CBSE Class–12 Mathematics

NCERT solution

Chapter -12

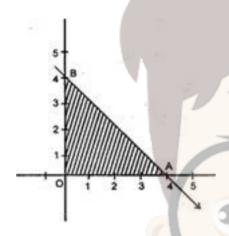
Linear Programming - Exercise 12.1

Solve the following Linear Programming Problems graphically:

1. Maximize Z = 3x + 4y subject to the constraints: $x + y \le 4, x \ge 0, y \ge 0$.

Ans. As $x \ge 0$, $y \ge 0$, therefore we shall shade the other inequalities in the first quadrant only.

Now $x+y \le 4$



Let
$$x + y = 4$$

$$\Rightarrow \frac{x}{4} + \frac{y}{4} = 1$$

Thus the line has 4 and 4 as intercepts along the axes. Now, (0, 0) satisfies the inequation, i.e., $0+0 \le 4$. Therefore, shaded region OAB is the feasible solution.

Its corners are O (0, 0), A (4, 0), B (0, 4)

At O
$$(0, 0)$$
 Z = 0

At A
$$(4, 0)$$
 Z = 3 x 4 = 12

At B
$$(0, 4)$$
 Z = $4 \times 4 = 16$

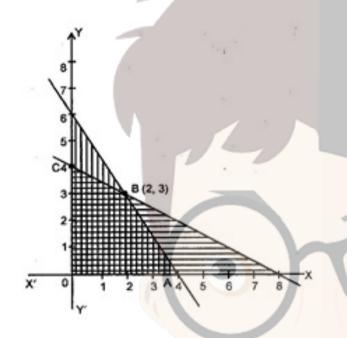
2. Minimize Z = -3x + 4y subject to $x + 2y \le 8, 3x + 2y \le 12, x \ge 0, y \ge 0$.

Ans. Consider $x+2y \le 8$

Let x + 2y = 8

$$\Rightarrow \frac{x}{8} + \frac{y}{4} = 1$$

 $\therefore a = 8, b = 4$



Since, (0, 0) satisfies the inequaitons $x + 2y \le 8$

Therefore, its solution contains (0, 0)

Again
$$3x + 2y \le 12$$

Let
$$3x + 2y = 12$$

$$\Rightarrow \frac{x}{4} + \frac{y}{6} = 1$$

Again, (0, 0) satisfies $3x + 2y \le 12$

Therefore its solution contains (0, 0).

The feasible region is the solution set which is double shaded and is OABCO.

At O(0,0) Z = 0

At A
$$(4, 0)$$
 Z = $-3 \times 4 = -12$

At B
$$(2, 3)$$
 Z = $-3 \times 2 + 4 \times 3 = 6$

Hence, minimum Z = -12 at x = 4, y = 0.

3. Maximize Z = 5x + 3y subject to $3x + 5y \le 15, \frac{5x}{5} + 2y \le 10, x \ge 0, y \ge 0$.

Ans. We first draw the graph of equation 3x + 5y = 15

$$\Rightarrow x = \frac{15 - 5y}{3}$$

For
$$y = 3$$
, $x = 0$

And for
$$y = 0$$
, $x = 5$

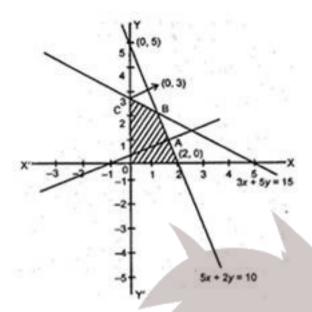
х	0	5
У	3	0

Similarly, for equation 5x + 2y = 10, the points are (2, 0) and (0, 5).

х	2	0
У	0	5

As (0, 0) satisfies both the inequations and also $x \ge 0$, $y \ge 0$, then the feasible require contains the half-plane containing (0, 0).

Therefore, the feasible portion is OABC which is shown as shaded in the graph.



