Amrita VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

Amrita Entrance Examination – Engineering

PHYSICS, CHEMISTRY & MATHEMATICS

·				
Question booklet Version Code	Question booklet no.		Time : 3 hrs	
Number of pages	Number of questions	120	Max. Marks: 360	
Registration number				
Name of the candidate				
Signature of the candida	ite			

INSTRUCTIONS TO THE CANDIDATES

GENERAL

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of papers, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone, etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates shall sign the attendance sheet available with the invigilator.
- 6. Candidates are not permitted to leave the hall before the end of the examination.
- 7. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.
- 8. After submitting the answer sheet, candidates shall affix their left thumb impression on the attendance sheet.

QUESTION BOOKLET

- 9. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 10. **Before opening the Question Booklet,** write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 11. **Immediately after opening the booklet,** the candidate should examine whether it contains all the 120 questions in serial order and ---- pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.
- 12. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

Rough Work	

MODEL QUESTIONS

PHYSICS (S.No.1 to 35) 35 Questions

Ch	celeration due to gr	avity = 10m/s^2 , Mass of el .6 x 10^{-19} C, Velocity of li	ectron = $9.1 \times 10^{-31} \text{kg}$ ght, $c = 3 \times 10^8 \text{m/s}$	
1.		wing has the dimensionali b) A ⁻² kg m ² s ³	=	d) kg m^3 $A^{-2}s^2$
2.	a) Earth (29.8); Sa b) Earth (9.65); Sa c) Earth (24.2); Sa	turn(9.65); Venus(35.0); Neturn(29.8); Venus(35.0); Neturn(9.65); Venus(35.0); Neturn(9.65); Venus(24.2); Neturn(9.65); Venus(24.2); Neturn(9.65)	Mars(24.2) Mars(24.2) Mars(29.8)	tal speed(in km s ⁻¹)
3.	of earth in SI units			
	a) 6.66	b) 3.33	c) 5.55	d) 4.44
4.		one of wave length 640 nm wers are in the ratio b) 1:1	and the other 400 nr c) 5:8	m have same unit flux of d) 25:64
5.	The relation, Work a) isothermal process c) isobaric process		al energy holds for b) adiabatic proc d) isochoric proc	
6.	length L due to prused and ΔP is double	f volume of a fluid of visco ressure difference ΔP is (Δ	$V/\Delta t$). If a pipe of radincrease by a factor	dius 2r and length 2L is
	a) 2	b) 4	c) 8	d) 16
7.	If the charge Q in a	a capacitor is doubled, elec	ctric field energy stor	ed inside
	a) doubles		b) increases by fa	
	c) remains unchang	ged	d) increases by fa	actor 8
8.	•	$C = 0.144 \mu F$ having charge the time taken for the discharge.	-	
	a) 10^{-7} s	b) 0.144 x10 ⁻⁶ s	c) $2.1 \times 10^{-7} \text{s}$	d) $0.144 \times 10^{-7} \text{ s}$
Ro	ough Work			

9.	. A slab having dielectric constant $\kappa=3$ is placed in a region having constant ele $E=10~V~m^{-1}$. The electric field inside the slab volume is			
	a) 1.1 V m ⁻¹	b) 30 V m ⁻¹	c) zero	d) 3.33V m ⁻¹
10.	A parallel plate capacitor such that it accumulates the plates is increased a) both electric field inside the c) electric field inside the d) both electric field inside the	the capacitor and Q capacitor decreases a capacitor increases ar	decrease and Q increases ad Q decreases	_
11.	The sides (in meters) $\mathbf{a} = 4\mathbf{i}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{c} = \mathbf{i}$			sented by vectors
	a) 20 m^2	b) 26 m ²	c) 36 m ²	d) 40 m ²
12.	2. The slant side of a frictionless incline making an angle 60° with the vertical is Starting from rest the time taken by a mass to slide down the incline from top to the is			from top to the base
	a) 0.63 s	b) 0.23 s	c) 0.2 s	d) 0.4 s
13.	3. A mass of 0.01 kg is hung from a series combination of two ideal light springs hav spring constants k_1 = 10 Nm ⁻¹ and k_2 =20 Nm ⁻¹ . The net stretching of this spring-m system is			light springs having of this spring-mass
	a) 3 cm	b) 1.5 cm	c) 6 cm	d) 2.5 cm
14.	A mass $m = 1$ kg located in the y direction. All nur			
	a) 0.24 radians s ⁻² along a c) 0.12 radians s ⁻² along a		b) 0.18 radians s ⁻² alo d) 0.32 radians s ⁻² alo	
15.	15. A circuit is operated by a battery of internal resistance 0.2Ω and emf 6 V. The cur flowing in the circuit is $0.3 A$. The power supplied to the rest of the circuit other than internal resistance is			
	a) 1.8 W	b) 1.74 W	c) 1.42 W	d) 1.62 W
16.	A small magnet of magn net magnetic flux emergi a) proportional to m b) proportional to the pro c) zero d) a function of location a	ng out of the sphere is duct R^2 and magnitude	le of m	nere of radius R; the
 Roı	igh Work			

