Mec. Forensic Science

14P/302/27

						Que	stion Bo	ooklet i	Vo	*****	
		(To b	e filled	up by the	candida	te by bi	ue/blac	k ball-	point pe	en)	
Roll No.	•										
off No.											
Write the	e digit	s in wo	rds)		·····	•••••			• • • • • • • • • • • • • • • • • • • •		
Serial No	of A	nswer	Sheet								

(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Question Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- . 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Question Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 34

Day and Date

Total No. of Questions: 240

No. of Questions to be Attempted: 120

Time :	2 H	ours]	2412-772				[]	Full Marks : 360	
Note:	(i) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.								
	(ii)	If more than o		32.50		eem to be app	roxima	te to the correct	
	(iii) This question Details of Sect	- II-II				tion-A	and Section-B.	
				contains 6 General Nat		ons from Ger	neral S	sciences and 20	
		Mathem	atics	and Physic	s with 40		ach. Tl	ogy, Chemistry, ne candidate has	
				SECT	rion – A				
1.	The	word 'Forensie	' is d	erived fron	n the wor	d:			
		Forejudge				Forum	(4)	Forsay	
2.	'Od	lontology' is the	stuc	ly of :					
	(1)	teeth	(2)	bone	(3)	birthmark	(4)	heart	
3.	'Ine	ebriety' is an act	ıte in	toxication l	oy:				
	(1)	alcohol	(2)	poison	(3)	drug	(4)	food	
4.	Pai	rents mating of	blood	d group O v	with O ca	n h ave childre	n with	the group:	
		Α		В		AB	(4)	0	
					(3)			P. T. O.	

P.	. Ma	itch	the fo	Wolle	ing:					
Š					Li	st-I		List	:-11	
	•			(Ph	ysica.	l Evidence)		(Sections o	f Forensic	
		121	1200					Science La	boratory)	
	54	a)				f twine	(i)	Biology Sec	tion	
	3	b)	Examination of saliva			(ii)	Chemistry S	Section		
		c)			•	pesticide	(iii)	Physics Sect	tion	
	(0	d)	Examination of adulteration of gasoline			(iv)	Toxicology	Section		
	Co	des	:							¥9
		a	b	c	d					
	(1)	iii	i	ii	iv					
	(2)	iii	ii	iv	i	•				
	(3)	i	iii	iv	ii					
	٧ (4)	iii	i	iv	ii					
z. 18.	(1) (2) (3) (4) Two place (1)	ma: boti boti co pla ed i	ximur ximur h pres h pres ne m n bety	n spe n pre sure sure irror ween	eed are and started them (2)	gth associated w	water peed gle of mage (3) 6 ith an	will have: 45°C to each s formed is:	other. If a	n object is
	(1)	1.75	Λ		(2)	2.54 Å	(3) 19	9.2 A	(4) 2.4 Å	
9.	(1) · (2) · (3) ·	vol a volu volu	me ar me ar me in	nd de nd de creas	ensity ensity se and	erature of a liquid decrease increase d density decreas d density increas (4)	e			

10.	The energy gap between conduction and (1) 2 eV (2) 1.7 eV	d valence bands of Silicon is : (3) 1.1 eV (4) 1.0 eV	
11.	The instrument, which measure terradiations, is called: (1) hydrometer (2) pyrometer		
12.	Generally, the approximate limit of visit (1) 100 to 1500 Å (3) 10000 to 14000 Å	ble spectrum is : (2) 2000 to 3500 Å (4) 4000 to 7900 Å	
13.	A neutron can cause fission in : (1) Uranium - 238 (2) Uranium - 235	(3) Thorium (4) Hydrogen	
14.	The colour of a star indicates its: (1) velocity (2) temperature	(3) size (4) length	•
15.	The pKa of an acid having ionization co (1) 9 (2) -9	enstant 1×10^{-5} is: (3) 5 (4) -5	
16.	Which of the following is most soluble (1) $Ag_2S(K_{sp} = 6 \times 10^{-51})$ (3) $CuS(K_{sp} = 8 \times 10^{-37})$? (2) $MnS(K_{sp} = 7 \times 10^{-16})$ (4) $Bi_2S_3(K_{sp} = 1 \times 10^{-18})$	
17.	Which of the following has largest size (1) Al^{2+} (2) Al^{3+}	? (3) Al^+ (4) Al	
18.	Iodine is liberated from KI solution wh (1) CuSO ₄ (2) NiSO ₄	en treated with: (3) ZnSO ₄ (4) FeSO ₄	
19.	Semi-water gas is: (1) $CO + H_2 + N_2$ (2) $CO + H_2$	(3) $CO + N_2$ (4) H_2	
20.	CH_2-C	CH ₂ -CH ₂ CN PN	
	is: (1) 1, 2, 3-tricyanopropane (3) 1, 2, 3-cyanopropane (5)	(2) 3-cyanopentane-1,5-dinitrile (4) 1, 2, 3-propane trinitrile)	т _. О.