Co-ordinates of point B can be obtained by solving 3x + 5y = 15 and 5x + 2y = 10 and it is $B\left(\frac{20}{19}, \frac{45}{19}\right)$.

Thus, co-ordinates of O, A, B and C are (0, 0), (2, 0), $\left(\frac{20}{19}, \frac{45}{19}\right)$ and (0, 3).

$$Z = 5x + 3y = 0$$
 (if $x = 0, y = 0$)

$$Z = 5 \times 2 + 3 \times 0 = 10$$
 (if $x = 2$, $y = 0$)

Z = 5 x
$$\frac{20}{19}$$
 + 3 x $\frac{45}{19}$ = $\frac{235}{19}$ (if $x = \frac{20}{19}$, $y = \frac{45}{19}$)

$$Z = 5 \times 0 + 3 \times 3 = 9$$
 (if $x = 0, y = 3$)

Hence, Z =
$$\frac{235}{19}$$
 is maximum when $x = \frac{20}{19}$, $y = \frac{45}{19}$.

4. Minimize P = 3x + 5y such that $x + 3y \ge 3, x + y \ge 2, x, y \ge 0$.

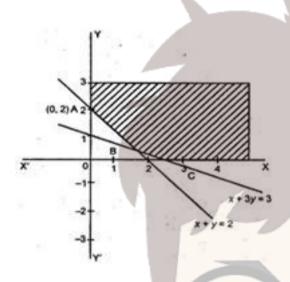
Ans. For plotting the graphs of x + 3y = 3 and x + y = 2, we have the following tables:

x	0	3
У	1	0

x	1	0
y	1	2

The feasible portion represented by the inequalities

$$x+3y \ge 3$$
, $x+y \ge 2$ and $x, y \ge 0$ is ABC which is shaded



in the figure. The coordinates of point B are $\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$

Which can be obtained by solving x + 3y = 3 and x + y = 2.

At A (0, 2)

$$Z = 3 \times 0 + 5 \times 2 = 10$$

At B
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

$$z = 3 \times \frac{3}{2} + 5 \times \frac{1}{2} = \frac{9}{2} + \frac{5}{2} = \frac{14}{2} = 7$$

At C (3, 0)

$$Z = 3 \times 3 + 5 \times 0 = 9$$

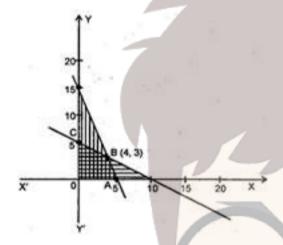
Hence, Z is minimum is 7 when $x = \frac{3}{2}$ and $y = \frac{1}{2}$.

5. Maximize z = 3x + 2y subject to $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$.

Ans. Consider $x + 2y \le 10$

Let
$$x+2y=10$$

$$\Rightarrow \frac{x}{10} + \frac{y}{5} = 1$$



Since, (0, 0) satisfies the inequation, therefore the half plane containing (0, 0) is the required plane.

Again
$$3x + 2y \le 15$$

Let
$$3x + y = 15$$

$$\Rightarrow \frac{x}{5} + \frac{y}{15} = 1$$

It also satisfies by (0, 0) and its required half plane contains (0, 0).

Now double shaded region in the first quadrant contains the solution.

Now OABC represents the feasible region.

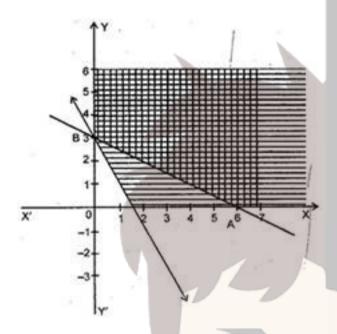
$$Z = 3x + 2y$$

At O
$$(0, 0)$$
 Z = 3 x 0 + 2 x 0 = 0

At A
$$(5, 0)$$
 Z = 3 x 5 + 2 x 0 = 15

At B
$$(4, 3)$$
 Z = 3 x 4 + 2 x 3 = 18

At C
$$(0, 5)$$
 Z = 3 x 0 + 2 x 5 = 10



Hence, Z is maximum i.e., 18 at x = 4, y = 3.