	17. What is the magnetic induction flux crossing unit area in xy plane if magnetic induction vector is $\mathbf{B} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$? All numbers are in SI units.			
a) 2	b) 4	c) 6	d) √ 5 6	
18. The direction corresponding		plane wave is along	unit vector $n = i + j$. The	
a) parallel to zc) perpendicul		b) parallel to d) parallel to		
•	ial in a region is given by e at a point (-5,1,2) is	$4x^2+3$. All numbers	are in SI units. The Electric	
a) 40	b) 20	c) 80	d) 10	
	prism of refracting angle 60°. The critical angle of glas		iquid, its angle of minimum liquid medium is	
a) 45°	b) 30°	c) 60°	d) 55°	
(i) The amme(ii) An amme(iii) An amme(iv) Connectirbefore.		t in a circuit is to be of sistance. esistance. not lead to any characters.	connected in series. ange in the current present	
a) (i) and (ii)	b) (11) and (111)	c) (111) and (1V	d) (iv) and (i)	
**	with $i=1,2$ denote respective d secondary coils of an ide	•	of turns, and the current in	
a) $E_1/E_2 = N_{1/2}$ c) $E_2/E_1 = N_{1/2}$		b) $E_1/E_2 = N_2$ d) $E_1/E_2 = N_1$		
a) Fermat's prb) Huygen's pc) Law of grav	following are unrelated? inciple and propagation of rinciple and speed of light vitation and Kepler's laws y and Coulomb force	light		
-	dipole of dipole moment point (b,0,0) and (0,0,b) are	k is placed at the ori	gin. The electric fields at	
a)b) equalc) equal in dired) unequal in 1	ection only nagnitude and opposite in o	equal in magr	nitude	
Rough Work				

— Roı	ıgh Work			IN COMPLETE
30.	of the water rises, but the a) porcelain is a bad cond b) water is a liquid and ca conductor. c) preferential absorption d) microwaves are more of	container temperatural ductor of heat. an set up convection of of microwaves of ce	re does not rise much. 'currents but the containertain frequencies by w	This is because
	The time taken by light to order of a) 10^{-21} s Water in a porcelain con-	b) 10 ⁻²³ s	c) 10^{-25} s	d) 10 ⁻¹⁹ s
	At a given kinetic energy a) neutrino	b) electron	c) muon	d) photon
27.	The energies of two phomomenta is a) 1:2	notons are in the rabb) 1:4	c) 2:1	onding ratio of their d) 4:1
26.	Assume that the wave le 600 nm. Its frequency is a) 0.5×10^{15} Hz		t in crown glass of reconstruction c) 1.5 x10 ¹⁵ Hz	
25.	A compound telescope hat Which statement is correct a) Both A and B form read b) Both A and B form vir. c) A forms real image and d) A forms virtual image	ct? Il images. tual images. d B forms virtual ima	ige.	object than lens B.

