Muc. Environmenal Scince C(489)
1289

14P/290/28

Question	Rooklet	No
Ancount	DOOKIEL	140

		(To be	filled up	by the c	andidate l	by blue/b	lack ball-point pen)
Roll No.						\prod	5.E. 5.E. 6
Roll No.	ligits in ı	vords)					
Serial No.	of OMR /	Answer S	Sheet			•••••	
Day and D	ate		••••••	. 			(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्या : 180

Time/समय : 2 Hours/मण्टे

Full Marks/quits: 360

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections, viz., Section—A and Section—B.

Section—A: This is compulsory.

Section—B: This contains three Sub-section having questions of three disciplines viz., Physics (Sub-section B-1), Life Science (Sub-section B-2) and Geology (Sub-section B-3).

A candidate is required to attempt only one from these three Sub-sections.

SECTION-A

BASIC ENVIRONMENTAL SCIENCES

(Compulsory for all)

hich gas forms the main constituent of continuent

(1) Nitrogen

(2) Oxygen

(3)

(P.T.O.)

(166)

1

			(99)	
2.	Which pollutant is hacmoglobin?	nteracts with haeme	oglobin and displace	s oxygen to form carboxy-
	(1) CO ₂	(2) CO	(3) O ₂	(4) O ₃
3.	Each ecological fallimit, is commonly		nism's response has	maximum and minimum
	(1) law of toleran	ce	(2) law of minim	um
	(3) law of maxim	um	(4) law of conser	rvation
4.	Air pressure can	be determined by,		
	(1) Anemometer	(2) Barometer	(3) Hydrometer	(4) Psychometer
5.	Maximum thermo	meter contain by		.55
	(1) alcohol	(2) mercury	(3) water	(4) borine water
6.	Which one is the	important chemical	species in the strate	osphere?
	(1) Nitrogen	(2) Ozone	(3) Oxygen	(4) Carbon dioxide
7.	Which contaminar	nt is related with Bl	nopal Disaster?	·
	(1) Methyl isocyna		(2) Phosgene gas	1 0
	(3) Carbaryl		(4) All of the abo	
8.	Which one is bioti	o in origina		- 9
	42 401 (FAROMAN D) (II)	2000 NO N		
	(1) Soil texture	(2) Rainfall	(3) Light	(4) CO ₂ in soil
(166)			2	

9.	The characteristic	s of photochemical	smog is		
	(1) oxidising	(2) reducing	(3) iner	t (4) None of these
10.	The time required	l for a population (o double in	sise in know	n as
	(1) exponential g	rowth	(2) dou	Ming time	
•	(3) doubling rate	!	(4) gro	wth rate	
11.	Which one is the	acid associated wi	th soil?	ž.	
	(1) Acetic acid	(2) Humic acid	(3) Nitz	ric acid (4) Sulphuric acid
12.	Role of micro-org	anisms is	•8	N a	÷ 9
	(1) to act as sca	venger	(2) po li	intion indicate	or
	(3) removal of po	ollutants	(4) All	of these	
13.	The nuclear accid	dent occurred at Cl	nernobyl, Uk	raine on 28th	April, 1996 is related
	(1) 1-131	(2) Cs-137	(3) Th-	238	(4) U-238
14.	Sechi disc is use	d for the measurer	nent of	<u></u>	
	(1) turbidity of v	waters	(2) BO	D in water	
	(3) moisture con	itent	(4) ligh	ít	•
15.	SPM may lead to	o _.			
**************************************			(2) eki	n distant	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.
57 1000	asthma	15°	(4) kid		
(166)			3	*	

