Sample Paper

ANSWERKEY																			
1	(a)	2	(a)	3	(a)	4	(d)	5	(a)	6	(b)	7	(b)	8	(a)	9	(b)	10	(c)
11	(a)	12	(a)	13	(a)	14	(c)	15	(d)	16	(b)	17	(d)	18	(c)	19	(a)	20	(a)
21	(a)	22	(b)	23	(b)	24	(b)	25	(b)	26	(d)	27	(a)	28	(a)	29	(d)	30	(b)
31	(b)	32	(c)	33	(d)	34	(d)	35	(b)	36	(b)	37	(c)	38	(a)	39	(d)	40	(a)
41	(c)	42	(d)	43	(a)	44	(b)	45	(b)	46	(a)	47	(b)	48	(c)	49	(b)	50	(a)

Ósolutions

1. (a) $P(x)$ is a polynomial of degree 3 .
and $P(n)=\frac{1}{n} \Rightarrow n P(n)-1=0$
$n(P(n))$ is a polynomial of degree 4
$\therefore n P(n)-1=k(n-1)(n-2)(n-3)(n-4)$
For $n=0 ;-1=24 k \Rightarrow k=\frac{-1}{24}$
For $n=5 ; 5 \times P(5)-1=\frac{-1}{24}(4)(3)(2)(1)$
$\Rightarrow 5 \cdot P(5)-1=-1 \Rightarrow P(5)=0$
2. (a) Area of square $=2 \mathrm{~cm}^{2}$

Side of square $=\sqrt{2} \mathrm{~cm}$
$O P=\frac{\sqrt{2}}{2} \mathrm{~cm}, O Q=x \mathrm{~cm}$

$\Rightarrow x^{2}=(\sqrt{2})^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}$
$\Rightarrow \mathrm{x}^{2}=2+\frac{2}{4}$
$\Rightarrow \mathrm{x}^{2}=\frac{5}{2} \Rightarrow \mathrm{x}=\sqrt{\frac{5}{2}} \mathrm{~cm}$.
$\mathrm{AC}=2 \sqrt{\frac{5}{2}} \mathrm{~cm} \quad(\mathrm{AC}=$ Diameter $)$

Area of square $=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}$
Area of square $=\frac{1}{2} \times d_{1} \times d_{2}$
$=\frac{1}{2} \times 2 \sqrt{\frac{5}{2}} \times 2 \sqrt{\frac{5}{2}}=5 \mathrm{~cm}^{2}$
3. (a)
4. (d) Let $x \& y$ be the unit and tenth digits respectively of a two digit number. Then,
$x+y=9(\because$ Given $)$
and according to given condition,
$10 x+y=10 y+x+27$
$\Rightarrow 9 x-9 y=27$
$\Rightarrow x-y=3$
On adding (i) \& (ii)
$2 x=12 \Rightarrow x=6$
Hence, from equation (i),
$6+y=9 \Rightarrow y=3$
So number will be $10 \times 3+6=36$
5. (a) The largest number of four digits is 9999 . Least number divisible by $12,15,18,27$ is 540 .
On dividing 9999 by 540 , we get 279 as remainder.
Required number $=(9999-279)=9720$.
6. (b)

Let $\mathrm{O}(x, y)$ is the centre of the given circle.
Join OA, OB \& OC.
$\because \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$\therefore \mathrm{OA}^{2}=\mathrm{OB}^{2}$
$\Rightarrow \sqrt{(x+2)^{2}+(y-5)^{2}}=\sqrt{(x+2)^{2}+(y+3)^{2}}$
$\Rightarrow x^{2}+4+4 x+y^{2}+25-10 y=x^{2}+4+4 x+y^{2}+9+6 x$
$\Rightarrow 16 y=16 \Rightarrow y=1$
Again: $\mathrm{OB}^{2}=\mathrm{OC}^{2}$
$\Rightarrow \sqrt{(x+2)^{2}+(y+3)^{2}}=\sqrt{(x-2)^{2}+(y+3)^{2}}$
$\Rightarrow x^{2}+4+4 x+(y+3)^{2}=x^{2}+4-4 x+(y+3)^{2}$
$\Rightarrow 8 x=0 \Rightarrow x=0$
$\therefore \quad$ centre of the circle is $(0,1)$.
7. (b) $\sin 45^{\circ}+\cos 45^{\circ}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$
8. (a)
9. (b) Since, H.C.F. of co-prime number is 1.
\therefore Product of two co-prime numbers is equal to their L.C.M. So, L.C.M. $=117$
10. (c) $(x-6)^{2}+(y+6)^{2}=(x-3)^{2}+(y+7)^{2}$