6. Minimize z = x + 2y subject to $2x + y \ge 3$, $x + 2y \ge 6$, $x, y \ge 0$. Show that the minimum of z occurs at more than two points.

Ans. Consider $2x + y \ge 3$

Let
$$2x + y = 3 \implies y = 3 - 2x$$

х	0	1	-1
У	3	1	5

(0, 0) is not contained in the required half plane as (0, 0) does not satisfy the inequation $2x + y \ge 3$.

Again
$$x+2y \ge 6$$

Let
$$x+2y=6$$

$$\Rightarrow \frac{x}{6} + \frac{y}{3} = 1$$

Here also (0, 0) does not contain the required half plane. The double shaded region XABY is the solution set. Its corners are A (6, 0) and B (0, 3).

At A
$$(6, 0)$$
 Z = 6 + 0 = 6

At B
$$(0, 3)$$
 Z = 0 + 2 x 3 = 6

Therefore, at both points the value of Z = 6 which is minimum. In fact at every point on the line AB makes Z = 6 which is also minimum.

7. Minimize and Maximize Z = 5x+10y subject to

$$x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x, y \ge 0.$$

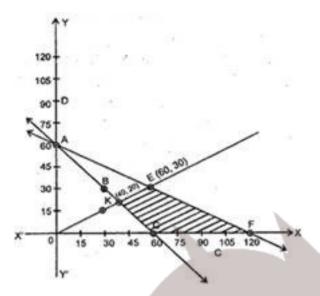
Ans. Consider $x + 2y \le 120$

Let
$$x + 2y = 120$$

$$\Rightarrow \frac{x}{120} + \frac{y}{60} = 1$$

The half plane containing (0, 0) is the required half plane as (0, 0) makes $x + 2y \le 120$, true.

x	0	30	60
У	60	45	30



Again
$$x+y \geq 60$$

Let
$$x+y=60$$

Also the half plane containing (0, 0) does not make $x + y \ge 6$ true.

Therefore, the required half plane does not contain (0, 0).

Again
$$x-2y \ge 0$$

Let
$$x-2y=0 \implies x=2y$$

Let test point be (30, 0).

x	0	30	60
У	0	15	30

$$\Rightarrow x-2y \ge 0 \Rightarrow 30-2 \times 0 \ge 0$$
 It is true.

Therefore, the half plane contains (30, 0).

The region CFEKC represents the feasible region.

At C (60, 0)
$$Z = 5 \times 60 = 300$$

At
$$F(120, 0)$$
 $Z = 5 \times 120 = 600$

At E (60, 30)
$$Z = 5 \times 60 + 10 \times 30 = 600$$

At K (40, 20) $Z = 5 \times 40 + 10 \times 20 = 400$

Hence, minimum Z = 300 at x = 60, y = 0 and maximum Z = 600 at x = 120, y = 0 or x = 60, y = 30.

8. Minimize and Maximize Z = x + 2y subject to

$$x + 2y \ge 100, 2x - y \le 0, 2x + y \le 200, x, y \ge 0.$$

Ans. Consider $x+2y \ge 100$

Let
$$x + 2y = 100 \implies \frac{x}{100} + \frac{y}{50} = 1$$

 $x + 2y \ge 100$ represents which does not include (0, 0) as it does not made it true.