		ā:		ψ1				<i>a</i> .
16.	Th	e National Forest	Polic	y first adopted	in 189	4 revised in 19	52 wa	s again revised in
	(1)	1980	(2)	1974	(3)	1988	(4)	1972
<u> </u>	W							
17.	Th	e tem ecological	руга	mid was given	by			
	(1)	Elton	. (2)	Odum	(3)	Haeckel	(4)	Smith
18.	w	nen some work is	done	there will be	ome u	racte heat: this		
*	(1)	1st law of ther	mody	mamics	(2)	2nd law of the	ermod	lynamics
	(3)	3rd law of the	mod	ynamics	(4)	entropy		e.
19.	Int	dia produces whi	ich n	nineral in large	eet om	ouat in the	-142	
			020	100 Tests 10	cat am	ount in the wo	riar	
	, (1)	Iron	(2)	Aluminium	(3)	Mica	(4)	Manganese
20.	DI	T accumulates i	in wł	uich tissue of	the bo	dy?		•
	(1)	Bones	(2)	Blood	(3)	Fat	(4)	Muscles
21.	Co	ncept of the bios	mher	a recense was	.	d i= 100c 1		
	1/2/2/2/0			¥.	cvotve	d in 1986 by	٠	
	(1)	MAB Programm	ne of	UNESCO	(2)	IUCN		
	(3)	Project Tiger			(4)	Save the Croco	odile i	Project
22.	W	nat does 'CBD' si	tand	for?				
	(1)	Conservation of	f Bio	ogical Diversit	у			외
	(2)	Committee for	Biolo	gical Diversity	•			
	(3)	Convention on	Biolo	gical Diversity		4		
8.		Council for Biol						
(166)					ı			d.
253				4	•			10

23.	Hov	w many hot spot	8 20	nes are	there, i	n the	world?		•	
	(1)	20	(2)	15	9 * 0	(3)	25 '	(4	35	
24.	Lar	gest Tiger reserv	e in	.India i	• , ,	(1 0)				
	(1)	Indravati (MP)	R	72		(2)	Simlipal (C	Odisha)		
	(3)	Dudhwa (UP)			[A.	(4)	Nagarjuna	Sagar,	Hyderabad	(AP)
25.		ganisms occupyi own as	ng s	ame ec	cological	nich	e in differ	ent geo	graphical :	regions are
	(1)	ecological equiv	alen	ta,	0.78	(2)	spatial nic	he		
	(3)	trophic niche			•	(4)	None of th	nese		
26.	The	e nuclear bomb	éxpl	oded ov	er Naga	aaki i	n Second V	Warld W	ar contain	ed .
	(1)	U-235	(2)	Pu-239	•	(3)	U-233	: (4) Pu-233	k b
27.	The	e largest island	in th	e world	l is			* ¥		
	(1)	Sri Lanka	(2)	Green	and	(3)	Madagasc	ar (4) Australi	a.
28.	Th	e major source	of su	lphur d	lioxide i	n atm	osphere is		•	
	(1)	diesel	(2)	petrol	٠.,	(3)	coal	•	4) wood	ž.
29.	Th	e inner core of	he e	arth is	mainly	comp	osed of	•		
	(1)	Cu and Zn	(2)	Ni and	Fe .	(3)	Ca and A	7 (4) Na and	CI
30.	W	high of the follow	ving	is s _j ,pe	oficin?		:			
	-	Week	(2)	Starci		:: * :::::*:::	Natural r	u bbe r (4) Cellulo:	a d
160	. 7.	Const.			180) 	5	•			

CHEMISTRY

(Compulsory for all)

31.	Water boils at 100	°C under pressu	re of	
	(1) 780 mm .	(2) 760 mm	(3) 790 mm	(4) None of these
32.	The entropy of a p	perfect crystalline	solid on absolute zer	no is
	(1) zero	(2) positive	(3) negative	(4) None of these
33.	The element which	will be closer to	the ideal solution	
•	(1) normal solution	n	(2) dilute soluti	on .
	(3) saturated solu	tion	(4) super-satura	ited solution
34.	The first metal use	ed by man was	E	*** **:
	(1)- gold	(2) silver	(3) copper	(4) iron
35.	Gobar gas contains	mainly	•3	12.5
	(1) ethane	(2) methane	(3) acetylene	(4) butane
36.	Which of the follow	ring is used as a	refrigerant?	
	(1) Ammonia	(2) Ether	(3) Acetone,	(4) Nitrogen
37.	Gasoline is the nan	ne given to the sa	me substance	
	(1) crude oil	(2) natural gas		(4) diesel oil
		¥		
(166)			_	