Also, $(x-3)^{2}+(y-3)^{2}=(x-3)^{2}+(y+7)^{2}$
$y^{2}-6 y+9=y^{2}+14 y+49$
$-20 y=40 \Rightarrow y=-2$
Putting $y=-2$ in equation (i), we have
$(x-6)^{2}+(4)^{2}=(x-3)^{2}+(5)^{2}$
$x^{2}-12 x+36+16=x^{2}-6 x+9+25$
$-6 x=-18 \Rightarrow x=3$
11. (a) Since a, b are co-prime
\Rightarrow g. c.d of $\mathrm{a}, \mathrm{b}=1 \Rightarrow$ g. c. d. of $\mathrm{a}^{2}, \mathrm{~b}^{2}=1$
$\Rightarrow \mathrm{a}^{2}, \mathrm{~b}^{2}$ are co-prime.
(b) does not hold. (c) does not hold, (d) does not hold
\because If $\mathrm{a}=2, \mathrm{~b}=3$, then $\mathrm{a}^{2}=4, \mathrm{~b}^{2}=9$
$\therefore \mathrm{a}^{2}$ is even, b^{2} is odd.
12. (a)
13. (a)

Here, $a=66 m, b=53 m \& c=35 m$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{66+53+35}{2}=77 \mathrm{~m}$
Area of $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
So, area of $\Delta=\sqrt{77(11)(24)(42)}=924$
$\pi r^{2}=2(924)$
$\Rightarrow \quad \mathrm{r}^{2}=\frac{2 \times 924+7}{22} \Rightarrow \mathrm{r}^{2}=588$
$\Rightarrow \quad \mathrm{r}=14 \sqrt{3} \mathrm{~m}$

14. (c) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{5}{3}$
15. (d) $\frac{\tan 30^{\circ}}{\cot 60^{\circ}}=\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}=1$
16. (b)
17. (d)
18. (c) Total number of cards $=25$

Prime number are $3,5,7,11,13,17,19,23$,
$\therefore \quad$ Probability of prime number card $=\frac{8}{25}$
19. (a)

$$
\angle \mathrm{AOB}=\theta
$$

$\because \mathrm{CO} \perp \mathrm{OA}$
$\therefore \quad \angle \mathrm{BOC}=\left(90^{\circ}-\theta\right)$

$$
\sin \theta=\frac{3}{5} ; \quad \cos \theta=\frac{4}{5}\left[\because \cos \theta=\sqrt{1-\sin ^{2} \theta}\right]
$$

$\sin \theta=x=\frac{3}{5}$
$\cos \theta=y=\frac{4}{5}$
\therefore point on fourth quadrant is $\left(\frac{3}{5},-\frac{4}{5}\right)$
20. (a) Required area $=\pi\left[(r+d)^{2}-r^{2}\right]$

$=\pi\left[r^{2}+\mathrm{d}^{2}+2 \mathrm{rd}-r^{2}\right]$
$=\pi\left[d^{2}+2 \mathrm{rd}\right]=\pi \mathrm{d}[\mathrm{d}+2 r]$
21. (a) We know that height of an
equilateral triangle $\frac{\sqrt{3}}{2} a$, where a is the side of equilateral triangle
$\therefore A D^{2}=\frac{3}{4} a^{2}=\frac{3}{4} B C^{2}$