21.	Grignard's reagent is prepared by read	ction between:	
	(1) magnesium and alkyl halide		
	(2) zinc and alkyl halide		
	(3) magnesium and alkane		
	(4) magnesium and aromatic hydroca	rbons	
22.	Fruit bearing plants are called:		
	(1) spermatophytes	(2) angiosperms	
	(3) dicotyledons	(4) gymnosperms	
23/	Blood capillary connects:	/	
	(1) venule with lymph vessel	(2) arteriole with venu	ıle
	(3) artery with lymph vessel	(4) artery with vein	
24.	The branch of biology dealing with mi	ANALYSINE ENGINEERING STATE STATE OF THE STA	
	(1) Classification (2) Cytology		Osteology
0E		20 1000 1000 100 -	Osteology
25.	Oxygen is transported in the body by:		
	(1) Thrombocytes	(2) Blood plasma	
	(3) WBCs	(4) RBCs	
26.	During winters sometimes the body sh	ows shivering, this is in o	order to :
	(1) increased heat production by musc	cular contraction	
	(2) increased heat production by musc	cular friction	
	(3) check dispersion of body heat		
	(4) increase quantity of blood in skin		
27.	Maximum O ₂ evolution occurs from:	e v	
	(1) forests	(2) marine phytoplank	ton
	(3) crops	(4) land mass	
28.	In 28 days human ovarian cycle, ovulation	on occurs in :	
	(1) day 1 (2) day 5	971270 F20 0202 F00	day 28
29.	If α , β are the roots of the equation x^2 .	The state of the s	
•	then the value of p is:	$-px+36=0, \alpha+\beta=p, a$	$nd \alpha^2 + \beta^2 = q,$
	(1) ± 8 (2) ± 9	(3) + 6	
	(6)	(3) ± 6 (4)	± 3
	1 P. 1		

30.	If n is a positive inte (1) 2	eger, then $n^3 + 2n$ is (2) 3	divisible by : (3) 5	(4) 6
31.	The value of $(\sqrt{7} + \sqrt{7})$	$\sqrt{6}$ $(\sqrt{7} - \sqrt{6}) + 200$ is (2) 202	s: (3) 0	(4) 199
32	Which is the coldes (1) Thermosphere	t layer of atmosphere (2) Mesosphere	e ? (3) Troposphere	(4) Ionosphere
33.	Dry ice is the solid (1) Ammonia	form of : (2) CO ₂	(3) N ₂	(4) O ₂
34.		Day' is celebrated on (2) September, 16		(4) June, 5
35.	Computer program (1) MOZILLA	which is used to rui (2) MS-WORD	n the Website? (3) FOXPRO	(4) UNIX
√ 56.	An operating syste (1) CPU	m get their total men (2) BIOS	nory initialized from (3) ROM	1: (4) RAM
37.	A string of eight 0s (1) megabyte		(3) kilobyte	(4) gigabyte
38.	(1) Ctrl + A	A ST AND PARTICULAR OF PARTY	(3) Ctrl + D	(4) Ctrl + F.
,39·	The acceleration of curve of radius 160	f a train travelling w) m is : (2) 100 m/s ²	ith speed of 400 m. (3) 10 m/s ²	/s as it goes round a (4) 1 m/s ²
4 0.	We consider a th	ermodynamic procend W. the work done	ess. If AU represent e by the system, wh	s the increase in its nich of the following
, ,		n isothermal process	(4) $\Delta U = W$ in an	(ag
41.		nit one α and two β	particles. The resulti	ng nucleus is:
	$(1) {}_{n} X^{m-4}$	13 (S (N13 N 2)	(3) $_{n-4}Z^{m-4}$	(4) None of these
	7276	(7)		P.T.O.