• 7	£ .	
3 8 .	Acetyl salicylic acid is commonly used	8.8
	(1) tear gas	(2) chemical fertilizer
	(3) paint	(4) pain reliever
39.	The rate at which a substance reacts	us proportional to
	(1) mass (2) weight	(3) volume . (4) active mass
40.	When iron rusts, its weight	•
	(1) increases (2) decreases	(3) remains same (4) None of these
41.	Electrical conductivity in a metal is d	lue to .
	(1) movement of free elements	(2) positive and negative ions
	(3) positive ions only	(4) negative ions only
42.	Synthetic detergent is	* :-
	(1) a mixture of sodium salts of aron	matic and sodium chloride
	(2) a mixture of sodium carbonate a	nd sodium chloride
	(3) sodium salts of fatty acid	•
	(4) calcium salts of hydrochloric aci	d
43.	Dry ice at room temperature gives	
13	(1) water (2) CO ₂ gas	(3) salty water (4) Shaid Con
	a second	

44.	Entropy change of a system depe	ands on
	(1) pressure (2) volume	(3) temperature (4) None of the
45.	Artificial rain is produced by seed	ing clouds with
•	(1) potassium iodide	(2) silver iodide
12	(3) silver nitrate	(4) copper sulphate
46.	The chief constituent of animal be	ones is
	(1) magnesium carbonate	(2) calcium sulphate
	(3) calcium phosphate	(4) magnesium phosphide
47.	The power used for developing fin	gerprint on a multicolored surface is
	(1) gold dust	(2) charcoal
	(3) manganese dioxide	(4) florescent powder
48.	For welding, the gas used is	
	-(1) methane (2) ethane	(3) ethylene (4) acetylene
49.	Malachite is the mineral of	
	(1) copper (2) iron	(3) calcium (4) magnesium
50.	Nitrogen fertilizer having maximum	amount of nitrogen is
	(1) ammonium chloride	(2) potassium nitrate
	(3) ammonium sulphate	(4) urea

51.	The wrong states	nent is	E							
	(1) Enzymes are	specific in their a	actions	•						
	(2) Enzymes are capable of initiating chemical reaction									
	(3) Enzymes are proteins									
	(4) Enzymes are	sensitive to heat		76						
52.	Which of the foll	owing has never b	een used as a sulph	a drug?						
	(1) sulphapyridi	ne	(2) sulphanilar	nide						
	(3) sulphathiazo	le	(4) None of the	e above						
53.	The element whi	ch is present in al	l organic compounds	is .						
	(1) hydrogen	(2) carbon	(3) oxygen	(4) nitrogen						
54.	Phosphorus is ke	ept under water be	cause	*						
	(1) it is highly s	ensitive in air								
	(2) it is highly s	ensitive in water								
	(3) water forms	a protective coatin	g on it	¥						
	(4) None of thes	e .								
55.	A manmade elem	ent is .	10 10	¥						
	(1) plutonium	(2) U-235	(3) thorium	(4) radium						
				•						
	acetate	will hydrolyse to gi	ve a solution that is	•						
194 19	(I) acidic	(2) basic	(3) neutral							
.66)	×	15	· ·							

57.	Oxygen is prepared	in the laboratory b	y			49
	(1) heating potassis	um chlorate	(2)	heating potassis	um (xalate
	(3) heating non-me	etallic oxides	(4)	heating sand		
58.	A chemical bond fo known as	rmed by the sharin	g of	electrons betwee	n th	e reacting atoms i
	(1) an ionic bond		(2)	a covalent bond	l	15
	(3) a polar bond		(4)	a dative bond		
59.	Alpha particles are	electrically charged				10.00
	(1) hydrogen atom		(2)	neutrons		
	(3) helium atoms	126	(4)	X-rays		.2.5
60.	Specific heat of per	fect gases are funct	ions	only of		
	(1) heat	(2) volume	(3)	pressure	(4)	temperature
61.	Ionic theory of elec	trolysis was given b	y			
	(1) Archimedes	(2) Arrhenius	(3)	Boyle	(4)	Charles
62.	Air is					
	(1) a compound	(2) a mixture	(3)	an element	(4)	None of these
63.	The element presen	it in the largest am	ount	in rocks and mi	nera	ıls is
	(1) gold	(2) carbon	(3)	hydrogen	(4)	silicon
		*				
(166)		10)			

