3+} + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2 \text{ Fe}^{2+} + \text{SO}_4^{2-} + 4 \text{ H}^+$	1
	c) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$	
	(Balancing of equations may be ignored)	
25	i)a) Due to +I effect of methyl group in CH_3CHO .	1
	b)due to -I effect of nitro group in nitroacetic acid.	1
	c) Due to the strong electron withdrawing effect of the carbonyl group and resonance	1
	stabilisation of the conjugate base. ii) a) Add NaOH and I_2 to both the compounds and heat, ethanal gives yellow ppt of iodoform.	
	b) Add NaOH and I_2 to both the compounds and heat, pentan-2-one gives yellow ppt of	1
	iodoform.	1
	OR	L
25	a)	

