	(C) the cut-off frequency increases	(4)	the base doping and the base width are reduced the emitter area is increased and the collector area is reduced the base doping and the base width are increased	3.6	(B) Dual slope converter (C) Successive approximation converter	(1) (2) (3)	requires a conversion time of the order of a few seconds requires a digital-to- analog converter minimizes the effect of power supply interference				
3.3	In a JFET if (A) the pinch-off	(1)	the channel desires is				complex hardware is a tracking A/D				
	voltage decreases		the channel doping is reduced				convertes.				
	(B) the transconductance increases (C) the transit time of the carriers in the		the channel length is increased	3.7	(A) Common-collector amplifier	(1)	Provides voltage gain but no current gain				
			the conductivity of the channel increased		amplifier		Provides current gain but no voltage gain				
	channel is reduced		the channel length is reduced		(C) Common-base amplifier	(3)	Provides neither voltage nor power gain				
		805	the Gate area is reduced			(4)	Provides neither current nor power				
3.4	In an extriansic semic (A) the resistivity decreases		uctor if the doping concentration is low			(5)	gain Provides both voltage and current gain				
	(B) the temperature coefficient of resistivity is negative	(2)	the length of the semiconductor is reduced	3.8	(A) AM system (B) DSB-SC system (C) PAM system	(2)	Coherent detection Envelope detection Correlation detection PLL				
	(C) the photo conductivity	(3)	the band gap is high				LPF				
	is low	(4)	the area of cross-	3.9	(A) AM system	(1)	2B (Band width of the modulating signal)				
			section of the semiconductor is		(B) SSB system		2B				
		(5)	increased		(C) PCM (n bit) system		2nB				
		(5)	the doping concentration is			93 5	пВ				
	For a TTL gate, match		1980 (1981 - 1989) 		$V_0(s) = \frac{A}{s^2 + 1} \coth(\alpha s)$						
	(A) V _{OH} (min) (B) V _{IH} (min)	200	2.4 volts 1.5 volts		where α is a constant.	De	termine the value of α				
	(C) V _{OL} (max)		0.4 volts								
			2.0 volts 0.8 volts								
	ANSWERS										
1.	1 (c) 1. 2 (b) 1. 3	3 (d)	1. 4 (a) 1. 5 (b)	1. 6 (a)	1.7 (c) 1.8 (c)	1	. 9 (a) 1. 10 (a)				

1. 1 (c)	1. 2 (b)	1.3 (d)	1. 4 (a)	1.5 (b)	1. 6 (a)	1.7 (c)	1. 8 (c)	1. 9 (a)	1. 10 (a)
1. 11 (c)	1. 12 (c)	1. 13 (b)	1. 14 (a,c)	1.15 (b)	1. 16 (a)	1. 17 (b)	1. 18 (d)	1. 19 (d)	1. 20 (c)
1. 21 (c)	1. 22 (a)	1. 23 (d)	1. 24 (c)	1. 25 (b)	1. 26 (a)	1. 27 (c)	1. 28 (a)	1. 29 (a)	1. 30 (d)
1. 31 (b)	1. 32 (d)	1. 33 (c)	1. 34 (b)	1. 35 (c)	1. 36 (b)	1. 37 (d)	1. 38 (b)	1. 39 (c)	1. 40 (b)
1. 41 (b)	1. 42 (c)	1. 43 (b)	1. 44 (*)	1. 45 (c)	1. 46 (c)	1. 47 (a)			