64.	Dehydration of fruits is done before tinning them for food which is			
	(1) to preserve the essence in full stres	ngth		
	(2) to prevent microbial growth			
	(3) to remove bacteria	€••0 9		
	(4) to add nutrients in the fruit			
6 5.	The chemical substance present in bon	es and teeth is		
	(1). calcium sulphate	(2) calcium phosphate		
	(3) calcium borate	(4) calcium chloride		
66.	The pH of acid gastric juice would be			
	(1) 7 (2) below 7	(3) above 7 (4) None of these		
67.		trate was repeatedly used as a nitrogenous the soil was left with excess of potassium ions,		
	(1) neutral (2) dry	(3) alkaline (4) acidic		
68.	Fixation of nitrogen refers to			
	(1) conversion of atmospheric nitrogen	into nitrogenous compounds		
	(2) nitrogen cycle in nature			
	(3) liquefaction of nitrogen			
1. *	manufacturing nitrogen from air			

69.	Acid rain results	due to	•		
	(1) oxides of nit	rogen and sulphur d	ioxide		
	(2) ammonia		•		
	(3) carbon mono	xide `			
	(4) oxides of nit	rogen			
70.	The least prone	to fire is		ž ų	
	(1) Rayon	(2) Nylon	(3) C	Cotton (4) Terycot
		10 1	Ü	3	
71.	The longest wave	length is possessed	by	* * *	
	(1) infrared	(2) light rays	(3) X	-rays (4) Gamma ray
				¥	
72.	The gas which is	preferred to be mix	ed with o	oxygen in an oxy	gen tube is
	(1) argon		(2) ca	arbon dioxide	
	(3) helium		(4) n	itrogen	
<u> </u>			•		
73.	Which of the follo	wing is not a natur	al polyme	er?	
	(1) Silk	(2) Rubber	(3) P	lastic (4)	Cellulose
25-27702	Signatural and the	•			
74.	Which of the follo	wing contains carbo	n?		
	(1) Phosphorite	(2) Chromite	(3) Ba	auxite (4)	Lignite
	5				
(166)		1	2	5)	

	*
78 .	Osone is important to mankind, because
	(1) it helps in releasing hydrogen into atmosphere
	(2) it helps in maintaining the temperature of earth
	(3) it releases oxygen in the air
	(4) it creates a protective covering against the ultraviolet rays
76.	Gamma radiations are used for
	(1) sterilizing food stuff (2) controlling pests
	(3) cancer therapy (4) All of these
77.	If air is saturated, the relative humidity is 1 and the specific humidity is
	(1) equal to one (2) greater than one
	(3) less than one (4) None of these
78.	If a system can exchange both matter and energy with the surrounding it is called
	(1) open system (2) closed system
	(3) isolated system (4) Homogenous system
79.	The Carnot engine violate second law of thermodynamics when its efficiency become
	(1) 100% (2) 25% (3) 50% (4) 75%
80.	Heavy water is called heavy because it is
	(1) a heavy liquid
•	(2) denser than water
	an emide of heavier isotope of oxygen
	(4) an oxide of deuterium
(166)	. 13

81.	Low ionization en	ergy is characterist	ic of a	
	(1) metal	(2) non-metal	(3) metalloids	(4) inert gas
82.	India's first major	steel plant was er	ected at	
	(1) Durgapur	(2) Jamshedpur	(3) Bhadravathi	(4) Raurkela
83.	The gas used for	artificial ripening o	f fruit is	
	(1) ethylene		(2) barbitaric acid	d
	(3) benzoic acid		(4) None of these	
84.	The sugar that yi	elds only glucose w	hen hydrolyzed is	
	(1) maltose	(2) sucrose	(3) lactose	(4) fructose
.85.	The enzyme which	catalyzes the hyd	rolysis of proteins is	₹a ₹a
	(1) insulin	(2) steapsin	(3) amylopsin	(4) None of these
86.	The partial pressu	re of any compone	nt in a gas mixture is	s proportional to
	(1) the mole fract	ion	(2) the total press	sure
•	(3) the square of	mole fraction	(4) None of these	
87.		from Boyle's law,	when the gas is at	50
ř	(1) low pressure		(2) medium press	ure
	(3) high pressure		(4) high temperate	ure
(166)		•	14	

