Sample Paper

Time: 90 Minutes

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

- 1. In moving from A to B along an electric field line, the work done by the electric field on an electron is 6.4×10^{-19} J. If ϕ_1 and ϕ_2 are equipotential surfaces, then the potential difference $V_C V_A$ is
 - (a) -4 V
 - (b) 4V
 - (c) zero
 - (d) 6.4V
- 2. For distance far away from centre of dipole the change in magnitude of electric field with change in distance from the centre of dipole is
 - (a) zero.
 - (b) same in equatorial plane as well as axis of dipole.
 - (c) more in case of equatorial plane of dipole as compared to axis of dipole.
 - (d) more in case of axis of dipole as compared to equatorial plane of dipole.
- 3. A conductor carries a current of 50 μ A. If the area of cross-section of the conductor is 50 mm², then value of the current density in Am⁻² is

(a) 0.5 (b) 1 (c) 10^{-3} (d) 10^{-6}

- 4. Figure below shows a hollow conducting body placed in an electric field. Which of the quantities are zero inside the body?
 - (a) Electric field and potential
 - (b) Electric field and charge density
 - (c) Electric potential and charge density.
 - (d) Electric field, potential and charge density.
- 5. The energy required to charge a parallel plate condenser of plate separation d and plate area of cross-section A such that the uniform electric field between the plates is E, is

(a)
$$\in_0 E^2 Ad$$
 (b) $\frac{1}{2} \in_0 E^2 Ad$ (c) $\frac{1}{2} \in_0 E^2 / Ad$ (d) $\in_0 E^2 / Ad$

E F

Physics

- Consider an electric field $\vec{E} = E_0 \hat{x}$ where E_0 is a constant. The flux through the shaded area (as shown in the figure) due to this 6. field is
 - (a) $2E_0a_2$
 - (b) $\sqrt{2}E_0a^2$
 - (c) $E_0 a^2$
 - $E_0 a^2$ (d)

1)
$$\frac{1}{\sqrt{2}}$$

- 7. The electric resistance of a certain wire of iron is R. If its length and radius are both doubled, then
 - (a) the resistance and the specific resistance, will both remain unchanged
 - (b) the resistance will be doubled and the specific resistance will be halved
 - (c) the resistance will be halved and the specific resistance will remain unchanged
 - (d) the resistance will be halved and the specific resistance will be doubled
- 8. A metallic sphere is placed in a uniform electric field. The line of force follow the path (s) shown in the figure as
 - (a) 1

1 → 2 →	\frown	
3→		▶3

(c) 3 (d) 4

(b) 2

- Eight drops of mercury of equal radii possessing equal charges combine to form a big drop. Then the capacitance of 9. bigger drop compared to each individual small drop is (a) 8 times (b) 4 times (d) 32 times(c) 2 times
- A wire of radius r and another wire of radius 2r, both of same material and length are connected in series to each other. The 10. combination is connected across a battery. The ratio of the heats produced in the two wires will be (a) 4.00 (b) 2.00 (c) 0.50 (d) 0.25
- 11. Five cells each of emf E and internal resistance r send the same amount of current through an external resistance R whether

the cells are connected in parallel or in series. Then the ratio $\left(\frac{R}{r}\right)$ is

(a) 2 (b)
$$\frac{1}{2}$$
 (c) $\frac{1}{5}$ (d) 1

- The four wires from a larger circuit intersect at junction A as shown. What is the magnitude and direction of the current 12. between points A and B?
 - (a) 2 A from A to B
 - (b) 2A from B to A
 - (c) 3A from A to B
 - (d) 2A from B to A
- 13. The magnetic field around a long straight current carrying wire is
 - (a) spherical symmetry (b) cylindrical symmetry
 - (c) cubical symmetry (d) unsymmetrical
- 14. A current of I ampere flows in a wire forming a circular arc of radius r metres subtending an angle θ at the centre as shown. The magnetic field at the centre O in tesla is

 $2\pi r$

 $\mu_0 I \theta$ 4r

(a)
$$\frac{\mu_0 I \theta}{4\pi r}$$
 (b) $\frac{\mu_0 I \theta}{2\pi r}$

c)
$$\frac{\mu_0 I \theta}{2r}$$
 (d)

- 15. If specific resistance of a potentiometer wire is $10^{-7}\Omega$ m current flowing through it, is 0.1 amp and cross sectional area of wire is 10^{-6} m², then potential gradient will be
 - (c) 10^{-6} volt/m (a) 10^{-2} volt/m (b) 10^{-4} volt/m (d) 10^{-8} volt/m
- 16. In a Wheatstone bridge all the four arms have equal resistance R. If the resistance of galvanometer arm is also R, the equivalent resistance of combination is