22. (b) Let speed of boat in still water be $x \mathrm{~km} / \mathrm{hr}$ and speed of stream be $y \mathrm{~km} / \mathrm{hr}$

$$
\begin{align*}
& \frac{30}{x+y}=3 \Rightarrow x+y=10 \tag{i}\\
& \frac{30}{x-y}=5 \Rightarrow x-y=6 \tag{ii}
\end{align*}
$$

From solving equations (i) and (ii)

$$
x+y=10
$$

$-x-y=6$
$\frac{+\quad-}{2 y=4 \quad y=2 \mathrm{~km} / \mathrm{hr} \text {. and } 10 .}$
$\mathrm{x}=8 \mathrm{~km} / \mathrm{hr}$
23. (b) Probability $=\frac{\text { No. of favourable outcomes }}{\text { Total number of outcomes }}=\frac{1}{5}$
24. (b) Let coordinate of point p be $(h, 5 h+3)$

Since, M is the mid-point of PQ , therefore by mid-point formula, we have $\mathrm{M}=\left(\frac{h+3}{2}, \frac{5 h+3-2}{2}\right)$.

Clearly by observing the options, we can say that M must lie on the line

$$
y=5 x-7
$$

25. (b) Perimeter $=\frac{2 \pi r}{2}+2 r$
$=\pi r+2 r$
$\Rightarrow(\pi+2) r=36$
$\Rightarrow\left(\frac{36}{7}\right)-r=36$

$\Rightarrow r=7 \mathrm{~cm}$
Hence, diameter $=7 \times 2=14 \mathrm{~cm}$.
26. (d) $f(x)=(x-1)^{2}+(x-2)^{2}+(x-3)^{2}+(x-4)^{2}$
$=4\left(x-\frac{5}{2}\right)^{2}+5$
$f(x)$ is minimum at $x=\frac{5}{2}=2.5$
27. (a) Let one woman can paint a large mural in W hours and one girl can paint it in G hours
According to question,

$$
\begin{align*}
& \frac{8}{W}+\frac{12}{G}=\frac{1}{10} \Rightarrow \frac{2}{W}+\frac{3}{G}=\frac{1}{40} \tag{i}\\
& \text { Also, } \frac{6}{W}+\frac{8}{G}=\frac{1}{14} \Rightarrow \frac{3}{W}+\frac{4}{G}=\frac{1}{28} \tag{ii}
\end{align*}
$$

On solving equation (i) and (ii), we get

$$
W=140 \text { and } G=280
$$

$$
\text { Now, } \frac{7}{140}+\frac{14}{280}=\frac{1}{\text { Time taken }}=\frac{1}{t}(\text { say })
$$

$$
\Rightarrow \frac{1}{t}=\frac{1}{20}+\frac{1}{20} \Rightarrow \mathrm{t}=10 \text { hours }
$$

28. (a) Here, $B A C$ is a right angle triangle

$$
\begin{aligned}
& A B=15 \& B C=25 \\
& \therefore A C=\sqrt{B C^{2}-A B^{2}}=20
\end{aligned}
$$

$$
\text { Area of } \triangle A B C=\frac{1}{2} B C \cdot A D
$$

$$
=\frac{1}{2} A B \cdot A C
$$

$$
\Rightarrow B C \cdot A D=A B \cdot A C
$$

$$
\Rightarrow 25(\mathrm{AD})=15(20) \quad \Rightarrow \quad \mathrm{AD}=12
$$

$\because A E D F$ is rectangle then, $A D=E F=12$
29. (d) As $(a, 0),(0, b)$ and $(1,1)$ are collinear
$\therefore a(b-1)+0(1-0)+1(0-b)=0$

$$
a b-a-b=0
$$

$a b=a+b$
$1=\frac{1}{a}+\frac{1}{b}$
30. (b) $\left(\sin 30^{\circ}+\cos 30^{\circ}\right)-\left(\sin 60^{\circ}+\cos 60^{\circ}\right)$

$$
=\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)=0
$$

31. (b) Since, 2 is the zero of $x^{2}+3 x+k$,

$$
\therefore \quad(2)^{2}+3(2)+k=0 \Rightarrow k+10=0 \Rightarrow k=-10
$$

32. (c) Possible products are $1,4,9,16,2,8,18,32,3,12$, 27, 48, 4, 16, 36, 64

So, required probability of getting the product of the two numbers so obtained is $\frac{6}{16}=\frac{3}{8}$
33. (d)