CHEMISTRY (S.No. 36 to 70) 35 Questions

36.	5. 20 g of a solute whose density is 2.0 g/cc is dissolved in water and the solution is mad upto one litre. If the molecular weight of the solute is 100, what is the molality of the solution?				
	a) 0.2020	b) 0.4040	c) 0.2000	d) 0.0200	
37.	The velocity of infra red a) twice	radiation in vacuum co	ompared to ultra violet c) equal	is d) four times	
38.	 a) An orbit and orbital mean the same thing. b) An orbit and orbital contain the same number of electrons always. c) The energies of the orbit and the orbital are the same. d) The maximum number of electrons present in an orbit and an orbital will be different. 				
39.	Which one of the foliprinciple? a) calcium	llowing has electronic b) titanium	c) chromium	iolation of Aufbau d) manganese	
40.	Which one of the follow a) A matchstick on strik b) Camphor packed in a c) Petrol kept in an open d) Water in a beaker sur	e burns. container without over a beaker reduces in qua	space catches fire on intity slowly.	ts own.	
41.	at the same temperature	25° C. The value of th ⇔ $2A^{+} + B^{2-}$ is	stant is 5×10^{-5} and the equilibrium constant	second dissociation t for the following d) 5×10^{-14}	
42.	In ice-liquid water equilia a) increase in melting poor c) no change in melting	oint of ice	b) decrease in melting d) disappearance of o	_	
43.	A silver rod dipped in a potential of 0.75 V vs s 0.8 V, at what molar cone a) 2.76×10^{-14}	tandard hydrogen elect	rode. If the standard p	otential for silver is	
Ro	ough Work				

44.	What is the theoretical queezchange Membrane Fue		uired to generate 53.62	Ah in a Proton	
	a) 1.0 g	b) 1.0 kg	c) 2.0 g	d) 2.0 litre	
45.	For a reaction, X + the concentration of X is reaction increases by four a) 2		of Y and Z constant. Th	ne rate of the	
	a) 2	0) 4	C) 1	d) 0	
46.	Which one of the following	ng exhibits Schottky d			
	a) nickel oxidec) ferrous sulphide		b) potassium bromided) silver chloride)	
47.	Which one of the followi	ng is anti ferromagneti	c?		
	a) titanium dioxide		b) nickel		
	c) oxygen		d) ferrous oxide		
48.	The gas that is produced	through catalytic refor	ming of sewage is		
	a) producer gas		b) syngas		
	c) natural gas		d) carbon monoxide		
49.	Which one of the followi	ng hydrides is non-sto	ichiometric?		
	a) ammonia	b) nickel hydride	c) sodium hydride	d) diborane	
50.	The order of energy release a) LPG > octane > liquid b) liquid hydrogen > gas c) octane > LPG > liquid d) gaseous hydrogen > 1	id hydrogen > gaseou seous hydrogen > LP id hydrogen > gaseou	s hydrogen G > octane us hydrogen	litre is	
51.	Density of the following	alkali metals is in the o	order of		
	a) lithium < sodium < potassium < rubidium				
	· ·		thium		
			ıbidium ıbidium		
52.	The discontinuity in ioniz is due to	zation enthalpy values	of group 13 elements i	n the periodic table	
	a) irregular variation in ic				
	b) irregular variation in e				
	c) poor shielding effect od) poor shielding effect o				
	_				

53.	3. The reduction of germanium tetrachloride with land digermane c) monogermane		b) di and tri germanes d) mixture of all germanes	
54.	4. Which one of the following is used as cathode ina) liquid sulphur dioxidec) poly ethylene oxide		,	
55.	What type of ison a) linkage	nerism is possible in pentaamr b) optical	ninenitrocobalt(II)chlo c) position	ride? d) ionisation
 56. A coordination compound has trigonal bipyramidal distribution of hybrids the type of hybridisation present? a) dsp² b) sp³ c) sp³d 		orid orbitals. What $d d^2 sp^3$		
57.	pressure and 27°	nic compound gave 60 mL of C. Aqueous tension at 27° trogen in the compound? b) 2.125	_	
58.	distillation in pres a) acetic anhydrid	ucts formed on passing ace ence of mercuric sulphate. e and acetone dride and methanol	tylene through acetic b) acetic anhydride ar d) acetic anhydride ar	nd ethanol
59.	9. The order of reactivity of the following for an S_N^2 reaction is a) alkyl fluoride > alkyl chloride > alkyl bromide > alkyl iodide b) alkyl fluoride > alkyl bromide > alkyl chloride > alkyl iodide c) alkyl iodide > alkyl bromide > alkyl chloride > alkyl fluoride d) alkyl bromide > alkyl fluoride > alkyl iodide > alkyl chloride			
60. An organic compound A of molecular formula C ₃ H ₈ O is treated with 85% phosacid at 170°C to give B which on ozonolysis, followed by hydrolysis with aluminium hydride gave rise to a set of products. Predict the correct set of product the following a) acetaldehyde and formaldehyde b) ethanol and methanol c) acetic acid and formic acid d) ethanol and formaldehyde		olysis with lithium set of products from nol		