(a)
$$2R$$
 (b) $R/4$ (c) $R/2$ (d) R

Sample Paper-9

17.	In a moving coil galvanometer, the deflection of the coil θ is related to the electrical current <i>i</i> by the relation										
	(a) $i \propto \tan \theta$ (b) $i \propto \theta$	(c)	$i \propto \theta^2$	(d) $i \propto \sqrt{\theta}$							
18.	The pole strength of the magnet does not depend on										
	(a) area of cross-section	(b)	(b) nature of material								
	(c) length of the magnet	(d)	both (a) and (b)								
19.			coil along the axis passing through the centre of the coil and the induced current in the coil when viewed in the direction of								
	(a) clockwise	(b)	anti-clockwise								
	(c) no current in the coil	(d)	either clockwise or anti-cl	ockwise							
20.	On cutting a solenoid in half, the field lines remainA other face. Here, A refers to	а, e	merging from one face of th	ne solenoid and entering into the							
	(a) irregular (b) discontinuous	(c)	continuous	(d) alternate							
21.	A magnet is moved towards a coil (i) quickly (ii) slowly, t	hen tl	ne induced e.m.f. is								
	(a) larger in case (i)										
	(b) smaller in case (i)										
	(c) equal in both the cases										
	(d) larger or smaller depending upon the radius of the c	oil									
22.	Magnetic flux ϕ in weber in a closed circuit of resistance induced current at t = 0.25s is	10Ω	varies with time ϕ (sec) as ϕ	$b = 6t^2 - 5t + 1$. The magnitude of							
	(a) 0.2 A (b) 0.6 A		1.2A	(d) 0.8 A							
23.	The peak value of the a.c. current flowing through a res										
	(a) $I_0 = e_0/R$ (b) $I = e/R$	(c)	$I_0 = e_0$	(d) $I_0 = R/e_0$							
24.	An alternating current is given by										
	$i = i_1 \cos \omega t + i_2 \sin \omega t$ The rms current is given by										
	(a) $\frac{i_1 + i_2}{\sqrt{2}}$ (b) $\frac{ i_1 + i_2 }{\sqrt{2}}$	(c)	$\sqrt{\frac{i_1^2 + i_2^2}{2}}$	(d) $\sqrt{\frac{i_1^2 + i_2^2}{\sqrt{2}}}$							
25.	The heat produced in a given resistance in a given time b current of magnitude nearly	y the	sinusoidal current $I_0 \sin \omega t$ w	vill be the same as that of a steady							
	(a) $0.71 I_0$ (b) $1.412 I_0$	(c)	I ₀	(d) $\sqrt{I_0}$							
	SEC	IOIT	N-B								
This	section consists of 24 multiple choice questions with	overa	Ill choice to attempt any 2	0 questions. In case more than							
	rable number of questions are attempted, ONLY first 20										
26.	The force between two small charged spheres having c is	charge	es of 1 \times 10 ⁻⁷ C and 2 \times 1	0^{-7} C placed 20 cm apart in air							
	(a) 4.5×10^{-2} N		$4.5 \times 10^{-3} \text{ N}$								
	(c) 5.4×10^{-2} N		$5.4 \times 10^{-3} \text{ N}$								
27.	If an electron has an initial velocity in a direction differen			•							
	(a) a straight line (b) a circle	(c)	an ellipse	(d) a parabola							
28.	Gauss's law is valid for		.								
	(a) any closed surface	(b)	only regular close surface								
•	(c) any open surface	(d)	only irregular open surface								
29.	A point charge of magnitude +1 μ C is fixed at (0, 0, 0). An 0, 0). The potential and the induced electric field at the c	entre	of the sphere is :	uctor, is fixed with its center at (4,							
	(a) $1.8 \times 10^5 \text{ V and} - 5.625 \times 10^6 \text{ V/m}$		0 V and 0 V/m								
	(c) $2.25 \times 10^5 \text{ V and} - 5.625 \times 10^6 \text{ V/m}$	(d)	2.25×10^5V and 0 V/m								

SP-67

Physics

Sample Paper-9

41. If the magnetic flux linked with a coil through which a current of x A is set up is y Wb, then the coefficient of self inductance of the coil is

(a) (x-y) henry (b) $\frac{x}{y}$ henry (c) $\frac{y}{x}$ henry (d) x y henry

- **42.** The primary of a transformer has 400 turns while the secondary has 2000 turns. If the power output from the secondary at 1000 V is 12 kW, what is the primary voltage?
- (a) 200V
 (b) 300V
 (c) 400V
 (d) 500V
 43. A steel wire of length ℓ has a magnetic moment M. It is bent in L-shape (Figure). The new magnetic moment is
 (a) M
 - (b) $\frac{M}{\sqrt{2}}$ (c) $\frac{M}{2}$ (d) 2M $\frac{\ell}{2}$
- 44. Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This is called
 - (a) electromagnetic induction
 - (b) lenz's law
 - (c) hysteresis loss
 - (d) kirchhoff's laws 111

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **45.** Assertion : On disturbing an electric dipole in stable equillibrium in an electric field, it returns back to its stable equillibrium orientation.

Reason : A restoring torque acts on the dipole on being disturbed from its stable equillibrium.

46. Assertion : Polar molecules have permanent dipole moment.

Reason : In polar molecules, the centres of positive and negative charges coincide even when there is no external field.