42.	2. Warm ocean surge of the Peru current recurring every 5 to 8 years or so in the East Pacific of South America is widely known as:						
	(1) Magnox		Gull Stream		El Nino	(4)	Aye Aye
42	7800 20	90/007 Too		(0. 0 /03/ 4)		(-)	nye nye
43.	Species restricted to (1) sibling	Same of the				(4)	
	(1) Storing	(2)	endemic	(3)	sympatric	(4)	allopatric
44.	How many genome	e typ	es are present i	n a t	ypical green plan	it's c	ell?
	(1) two	(2)	three	(3)	more than five	(4)	more than ten
45/	What is major caus	e of c	diminishing wil	ld life	e number ?		
	(1) Cannibalism		,	1	Habitat destruc	tion	
	(3) Falling of tree			(4)	Paucity of drin	king	water
46.	Human immuno	defic	iencv virus (H	IIV)	has a protein o	roat	and a generic
/	material which is:		(2.	·• · ,	rus a protein t	coat	and a generic
	(1) single stranded	DN.	A	(2)	single stranded	RN.	A
	(3) double strande	d RN	IA	(4)	double strande	d DN	JA
47.	Carbon mono-oxide	e is a	pollutant becar	use :	· .		
	(f) its reacts with (3 = 32		it inhibits glyco	lysis	ij.
	(3) reacts with hae	mogl	lobin	(4)	makes nervous	syst	em inactive
48.	Which one of the fo	llow	ing is <i>not</i> main	func	tion of lymph al	ande	. 2
	(1) forming WBC				forming antibod		, ,
	(3) forming RBC				destroying bact		
49.	In mammals, histan	nina	is socrated by				
	(1) fibroblasts	une	is secreted by :	(2)	histocytes		
	(3) lymphocytes			81 (5)	mass cells		
50.	Which important gragricultural field?	reen-	house gas, othe	er tha	in CO_2 , is being	pro	duced from the
*	(1) Arsine	(2)	Sulfur dioxide	(3)	Ammonia	(4)	Niitaana aniida
	104 10 3 0 . O 100 10 10 10 10 10 10 10 10 10 10 10 10					01 (70 4 .5)	Nitrous oxide
51.	Given the numbers figures for the three	161 o	cm, 0.0161 cm, a nbers are :	and (0.0161 cm, the nu	mbe	er of significant
	(1) 3, 4, and 5 respe	ctive	ely	(2)	3, 4, and 4 respe	ctive	ely
	(3) 3, 3, and 4 respe	ctive	ely		3, 3, and 3 respe		353
					=(

52	In DNA	the comp	lementary	hases are	,
JZ.	THE DING	the comp	iem entrary	Dases are	1

- (1) adenine and thymine, guanine and cytosine
- (2) uracil and adenine, cytosine and guanine
- (3) adenine and guanine, thymine and cytosine
- (4) adenine and thymine, guanine and uracil

53. Aspirin is an acetylation product of:

- (1) o-hydroxy benzoic acid
- (2) o-hydroxy benzene
- (3) m-hydroxy benzoic acid
- (4) p-dihydroxy benzene
- Which one of the following compounds will be most easily attached by an electrophile?

Which one of the following is planar?

- (1) XeF₄
- (2) XeO₄
- (3) XeO₃F

Which of the following statements about pH and H^+ ion concentration is incorrect?

- (1) Addition of one drop of conc. HCl in NH4OH solution decreases pH of the solution.
- (2) A solution of the mixture of one equivalent of each of CH3COOH and NaOH has a pH of 7.
- (3) pH of pure neutral water is not zero.
- (4) A cold and conc. H_2SO_4 has lower H^+ ion concentration than a dilute solution of H2SO4.
- Enzymes are absent in :.
- (3) cyanobacteria (4) viruses