IN COMPLETE

MATHEMATICS (~S.No.~71~to~120~)~50~Questions

71.	71. Let $z_1 = 10 + 6i$ and $z_2 = 4 + 6i$. If z is any complex number such that the argument of $\frac{z - z_1}{z - z_2}$ is $\frac{\pi}{4}$, then $ z - 7 - 9i $ is equal to					
		(b) 3√2	(c) 2√3	(d) √6		
72.	The complex numbers z	and z_2 are such	that $z_1 \neq z_2$ and $ z_1 $	$ z_1 = z_2 $. If $ z_1 $ has $ z_1 + z_2 $		
	positive real part and (a) zero	z ₂ has negative image	nginary part, then (b) real and ne	$z_1 - z_2$ may be		
	(c) purely imaginary		(d) real and pos	ritive		
73.	The maximum value of (a) $\sqrt{3} - 1$	z where 'z' satisfie (b) $\sqrt{3}$	s the condition $\left z + \frac{2}{z}\right $ (c) $\sqrt{3} + 1$	$\begin{vmatrix} = 2 \\ \text{is} \\ (d) \sqrt{3} + \sqrt{2} \end{vmatrix}$		
74.	If ' ω ' is a non real cube	e root of unity, then (a +	+ b)(a + bω)(a + bω	²) is		
	(a) $a^2 - b^2$	(b) $a^2 + b^2$	(c) $a^3 - b^3$	(d) $a^2 + b^2$		
75.	If $a^2 + b^2 + c^2 = 1$, then	$a_1, bc + ca + ab$ lies in	the interval			
	(a) $\left[-\frac{1}{2}, 1\right]$	(b) $\left[-\frac{1}{2}, 3\right]$	(c) [-1,	2] (d) [-1,		
76.	Let T_n denote the num regular polygon of n sid	•	•	•		
	(a) 5	(b) 4	(c) 6	(d) 7		
77.	If $(2n+1)P_{n-1}:(2n-1)$	$P_n = 3:5$, then the va	alue of ⁿ is			
	(a) 3	(b) 6	(c) 4	(d) 8		
78.	78. The inverse of the function $y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is (a) $\log_{10} (2 - x)$ (b) $\frac{1}{2} \log_{10} \left(\frac{1 + x}{1 - x} \right)$					
	(c) $\frac{1}{2} \log_{10}(2x - 1)$		$(d) \frac{1}{2} \log_{10} \left(\frac{2x}{2-x} \right)$,		

- 79. The sum of the first n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \cdots$ is
 - (a) $2^n 1$
- (b) $1 2^{-n}$
- (c) $2^{-n} n + 1$ (d) $2^{-n} + n 1$
- 80. If $5^{1+x} + 5^{1-x}$, $\frac{a}{2}$ and $25^x + 25^{-x}$ are three consecutive terms of an A.P., then the values of 'a ' are given by
 - (a) $a \ge 12$
- (b) a > 12
- (c) a < 12
- (d) $a \leq 12$
- b, c are in H.P., then the value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is 81. If a,
 - (a) 0

(b) 1

(c) 2

- (d) 3
- 82. Let $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = \Delta$, where a, b, c are positive. Then
 - (a) $\Delta > 0$
- (b) ∆≥ 0
- (c) ∆≤ 0
- (d) $\Delta < 0$

- 83. If $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$, then the value of x is
 - $(a) \frac{1}{2}$

 $(b)^{\frac{1}{2}}$

 $(c)^{\frac{12}{5}}$

(d) $-\frac{12}{r}$

- 84. The quadratic expression $17 + 12x 4x^2$ takes
 - (a) the least value 6

(b) the highest value 26

(c) the highest value 17

- (d) the lowest value 17
- 85. Three vectors \overline{A} , \overline{B} and \overline{C} are given by $\hat{\imath} + \hat{k}$, $\hat{\imath} + \hat{\jmath} + \hat{k}$ and $3\hat{\imath} 2\hat{\jmath} + 5\hat{k}$ respectively. Then the vector \overline{R} which satisfies the relation $\overline{R} \times \overline{B} = \overline{C} \times \overline{B}$ and $\overline{R} \cdot \overline{A} = \mathbf{0}$ is
 - (a) $-\hat{\imath} 6\hat{\imath} + \hat{k}$