34. (d) $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}=\frac{\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)+\tan ^{2} \mathrm{~A}}{\left(\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}\right)+\cot ^{2} \mathrm{~A}}$

$$
=\frac{\sec ^{2} \mathrm{~A}}{\operatorname{cosec}^{2} \mathrm{~A}}=\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}=\left(\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}\right)^{2}=\tan ^{2} \mathrm{~A} .
$$

35. (b) (I) Statement I is false. Consistent Linear equations may have unique or infinite solutions.
(II) Statement or is also false

$$
\because \quad 13^{2}+14^{2}=365
$$

36. (b) Let r be the radius of circle, then area $=\pi \mathrm{r}^{2}$

When r is diminished by 10%
then, area $=\pi\left(r-\frac{r}{10}\right)^{2}=\pi r^{2}\left(\frac{81}{100}\right)$
Thus, area is diminished by $\left(1-\frac{81}{100}\right) \%=19 \%$
37. (c) $\because \angle B A C=\angle A D C$
(given)
$\angle C=\angle C$
(common)

$\therefore \triangle A B C \sim \triangle D A C \quad$ (by AA similarity criterion)
$\Rightarrow \frac{B C}{A C}=\frac{A C}{D C} \Rightarrow B C \times D C=A C^{2}$
$\Rightarrow B C \times D C=(21)^{2}=$ area of rectangle with sides $B C \& D C$
Now, Area of equilateral triangle $=$ area of rectangle
$\Rightarrow \frac{\sqrt{3}}{4}(\text { side })^{2}=(21)^{2} \Rightarrow$ Side $=14 \times 3^{3 / 4}$
38. (a) Since -3 is the zero of $(k-1) x^{2}+k x+1$,

$$
\begin{aligned}
& \therefore \quad(k-1)(-3)^{2}+k(-3)+1=0 \\
& \Rightarrow \quad 9 k-9-3 k+1=0 \Rightarrow 6 k-8=0 \Rightarrow k=\frac{4}{3}
\end{aligned}
$$

39. (d) $(\sec \mathrm{A}+\tan \mathrm{A})(1-\sin \mathrm{A})$

$$
\begin{aligned}
& =\left(\frac{1}{\cos \mathrm{~A}}+\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}\right) \times(1-\sin \mathrm{A}) \\
& =\frac{(1+\sin \mathrm{A})(1-\sin \mathrm{A})}{\cos \mathrm{A}} \\
& =\frac{1-\sin ^{2} \mathrm{~A}}{\cos \mathrm{~A}}=\frac{\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}} \quad\left(\because \cos ^{2} \mathrm{~A}=1-\sin ^{2} \mathrm{~A}\right) \\
& =\cos \mathrm{A}
\end{aligned}
$$

40. (a) $x=\frac{1}{10} \Rightarrow a=10$ and $y=\frac{1}{5} \Rightarrow b=5$
41. (c) For getting least number of books, taking LCM of 64,72

8	64,72
	8,9
$\Rightarrow 8 \times 8 \times 9=576$	

42. (d)
43. (a) 72 is expressed as prime
$72=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$
44. (b) $5 \times 13 \times 17 \times 19+19$
$\Rightarrow 19 \times(5 \times 13 \times 17+1)$
so given no. is a composite number.
45. (b)
46. (a)
47. (b)
48. (c)
49. (b)
50. (a)