47. Assertion : The induced charge that flows in the circuit does not depends on the time rate change of flux.

Reason :
$$i = \frac{dq}{dt} = -\frac{1}{R} \left(\frac{d\phi}{dt} \right) \Longrightarrow dq = -\frac{d\phi}{R}$$

48. Assertion : Charges are given to plates of two plane parallel plate capacitors C_1 and C_2 (such that $C_2 = 2C_1$) as shown in figure. Then the key K is pressed to complete the circuit. Finally the net charge on upper plate and net charge on lower plate of capacitor C_1 is negative.

Reason : In a parallel plate capacitor both plates always carry equal and positive charge.

49. Assertion : A charged particle moves in a uniform magnetic field. The velocity of the particle at some instant makes an acute angle with the magnetic field. The path of the particle is a helix with constant pitch.

Reason : The force on the particle is given by $\vec{F} = q(\vec{v}.\vec{B})$.

SP-69

SP-70

Physics

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt **any 5**. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

- 50. A proton (mass *m* and charge + e) and an α -particle (mass 4m and charge + 2e) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true ?
 - (a) The α -particle will be bent in a circular path with a small radius that for the proton
 - (b) The radius of the path of the α -particle will be greater than that of the proton
 - (c) The α -particle and the proton will be bent in a circular path with the same radius
 - (d) The α -particle and the proton will go through the field in a straight line
- 51. The galvanometer cannot as such be used as an ammeter to measure the value of current in a given circuit. The following reasons are
 - I. galvanometer gives full scale deflection for a small current.
 - II. galvanometer has a large resistance.
 - III. a galvanometer can give inaccurate values.
 - The correct reasons are:

(a) I and II	(b) II and III	(c) I and III	(d) I, II and III				
Case Study: Read the following paragraph and answers the questions.							

Terminal potential difference of a cell is defining the potential difference between the two electrodes of a cell when the cell is in closed circuit i.e. current is withdrawn from it.

Electromotive force or e.m.f of a cell is the maximum potential difference between the two electrodes of a cell when the cell is in open circuit i.e. no current is taken from the cell.

- $V = E Ir \leftarrow$ when current is withdrawn from the cell
- $V = E + Ir \leftarrow$ when the cell is charged.

The S.I. unit of emf and potential difference is same i.e., volt.

- 52. A capacitor is connected to a cell of emf E having some internal resistance r. The potential difference across the
 - (a) cell is $\leq E$ (b) cell is E(c) capacitor is $\geq E$ (d) capacitor is $\leq E$
- **53.** A primary cell has an e.m.f. of 1.5 volt. When short-circuited it gives a current of 3 ampere. The internal resistance of the cell is
 - (a) 4.5 ohm (b) 2 ohm (c) 0.5 ohm (d) (1/4.5) ohm
- 54. A dc source of emf $E_1 = 100$ V and internal resistance $r = 0.5 \Omega$, a storage battery of emf $E_2 = 90$ V and an external resistance R are connected as shown in figure. For what value of R no current will pass through the battery ?

(a) 5.5Ω (b) 3.5Ω

(d) 2.5 Ω

- 55. Three batteries of emf 1V and internal resistance 1 Ω each are connected as shown. Effective emf of combination between the points PQ is
 - (a) zero
 - (b) 1V
 - (0) (1)
 - (c) 2V
 - (d) (2/3) V

OMR ANSWER SHEET

Sample Paper No –

- ★ Use Blue / Black Ball pen only.
- * Please do not make any atray marks on the answer sheet.
- ★ Rough work must not be done on the answer sheet.
- Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start tim	art time : End time				Time taken									
1. Nam	e (in Blo	ock Lette	ers)											
2. Date	of Exam			_		-								
			Ľ											
3. Cano	lidate's S	ignature	e 🗋											
Section-A														
1. (a) 2. (a) 3. (a)	(b) (b)		(d) (d) (d)		a a a	(b) (b)	(C) (C) (C)	(d) (d) (d)	17.18.19.	(a) (a) (a)	(b) (b) (b)			
4. a 5. a 6. a	(b) (b)	0 0 0	(d) (d) (d)	13. (a a a	(b) (b) (b)	0 0 0	(d) (d) (d)	20.21.22.	aa	(b) (d)	© © ©	(d) (d) (d)	
7. a 8. a	(b) (b)	© ©	(d) (d)	1 1	a a	(b) (b)	\bigcirc	(d) (d)	23.24.25.	aa	(b) (b) (b)	© © ©	(d) (d) (d)	
				S	Sectio	on-B								
26. a) 27. a) 28. a) 29. a) 30. a) 31. a) 32. a) 33. a)				36. (37. (38. (39. (40. (41. (42. 43. 44. 45. 46. 47. 48. 49 					
Section-C														
50. a 51. a 52. a	(b) (b) (b)	(C) (C) (C)	(d) (d) (d)	53. 54. 55.	(a) (a) (a)	(b) (b) (b)	© © ©	(d) (d) (d)						
No. of C Attemp	Qns.			Corre	ect			Inco	orrect				Marks	