(b) $\hat{\imath} + 6\hat{\jmath} - \hat{k}$

(c) $2\hat{i} - 3\hat{j} + \hat{k}$

 $(d) - \hat{\imath} + 6\hat{\jmath} - \hat{k}$

86.	If the magnitude of month through the point $\hat{i} + \hat{j}$ is			$\hat{\imath} + \alpha \hat{\jmath} - \hat{k}$ acting
	(a) 9	(b) 4	(c) ± 2	(d) ± 3
87.	The arithmetic mean of ⁿ	odd natural numbers i	s	
	(a) n	(b) $\frac{n(n+1)}{2}$	(c) n – 1	(d) n ²
88.	A car completes the first levelocity v_2 . The average			e remaining half with
	(a) $\sqrt{v_1v_2}$	(b) $\frac{v_1 - v_2}{2}$	(c) $\frac{v_1 + v_2}{2}$	(d) $\frac{2v_1v_2}{v_1+v_2}$
89.	An integer x is chosen $x + \frac{192}{x} \le 30$ is	at random from the nu	mbers 1 to 28.	The probability that
	(a) $\frac{7}{10}$	(b) $\frac{1}{15}$	(c) $\frac{2}{28}$	(d) $\frac{5}{28}$
90.	Let x be a nonzero determinants of order two the determinant is nonzero	with entries x and x		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{16}$	(d) $\frac{1}{8}$
91.	Two candidates A and probability that A is select at 0.25 . Then the probability that A is selected at A is the probability that A is selected at A is the probability that A is the p	ted is 0.5 and the proba	bility that both A	and B are selected is
	(a) 0.75	(b) 0.7	(c) 0.8	(d) 0.6
92.	The curve satisfying the definition the point $(1, -1)$ is	dy lifterential equation $\frac{dy}{dx}$	$= \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2} $	and passing through
	(a) a circle		(b) a straig h t li	ne
	(c) an ellipse		(d) a parabola	

93. The solution of the differential equation $\frac{\log dy}{dx} = 9x - 6y + 6$, given y = 1 when

(a)
$$3e^{6y} = 2e^{9x-6} + 6e^x$$

(b)
$$3e^{6y} = 2e^{9x+6} - 6e^6$$

(c)
$$3e^{6y} = 2e^{9x+6} + e^6$$

(d)
$$e^{6y} = 2e^{9x-6} + e^{-6}$$

94.
$$\sqrt{2 + \sqrt{2 + 2\cos 8\theta}}$$
 is equal to

(a)
$$2\cos 4\theta$$

(b)
$$2\cos 2\theta$$

(d)
$$\cos 2\theta$$

95. The value of $\lim_{|x| \to \infty} \left[\cos \left(\tan^{-1} \right) \left(\sin \left(\tan^{-1} x \right) \right) \right]$ is equal to

$$(a) - 1$$

(c)
$$-\frac{1}{\sqrt{2}}$$

$$(d)\frac{1}{\sqrt{2}}$$

96. If the orthocentre H of a triangle ABC bisects the altitude AD of the triangle ABC, then the value of tanBtanC is

$$(b)$$
 2

97. The remainder got by dividing 2804 by 257 is

98. If $\lim_{x\to 0} f(x) = \frac{1}{2}$ and $\lim_{x\to 0} g(x) = 4$, then $\lim_{x\to 0} \frac{f(x)\cos x}{e^x \sqrt{g(x)}}$ is

$$(b) - 1$$

99. If f(x) and g(x) are two functions such that f(2) = 3, g(2) = -4, $f'(2) = -\frac{1}{2}$ and $g'(2) = -\frac{8}{3}$, then the derivative of $\log_e[f(x)g(x) + x]$ at x = 2 is

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{2}$$

$$(c) - \frac{1}{3}$$

(b)
$$\frac{1}{2}$$
 (c) $-\frac{1}{3}$ (d) $-\frac{1}{2}$

If p(x) is a 100.

polynomial of degree three which attains its maximum value 60 at x = -3 and minimum value -84 at x = 3, then the polynomial is