14

88.	Radioactive element	which has been fou	nd	to have large reserves in India is	
	(1) Thorium	(2) Uranium	(3)	Radium (4) Plutonium	
89.	Color of solid iodine	is			
	(1) steel gray	×	(2)	violet	
	(3) yellowish green		(4)	reddish brown	
90.	White phosphorous i	is			
	(1) a mild poison		(2)	a strong poison	
	(3) non-poisonous		(4)	None of the above	
	1.01	SECTIO	N—J	-B	
		PHYSICS (Sub-	leat	tion B-1)	
		[Option	nal j	1 .	
91.	The electromagnetic	wave which has hig	ghes	est frequency is	
9	(1) infrared radiation	n	(2)) radio waves	
	(3) cosmic rays	3.	(4)) Gamma rays	
92.	A police van soundir sound from siren re			away from an observer. The pitch of the	10
	(1) higher	(2) lower	(3)) same (4) None of these	
93,	The speed of sound	will be highest in		3	
	humid air at 30	°C	(2)	dry sår at 30 °C	
15 55.00°	(3) humid air at 0	°C	(4)	dry six six *C	
166)	2000 20	15			

94.	In astronomical telescope, the objective is
	(1) of equal focal length to the eye piece
	(2) of greater focal length
	(3) of smaller focal length
	(4) All of the above
95.	One gram of ice at 0 °C is converted into water at the same temperature. The change in internal energy of the system is
×	(1) 80 cals (2) 540 cals (3) 40 cals (4) None of these
96.	More dew is formed on grass than on metallic utensils, because
	(1) grass being a good radiator enables the water vapor in the air to condense on it
	(2) grass is a good conductor
	(3) grass attract dew drops on account of photosynthesis
	(4) there is transpiration in plants
97.	The wood which is used in railway sleepers
	(1) Green heart wood (2) Mahogany
	(3) Mahallic wood (4) Jarrah and Barri
98.	Freshly laid eggs and stale eggs can be distinguished by
	(1) ultraviolet (2) phosphorescence
	(3) fluorescence (4) X-rays
66)	
66)	. 16

99.	Railway tracks are banked on curves so that									
	(1) the train may not fly off in the opposite direction									
	(2) necessary centripetal force may be obtained from the horizontal component of the weight of the train									
	(3) to avoid frictional force between tracks and wheels									
	(4) necessary centrifugal force may be obtained from the horizontal component of the weight of the train									
	•									
100.	The law involved in cleaning a carpet by beating it with a stick									
	(1) first law of motion (2) second law of motion									
	(3) law of conservation of mass (4) law of conservation of energy									
101.	If the velocity of a moving object is halved to its kinetic energy, then its velocity becomes									
•	(1) one-fourth (2) half (3) double (4) four times									
100										
104.	When a ship enters a sea from a river its level									
	(1) rises (2) falls (3) remains same (4) None of the above									
103.	The principle of dynamo was discovered by									
	(1) Max Plenck (2) Albert Einstein,									
	Michael Minday (4) Newton									
166)	17									

104. A tape recorder's tape is coated with a

	(1) ferromagnetic substance powder								
	(2) paramagnetic substance powder								
	(3) diamagnetic substance powder								
	(4) None of the above								
105.	Humidity of air								
	(1) does not show any consistent behavior with the change in atmospheric temperature								
	(2) is not affected by the change in atmospheric temperature								
¥									
	(4) increases with increase in atmospheric température								
106.	A long glass tube is held vertically in water. A tuning fork is struck and held over the tube. Strong resonances are observed at two successive lengths 0.50 m and 0.54 m above the surface of water. If the velocity of sound is 340 m/sec, then the frequency of the tuning fork is								
	(1) 400 Hz (2) 450 Hz (3) 475 Hz (4) 500 Hz								
107.	A body of mass 100 kg is dropped to the ground from a height of 10 m. The work done by the gravitational force is								
e	(1) 98 Joules (2) 980 Joules (3) 9800 Joules (4) 0 (zero)								
108.	Ampere-sec is a unit of								
	(1) strength of current (2) quantity of electricity								
	(3) power (4) energy								
(166)	18								
	· and the state of								