- (1) algae
- (2) fungi

58.	A person sufferi	ing from the denore of :	eficiency of the visual	pigment rhodopsin is
	(1) radish and pe	otato	(2) apple and g	rapes
	(3) carrot and rip		(4) guava and r	
59.	Which one of the (1) Glycine		acids is an essential part anine (3) Serine	of human diet? (4) Aspartic acid
60.	In electrolysis the (1) current (3) concentration		l on an electrode is direct (2) square of cu (4) inverse of cu	rrent
	[Analy	rtical Ability Re	asoning and Logical S	ikilis]
61.	How is GOLD wr	GONE is writter	n as '5% 2# and MEDAL le ?	. is written as '4 # 38@'.
	(1) 5@ % 3	(2) 5 % @ 3	(3) 5#@3	(4) 5% # 3
62 .	W walked 30 met he took a left turn	tre toward Sout and walked 30	h, took a left turn and v meter. How far is he fro	valked 50 meter, again m the starting point?
	(1) 80 meter	(2) 100 mete	r (3) 130 meter	(4) 50 meter
,63 .	Find the number of	of triangles in the	e given figure :	
	(1) 17	(2) 15	(3) 13	(4) 9
64.	A, B, C, and D are the product of B as	e 4 consecutive ond D?	odd numbers and their	average is 42. What is
	(1) 1860	(2) 1890	(3) 1845	(4) 1677
65.	In this question, a which cannot be for	ormed using the	given followed by fou letters of the given wor EMOTHERAPY	r other words, one of d. Find the word :
	(1) HECTARE	(2) MOTHER		(4) RAPED
			(10)	
			*	

66. Select the related word from the given alternatives :

LACONIC: VERBOSE:: LAUDATORY:?

(1) COMBINED

(2) COMPLETENESS

v(3) DEFAMATORY

(4) SYMMETRY

67. From the answer figures, find out the figure which is the exact mirror image of the question figure, when the mirror is placed on the line 'MN':

Question Figure:

Answer Figure:

(1)

(2)

(3)

(4)

68. Solve the following equations:

$$6x + y = 23$$
 (i)
 $6(5x + 6y) = 270$ (ii)

Report whether:

- (1) x > y
- (2) x < y
- (3) $x \le y$
- (4) x = y

Directions (Q. Nos. 69 & 70): Following questions are based on the five three-digit numbers given below:

- 69. If the positions of the first and second digits within eacher number are interchanged, which of the following will be the second digit of the highest number?
 - (1) 8
- (2) 3
- (3) 4
- (4) 6

70. Which of the following is the difference between second and third digits of the second lowest number?

- (1) 5
- (2) 8
- (3) 2
- 13(4) 1

(11)

Directions (Q. Nos. 71 to 75): Study the following information carefully and answer the given questions:

Five friends P, Q, R, S and T travelled separately to five different cities namely Chennai, Kolkata, Delhi, Hyderabad and Manglore by different modes of transport i.e. by bus, train, aeroplane, car and boat from Goa.

The person who travelled to Delhi did not travel by boat. R travelled to Manglore by car and S travelled by boat. Q travelled to Kolkata by aeroplane and T travelled by train. Goa is not connected by bus to Delhi and Chennai.