(a)
$$\frac{x^3}{3} - 9x - 12$$

(b)
$$x^3 - 9x - 12$$

(c)
$$4\left(\frac{x^3}{3} - 9x\right) - 12$$

(d)
$$4\left(\frac{x^2}{3} - 9x\right) + 12$$

101. Part of the domain of the function $f(x) = \sqrt{\frac{\cos x - \frac{1}{2}}{6 + 35x - 6x^2}}$ lying in the interval [-1,

(a)
$$\left[-\frac{1}{6}, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 6\right]$$

$$(b)\left(-\frac{1}{6},\frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3}, 6\right)$$

(c)
$$\left(-\frac{1}{6}, 6\right)$$

$$(d)\left(-\frac{1}{6}, -6\right)$$

If the matrix $\begin{bmatrix} \mathbf{0} & \mathbf{2}\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal, then

(a)
$$\alpha = \pm \frac{1}{\sqrt{2}}$$

(b)
$$\beta = \pm \frac{1}{\sqrt{6}}$$

(c)
$$\gamma = \pm \frac{1}{\sqrt{3}}$$

Let $\frac{a}{a^2}$, $\frac{b}{b^2}$, $\frac{c}{c^2}$ be positive real numbers. The following system of equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 2$ and $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 3$ has 103.

(a) unique solution

(b) no solution

(c) infinitely many solutions

(d) repeated solutions

104. If the quadratic equation $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$, $(b \ne c)$ have a common root, then a + 4b + 4c is equal to

(a) 0

(b) 1

(c) - 1

(d) - 2

A helicopter is to fly directly from a helipad at the origin in the direction of the point

1) at a speed of $\frac{ft}{\sec \Box}$. The position of the helicopter after 15 sec □ is

(a) $(20\sqrt{3},$

 $20\sqrt{3}$

30**0)**

 $20\sqrt{3}$)

(b) $(60\sqrt{3}, 60\sqrt{3},$

 $60\sqrt{3}$)

(c) (300,

300,

(d) (30**0√3**,

30**0√3**,

 $300\sqrt{3}$)

106. Let X be the number of times heads occur in n tosses of a fair coin. If P(X = 4), P(X = 5) and P(X = 6) are in A.P., then the least value of n is

(a) 10

(b) 14

(c) 7

(d) 5

The solution of the differential equation

$$\frac{dy}{dx} = \frac{y\varphi(\square'(x) - y^2)}{\varphi(x)}$$
 is

(a)
$$y = \frac{\varphi(x) + C}{x}$$

(b)
$$y = \frac{\varphi(x)}{x + C}$$

(c)
$$y = \varphi(x) + x + C$$

(d)
$$y = \frac{\varphi(x)}{x} + C$$

The solution of the differential equation
$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$$
 is

(a)
$$\log \left| 1 - \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(b)
$$\log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = x + C$$

(c)
$$\log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(d)
$$log | 1 + tan(x + y) | = x + C$$

109. The equation $sin^4x + cos^4x + sin2x + \beta = 0$ is solvable for

$$(\alpha) - \frac{5}{2} \le \beta \le \frac{1}{2}$$

(b)
$$-3 \le \beta < 1$$

$$(c) -\frac{3}{2} \leq \beta \leq \frac{1}{2}$$

(d)
$$-1 \le \beta \le 1$$

110. Given that x = x(t) and y = y(t) satisfy the equations $x + 2x^{\frac{3}{2}} = t^2 + t$ and $y\sqrt{1+t} + 2t\sqrt{y} = 4$, then $\frac{dy}{dx}$ at t = 0 is

$$(a) - 6$$

(b)
$$-4$$

111. Two ships are steaming away from a point 'O' along routes that make an angle of 120°. Ship A moves at 14 knots and ship B at 21 knots. The ships are moving apart at a rate of \Box 'a knots' when OA = 5 nautical miles and OB = 3 nautical miles, where a is

- (a) 29.5
- (b) 28.5
- (c)29
- (d)28

112. If $U_n = \int_0^1 x^n tan^{-1} x dx$, then the value of $(n+1)U_n + (n-1)U_{n-2}$ is

$$(a)^{\frac{\pi}{4}} - \frac{1}{n}$$

$$(b)^{\frac{\pi}{4}} + \frac{1}{n}$$

(c)
$$\frac{\pi}{2} - \frac{1}{n}$$

$$(a)\frac{\pi}{4} - \frac{1}{n}$$
 $(b)\frac{\pi}{4} + \frac{1}{n}$ $(c)\frac{\pi}{2} - \frac{1}{n}$ $(d)\frac{\pi}{2} + \frac{1}{n}$