109.	When viewed in gree	n light a flag that	t is re	d-green will ap	pear to be	
•	(1) black and white		(2)	white and yell	ow	
	(3) black and green	100	(4)	green and yell	Q ₩	
110.	A person can see the lens of power	objects only at dis	tance	greater than 4	0 cm. He is advised to	usc
	(1) $-2.5^{\circ}D$	(2) -1·5 D	(3)	+2·5 D	(4) +1.5 D	
111.	Pyrometer is used to	measure	1.48	28		
	(1) high pressure		(2)	low pressure		
	(3) high temperature		(4)	low temperatu	ire	
				150	t .	
112.	Three semiconductor follows. The correct		the	increasing ord	er of their energy gap	as (
	(1) silicon, tellurium	, germanium	(2)	silicon, germa	nium, tellurium	
	(3) tellurium, silicor	n, germanium	(4)	tellurium, ger	manium, silicon	
113.		THE THE NUMBER OF THE THE PROPERTY OF THE PRO		사람이 바람이 있는 사람들이 아니면 보다 보고 있다. 그리고 있다면 되었다.	is 226 K gm per kilo : le per second will be	mol.
	(1) 3.61×10 ¹⁹	(2) 3·61×10 ¹³	(3)	3.61×1010	(4) 3.61×10 ⁸	
114.	A solid sphere of ma	ss M and radius I al kinetic energy	? rolls is	on a horizonta	l surface without slipp	ing.
to Ten	The ratio of astation	(2) 1:2	(3)	2:7	M ale	VS
(166)	•	3. 4	19	u	/ (P.	T.O.)
	•N					

115.	Mean-free path is defined as the							
	(1) distance between two molecules							
	(2) distance between two molecular collisions							
	(3) average distance between two molecules							
	(4) average distance between two molecular collisions							
116.	What extinguishes a fire quicker?							
	(1) Boiling water (2) Cold water							
	(3) Both are equally effective (4) None of the above							
117.	When the adhesive force between a liquid and a glass is greater than the cohesive forces between the liquid molecules, the meniscus of liquid in a capillary tube is							
	(1) concave in shape . (2) convex in shape .							
	(3) flat (4) pyramidical							
118.	One Giga Volt is equal to							
	(1) 1.0×10^9 volts (2) 1.0×10^7 volts							
	(3) 1.0×10^{11} volts (4) 1.0×10^6 volts							
119.	To make the longest possible throw, the cricketer is advised to make an angle of							
	(1) 60° (2) 45° (3) 35° (4) 0°							
120.	If we want to change a galvanometer into ammeter, extra resistance required is							
	(1) low resistance in parallel (2) high resistance in parallel							
	(3) low resistance in series (4) high resistance in series							
(166)	20							

LIFE SCIENCE (Sub-Section B-2)

[Optional]

121.	1. The famous book The Micrographia was written by							
	(1)	Robertson	(2)	Derwin	(3)	Brown	(4)	Robert Hook
122.	The	diameter of the	DN	A molecules are	und	the axis is	983	
	(1)	10 A	(2)	20 A	(3)	3·4 A	(4)	34 A
123.	Whi	ch among of th	e fol	lowing is not a	satu	rated fatty acid?		
	(1)	Palmitic acid	(2)	Stearic acid	(3)	Oleic acid	(4)	Myristic acid
124.	Who	o first of all obs	erve	d plasmoderma?				
	(1)	Strasburger	(2)	Tangel	(3)	Yamada	(4)	Wyseling
125.	Whe	at does planetic	gan	nete mean?		25		
	(1)	Flagellated			(2)	Non-flagellated	gam	ete :
	(3)	lsogamete		u.	(4)	Zoosporangium		
126.	Vita	min B ₅ is also	kno	wn as				
	(1)	Niacin	(2)	Riboflavin	(3)	Phylloquinone	(4)	Thiotic acid
197.	Des	k reaction of pl	oto	synthesis is also	kno	Wn as		
	(1)	Hill reaction		•	(2)	Blackman reac	tion	
23	(3)	AMP pathway	•		(4)	Glyoxylate cycl	e ,	P
(166)				21				73 65

128.	. Which one of the following does not below	ng to quantitative characters?
	(1) Frequency (2) Density (3) Abundance (4) Phenology
129.	. The first stage of Lithosere is	
	(1) crustose lichen stage (2) phytoplankton stage
	(3) moss stage (4) foliose lichen stage
130.	Which one of the following structures li ecosystem?	nks biotic and abiotic components of the
	(1) Biochemical structure (2) Phenotypical structure
	(3) Genotypic structure	4) All of the above
131.	A cross between F1 generation and reces	sive parent is known as
	(1) monohybrid (2) back cross
	(3) dihybrid	4) mass selection
132.	Which one of the following is considered	to be the vehicle of inheritance?
	(1) DNA (0) 11 1	3) Chromosome (4) Vitamins
133.	Emasculation mean	
	(1) removal of flower (2	2) removal of petals
	(2)	removal of stigma
134.	Hormones are destroyed mainly in the	
	(1) liver (2) heart (3	3) stomach (4) intestine
(166)	. 22	