71. S travelled to			19 CO TO BROW RECEIVED BY MERCHANISHED AND AND ADDRESS OF THE PROPERTY OF THE				
(1) T (2) R (3) S (4) P 73. Q: Kolkata in the same way as S:? (1) Hyderabad (2) Chennai (3) Manglore (4) Delhi 74. Which of the following combinations of place and transport is correct? (1) Kolkata - Bus (2) Delhi - Aeroplane (3) Manglore - Train (4) Chennai - Boat 75. Which of the following combinations is true for P? (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament 77. Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-W	71.	(1) Hyderabad, tra		33.4.3.3.5.	POTENTIAL ACCOUNT MACHINET MA	28	2006 22
73. Q: Kolkata in the same way as S:? (1) Hyderabad (2) Chennai (3) Manglore (4) Delhi 74. Which of the following combinations of place and transport is correct? (1) Kolkata - Bus (2) Delhi - Aeroplane (3) Manglore - Train (4) Chennai - Boat 75. Which of the following combinations is true for P? (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament 77. Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-W	72.	742.0740	NA ACCESS TO ACCESS	o Del	lhi ?		
(1) Hyderabad (2) Chennai (3) Manglore (4) Delhi 74. Which of the following combinations of place and transport is correct? (1) Kolkata - Bus (2) Delhi - Aeroplane (3) Manglore - Train (4) Chennai - Boat 75. Which of the following combinations is true for P? (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. 'Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament 77. Choose the number pair/group which is different from others?/ (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-W		(1) T	(2) R	(3)	S	(4)	P
(1) Hyderabad (2) Chennai (3) Manglore (4) Delhi 74. Which of the following combinations of place and transport is correct? (1) Kolkata - Bus (2) Delhi - Aeroplane (3) Manglore - Train (4) Chennai - Boat 75. Which of the following combinations is true for P? (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. 'Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament 77. Choose the number pair/group which is different from others?/ (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-W	73,	Q: Kolkata in the sa	amje way as S:?				
 Kolkata - Bus Manglore - Train Chennai - Boat Which of the following combinations is true for P? Travelled to Kolkata by bus Travelled to Delhi by train Travelled to Chennai by boat Travelled to Hyderabad by Zinc' is related to 'Galvanization' as 'Nickel' is to: Aircraft Corrosion Electroplating Filament Choose the number pair/group which is different from others? (1) 1(5)2 7(113)8 2(20)4 3(17)4 A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? South North-West West South-V 				(3)	Manglore	(4)	Delhi
 Kolkata - Bus Manglore - Train Chennai - Boat Which of the following combinations is true for P? Travelled to Kolkata by bus Travelled to Delhi by train Travelled to Chennai by boat Travelled to Hyderabad by Zinc' is related to 'Galvanization' as 'Nickel' is to: Aircraft Corrosion Electroplating Filament Choose the number pair/group which is different from others? (1) 1(5)2 7(113)8 2(20)4 3(17)4 A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? South North-West West South-V 	74.	Which of the follow	ing combinations o	f plac	e and transport	is co	rrect?
 (3) Manglore - Train (4) Chennai - Boat 75. Which of the following combinations is true for P? (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Delhi by train (5) Travelled to Hyderabad by 76. Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament (7) Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-West 							
(1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. 'Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament 77. Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-V		(3) Manglore - Train	n				
 (1) Travelled to Kolkata by bus (2) Travelled to Delhi by train (3) Travelled to Chennai by boat (4) Travelled to Hyderabad by (5) Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filament (5) Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 (5) A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-West 	75.	Which of the follow	ring combinations is	true	for P?		
(3) Travelled to Chennai by boat (4) Travelled to Hyderabad by 76. 'Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filamer 77. Choose the number pair/group which is different from others?/ (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-V						lhi h	v train
 76. 'Zinc' is related to 'Galvanization' as 'Nickel' is to: (1) Aircraft (2) Corrosion (3) Electroplating (4) Filamer 77. Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-West 							-
 77. Choose the number pair/group which is different from others? (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-V 	76.						oud by bus
 (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) 2(20)4 (4) 3(17)4 (5) West (6) South-West (7) South-West (8) West (9) South-West 		(1) Aircraft	(2) Corrosion	(3)	Electroplating	(4)	Filament
 (1) 1(5)2 (2) 7(113)8 (3) 2(20)4 (4) 3(17)4 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) 2(20)4 (4) 3(17)4 (5) West (6) South-West (7) South-West (8) West (9) South-West 	77 .	Choose the number	pair/group which i	s diff	erent from othe	vo 2/	
 78. A man is facing West. He turns 45° in the clockwise direction and then a 180° in the same direction and then 270° in the anti-clockwise direction. direction is he facing now? (1) South (2) North-West (3) West (4) South-West 		(1) 1(5)2					
(4) South-V	78.	100 in the same dir	st. He turns 45° in the	he cla	okwise directio	n 2n	d than anath .
		(1) South	(2) North-West	(3)	West	(4)	South-West
• • •			(12)			uz (1356) 3	