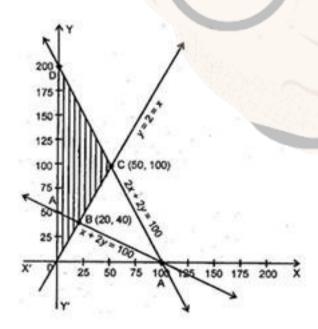
x	0		25	50	100
У	0	V	50	100	200

Again consider $2x - y \le 0$

Let
$$2x - y = 0 \implies y = 2x$$

Let the test point be (10, 0).

 \therefore 2 x 10 – 0 \leq 0 which is false.



Therefore, the required half does not contain (10, 0).

Again consider $2x + y \le 200$

Let 2x + y = 200

$$\Rightarrow \frac{x}{100} + \frac{y}{200} = 1$$

Now (0, 0) satisfies $2x + y \le 200$

Therefore, the required half place contains (0, 0).

Now triple shaded region is ABCDA which is the required feasible region.

At A (0, 50)

$$Z = x + 2y = 0 + 2 \times 50 = 100$$

At B (20, 40) Z = $20 + 2 \times 40 = 100$

At C (50, 100) $Z = 50 + 2 \times 100 = 250$

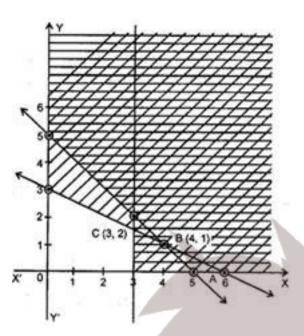
At D (0, 200) $Z = 0 + 2 \times 200 = 400$

Hence maximum Z = 400 at x = 0, y = 200 and minimum Z = 100 at x = 0, y = 50 or x = 20, y = 40.

9. Maximize Z = -x + 2y subject to the constraints: $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$.

Ans. Consider $x \ge 3$

Let x = 3 which is a line parallel to y = axis at a positive distance of 3 from it.



Since $x \ge 3$, therefore the required half-plane does not contain (0, 0).

Now consider $x + y \ge 5$

Let
$$x + y = 5$$

$$\Rightarrow \frac{x}{5} + \frac{y}{5} = 1$$

Now (0, 0) does not satisfy $x + y \ge 5$, therefore the required half plane does not contain (0, 0).

Again consider $x + 2y \ge 6$

Let
$$x+2y=6$$

$$\Rightarrow \frac{x}{6} + \frac{y}{3} = 1$$

Here also (0, 0) does not satisfy $x + 2y \ge 6$, therefore the required half plane does not contain (0, 0).

The corners of the feasible region are A (6, 0), B (4, 1) and C (3, 2).

At A (6, 0)
$$Z = -6 + 2 \times 0 = -6$$

At B
$$(4, 1)$$
 Z = $-4 + 2 \times 1 = -2$

At C (3, 2)
$$Z = -3 + 2 \times 2 = 1$$

Hence, maximum Z = 1 at x = 3, y = 2.

10. Maximize Z = x + y subject to $x - y \le -1, -x + y \le 0, x, y \ge 0$.

Ans. Consider $x - y \le -1$

Let
$$x-y=-1$$

$$\Rightarrow x = y - 1$$

	A	В	С	D
x	-1	0	2	3
У	0	1	2	4

If (0, 0) is the test point then $x-y \le -1 \implies 0 \le -1$ which is false and thus the required plane does not include (0, 0).

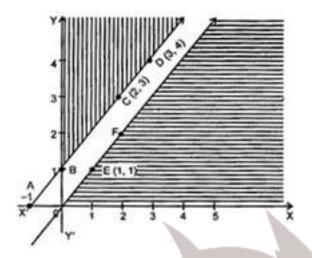
Again
$$-x + y \le 0$$

Let
$$-x+y=0$$

$$\Rightarrow y = x$$

	0	Е	F
x	0	1	2
У	0	1	2

For $(1, 0) - 1 \le 0$ which is true, therefore the required half-plane include (1, 0).



It is clear that the two required half planes do not intersect at all, i.e., they do not have a common region.

Hence there is no maximum Z.