	63								
135.	The phytohormone	es are	also known as				•		
	(1) growth hormon	nes		(2)	growth of promoting substances				
	(3) growth factors			(4)	All of the above				
136.	Multiples forms of enzymes with the sar called			me ca	talytic activity	but di	ifferent structure	are	
	(1) holoenzymes	(2)	isoenzymes	· (3)	prosthetic	(4)	apoenzymes		
137.	In albuminous see	ds, f	ood is stored in						
	(1) Plumule	(2)	Testa .	(3)	Endosperm	(4)	Cotyledon		
138.	The infectious part	icle (of virus is called	d.	10 a				
	(1) capsid	(2)	nucleocapsid	(3)	virion	(4)	envelope		
139.	Casparian strips are found in the radial walls of								
	(1) endodermal cei	lla		(2)	epidermal cells	9	Ø		
	(3) pith cells			(4)	hypodermal co	ells			
140.	The time lapsing b	ctwe	en inoculation a	und a	ppearance of a	ympto	oms is known as		
	(1) invasion		©	(2)	systemic infec	tion			
	(3) incubation per	iod		(4)	syndrome				
141.	was of the !	follow	ing is not an a	ctive	factor for soil?		700		
. 1	(1) Temperature		•	(2)	Wind				
® € 5	(3) Biosphere affect	ets		(4)	Parent materia	d ·			
166)		,	. 23	3					

142.	Animals which car	n withstand wider r	ange of salinity are	referred to as				
	(1) Stenohaline	(2) Euryhaline	(3) Saltiness	(4) All of these				
143.	Which one of the	following is not sim	ple protein?					
	(1) Albumins	(2) Globulins	(3) Prolamines	(4) Glycoproteins				
144.	In which part of n	nitochondria ATP is	generated?	£ •				
	(1) Matrix	(2) 'Cristase	(3) Oxysome	(4) All of these				
145.	The shape of metasentric chromosome is							
	(1) T-shaped	(2) S-shaped	(3) V-shaped	(4) Rod shaped				
146.	First completely terrestrial vertebrate was							
	(1) Cotylosaurs	(2) Pterosaurs	(3) Dinosaurs	(4) All of the above				
147.	Mesozoic era is considered to be special age of							
	(1) reptiles	(2) man	(3) fishes	(4) birds				
148.	Eternity of life mea	ane						
	(1) life is nothing		(2) immortality of life					
	(3) life originated	in soil and air	(4) life is created by God					
149.	According to Darwin, the variations are							
	(1) mutants	(2) sports	(3) variants	(4) factors				
150.	Which of the follow	ving does not come	under Paleozoic era	a?				
•	(1) Cretaceous	(2) Carboniferous	(3) Devonian	(4) Cambrian				
(166)	¥	2	4					

GEOLOGY (Sub-Section 3-3)

[Optional]

151.	Ten	perature is max	imu:	m at						
	(1)	Equator		*	(2)	Tropics		#		
	(3)	Northern hemis	pher	e	(4)	Southern hemis	pher	re		
152.	The earth crust below the ocean is composed of									
	(1)	(1) sedimentary rock			(2)	metamorphic rock				
	(3)	basaltic rock		G	(4)	granite rock				
153.	The	star closest to	eartl	n is	*					
	(1)	Sirius	(2)	North star	(3)	Sun .	(4)	Proxima century		
154.	Fos	ails are evidence	of	N 70 6				10		
	(1)	(1) the composition of earth's crust			(2)	the folding of earth's crust				
	(3)	(3) living things of long ago			(4)	life on other planets				
155.	Plant and animal remains preserved in rocks are called									
•	(1)	fossils	(2)	stalactites	(3)	humus	(4)	minerals .		
156.	An	earthquake is r	ecore	ded by a						
	(1)	Spectroscope	(2)	Sciamograph	(3)	Thermometer	(4)	Barometer .		
147		a best groof that	dino	saurs once lived	on th	ne earth can be fo	und	from a study of		
	-	living animals			(2)	scientific book				
	(3)	plants			(4)	fossils		rs.		
(166)				25	5			(P.T.Ö.		