113. The value of $\int_{1}^{5} 2^{\sqrt{x-1}} dx$ is

(a)
$$\frac{16}{(\log 2)^2} - \frac{8}{\log 2}$$

$$(b)\frac{8}{\log 2} + \frac{16}{(\log 2)^2}$$

(c)
$$\frac{8}{\log 2} - \frac{4}{(\log 2)^2}$$

(d)
$$\frac{16}{\log 2} - \frac{8}{(\log 2)^2}$$

114. The pair of tangents drawn from the point P = (h, k) to the two circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 - 6x = 0$ coincide. Then the point P is

(a) **(**−3,

2)

(b) (-3,

0)

(c) (3,

(d) (3,-2)

115. Two circles pass through (0, $\pm a$) and touch the straight line x - 2y - 4 = 0. If the two circles are orthogonal, then the value of a is

$$(a)^{\frac{3}{4}}$$

 $(b)\frac{\sqrt{3}}{4}$

(c) $\frac{4}{3}$

(d) $\frac{3}{2}$

0)

116. A force $\overline{F} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ is applied to a spacecraft with velocity $\overline{v} = \hat{\imath} - 2\hat{\jmath}$. Then the force F expressed as a vector which is both parallel and orthogonal to \overline{v} is

(a)
$$\frac{1}{5} (14\hat{\imath} + 7\hat{\jmath} - 2\hat{k})$$

(b)
$$\frac{1}{5} (14\hat{\imath} - 7\hat{\jmath} - 2\hat{k}) + \frac{\hat{\imath} - 2\hat{\jmath}}{\sqrt{5}}$$

$$(c)\frac{14\hat{i}}{5} + \frac{7\hat{j}}{5} - 2\hat{k} + \frac{\hat{i} - 2\hat{j}}{5}$$

(d)
$$\frac{1}{5}(14\hat{\imath} + 7\hat{\jmath} - 2\hat{k}) + \hat{\imath} - 2\hat{\jmath}$$

117. If x + 4y - 14 = 0 is the normal to the curve $y^2 = px^3 + q$ at the point (2, then the pair $\{p, q\}$ is

7}

(a) {2, 7}

(b) {−2,

(c) {3,

8}

(d) $\{2, -7\}$

118. $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$ is

The value of the integral

(a)
$$C - \frac{1}{2} \left(\log \left(1 + \frac{1}{x} \right)^2 \right)$$

(b)
$$\log\left(\frac{x+1}{x}\right) + C$$

$$(c) - \frac{1}{2} \left(\log \left(x - \frac{1}{x} \right) \right)^2 + C$$

(d)
$$2\log\left(x+\frac{1}{x}\right)+C$$

- 119. If $\int \frac{x^2 + 2}{(x^2 + 1)(x^2 + 4)} dx = p \tan \Box^{-1} \left(\frac{qx}{r + x^2}\right) + C$, then the values of p, q and r are
 - (a) $\left\{\frac{1}{3}, -3, -2\right\}$ (c) $\left\{-3, -\frac{2,1}{3}\right\}$

- (b) $\left\{-\frac{1}{3}, 3, 2\right\}$ (d) $\left\{\frac{1}{3}, 3, 2\right\}$
- 120. The area enclosed between the two parabolas $y = 7 2x^2$ and $y = x^2 + 4$ is
 - (a) 3
- (b) 4
- (c) 2

(Continued from the first page)

OMR ANSWER SHEET

- 1. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 2. Do not fold or make any stray mark on the OMR sheet.
- 3. Use HB Pencil or Blue / Black ball point pen for shading the bubbles and black ball pen for writing.
- 4. In the OMR answer sheet, make the following entries
 - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
 - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
 - c. Write your Name and Signature.
- 5. Rough work should not be done on the answer sheet.

ANSWERING AND EVALUATION

- 6. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil or Blue / Black ball point pen.
- 7. In case the candidate wishes to change the choice already shaded using HB pencil, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 8. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 9. For each correct answer, three marks will be awarded.
- 10. For each incorrect answer, one mark will be deducted from the total score.
- 11. If any smudge is left on the OMR sheet, evaluation will become imperfect.