158.	The important age	nt of erosion is								
	(1) winds	(2) streams	(3) waves	(4) glaciers						
159.	Who discovered th	at earth moves a	around the sun?	-						
	(1) Newton	(2) Galileo	(3) Copernicus	(4) Archimedes						
160.	Avalanches are									
	(1) turbulent wind	ls								
	(2) large sand stor	rms								
	(3) valleys created	by large-scale e	rosion of mountains							
	(4) large snow fall			943						
161.	Equinox means			u e						
	(1) when the night	t is longest								
	(2) when the days are longest									
	(3) two periods when day and night are equal									
	(4) None of these									
162.	The Nebular Hypothesis' was proposed by									
	(1) Kant	85	(2) Laplace							
87	(3) Kant and Lapla	ce together	(4) Kant and Lapi	ace independently						
163.	The radial extent of	the core is								
	(1) 2886 km .	(2) 3486 km	(3) 1227 km	(4) 4113 km						
164.	Water occupies whe	at percent of the	earth's surface?							
	(1) 10	(2) 29	(3) 70	(4) 99						
(166)	•		26	Z.444 5 0 52550						
			26							

	20 - 01 255						1.5		
165.	The atmosphere of the early earth likely contained little or no								
	(1)	nitrogen			(2)	oxygen			
	(3)	carbon dioxide			(4)	methane			
166.	The	largest mineral	gro	up is the					
		carbonate group	(70)	·	(2)	silicate group			
	(3)	sulfate group	ACR	(M)		oxide group			•
147	9 7 3333 7 33					<u> </u>			
107.	A C	·	1 900	limentary rock is	8				
	(1)	alate	(2)	shale	(3)	limestone	(4)	sandstone	
168.	Bat	xite is an impo	rteni	ore of					
2	·(1)	copper	(2)	iron	(3)	aluminium	(4)	tin	
109.	The	principle use o	f wh	ich metal is in	hot	ographic materia	ls?		
7 N-7 (V-2) (V-7) (V		Silver		80 		Platinum		Bismuth	
	(1)	Silver	(2)	Copper	(5)	Padinam	(4)	Distituti	i.
170.	Tectonic is the study of							*	
	(1)	volcanoes	(2)	earthquakes	(3)	earth crust	(4)	sand dune	8
171.	The largest reservoir of unfrozen freshwater is								
	(1)	groundwater		()	(2)	freshwater lake	ß	4	
KI .		rivers and street	ams	ş•		the atmosphere			
	(-)								
172.	The	e salinity of sca	wate	ers can be deter	mine	d by the ratios	of		
6.53	· (1)	Na/K	(2)	Ca/Na	(3)	C/C	(4)	Rb/Sr	
									à
[166]		2		27					P.T.O.

	_		Po ® gyn gua u sac	Maria a apporta a representa					
173.	Bombay South wind starts from								
	(1)	South	(2)	North	(3)	East	(4)	West	
174.	Wh	ich of the follow	ing :	rocks is least re	siste	nt for use as a	buil	ding material?	
	(1)	Marble	(2)	Slate	(3)	Quartzite	(4)	Basalt	
175.	The	angular velocit	y of	carth is					
	(1)	3.65×10 ⁻⁸	(2)	4·19×10 ⁻⁷	(3)	2·6×10 ⁻⁴	(4)	None of these	
176.	Cor	servation of na	tural	resources mean	8			55	
	(1)	complete utiliza							
	(2) less utilization of natural resources								
	(3)	less and effecti	ve u	dilization of natu	ral :	resources			
	(4) rational use of natural resources								
177.	The point of origin of earthquakes is called								
	(1)	Epicentre	(2)	Focus	(3)	Centre	(4)	Seismic vertical	
178.	The deepest surface on an oceanic surface is								
		oceanic ridge			•	oceanic trench	34		
	(3) continental slope					continental rise			
179.	The coastline of India is about						₹ii		
	(1)	3100 km	(2)	4100 km	(3)	5100 km	(4)	6100 km	
180.	The	earth is compos	sed o	of —— major p	late	8. `			
	(1)	21	(2)	18	(3)	8	(4)	6	
		59		***				907 924	50
				28				DIAMER ATT	
								D/4(166)—1500	4

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंकि के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ॰एम॰आर॰ उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