79.	Choose the Venn diagram which be electrons and atoms:	est illustrate the three given classes : protons,					
	(1) (0) (2) (0)	(3) (4) (1)					
80.	If $A > B$, $B > C$ and $C > D$, then wh wrong?	ich of the following conclusions is definitely					
	(1) $A > D$ (2) $A > C$	(3) $D > A$ (4) $B > D$					
		ION – B plogy]					
81.	Which of the following is used as b (1) Ammonia (2) Nitrogen	iofertilizer ? (3) Azolla (4) Bagasse					
82.	What is the botanical name of pade (1) Solanum lycopersicum (3) Eleusine coracana	ly ? (2) Triticum aestivum (4) Oryza sativa					
83.	Azadiracta indica is the botanical na (1) Mango (2) Banana	me of : (3) Cucumber (4) Neem					
84.	The tallest living tree is: (1) Sequoia (2) Palm tree	(3) Eucalyptus (4) Yew plant					
85.	Which combination of cellular organelles is present in plant cell? (1) Chloroplast, cell wall, nucleus (2) Nucleus, chloroplast, cytoplasm (3) Cell wall, cell membrane, vacuole (4) Cell membrane, nucleus, cytoplasm						
86.	The aflatoxin found in post-harve (1) Fusarium (2) Penicillium	sted grains is produced by : (3) Verticillium (4) Aspergillus					
87.	Cellular organelles containing hyd (1) Mesosomes (2) Peroxison	rolytic enzymes are called : nes (3) Ribosomes (4) Lysosomes					
88.	Which one of the following is wro (1) Antibody-Glycoprotein (3) Phospholipids- Plasma memb	(2) Fungi-Chian					

89.	Ripening of fruits c	an be faste	ned by treatm	ent with ·			
	(1) Abscisic acid		10 ⁷	Auxins	(4) Ethylene		
_9 0.	Photosynthetically	active radi	ation represer	nts following ran	ge of wavelength:		
	1) 400-700	(2) 200-		100- 300	(4) 600-800		
91.	Organism that is us	ed for alco	holic ferment	ation is:			
	(1) Pseudomonas	(2) Strep	tomyces (3)	Saccharomyces	(4) Fusarium		
92.			encapsulatin	lating somatic embryo with :			
	(1) Sodium alginat	e	(2)	(2) Sodium citrate			
	(3) Sodium nitrate			(4) Sodium chloride			
93.	Synthesis of glucose from fats is called						
	(1) Glycolysis		(2)	Glycogenolysis			
	(3) Gluconeogenesis			Saponification			
94.	Enzyme that is used to join DNA fragment:						
	(1) Reverse transcr	73	(2)		ise		
	(3) DNA topoisom	erase		DNA ligase	**		
95.	An infectious agent	composed	of only prote	ein is :			
1004	(1) Virions	(2) Prion	1252 15	Virusoids	(4) Virus		
9 6.	The DNA content	is double	d during wh	nich of the follo	wing stage of cell		
	division:		•		0 0		
	(U) S phase	(2) G1 pl	nase (3)	G2 phase	(4) Metaphase		
97.	Which of the follow	ing is the i	nost primitive	group of algae	?		
	(1) Green algae	•		Red algae			
	(3) Blue green algae	e	(4)	Brown algae			
98.	Fungi usually store	the reserve	e food materia	d in the form of :			
	(1) Protein	(2) Lipid		Glycogen	(4) Starch		
99.	Taq polymerase is o	btained fro	om :				
	(1) Thermus aquaticu		(2)	Thermus thermop	nhillus		
	(3) Pyrococcus furios		(4)	- N-10-10 an			
	750 (75 0)		1.7	Con Control (C) (A)	· viviaceu//		

100.	Short sequences of a sample are known	DNA used for identi	ification of co	mplimentary sequ	iences in
	750	(2) Minisatellite	(3) Microsat	ellite (4) Probe	
101.	In sea urchins, the A	Aristotle's Lantern is	used as :		
	(1) light producing		(2) feeding (organ	
	(3) locomotor orga		(4) excretory		
				bett server of a become	
102.	•	of the following phy	la are known (2) Coelentr		
	(1) Porifera (3) Ctenophora		(4) Echinod		
	N 30 150	0 4	\$100 PER STANDARD STANDARD AND ADDRESS AND		
103.	5.5	ind in mammals are		1 (4) A1	
	(1) Procoelous	(2) Amphicoelous	(3) Heteroco	belous (4) Acoel	ous
104.	Ecdysone, the horm	none responsible for	insect metame	orphosis is secrete	d by :
	(1) Corpora cardia		(2) Prothora		
	(3) Corpora allata	1.0	(4) Intercere	bral gland cells	
105.	What insects are the	e first to appear on the	ne dead body	?	
	(1) Beetles	(2) Ants	(3) Flies	(4) Mites	
106.	Which group of pe	eptides is produced	after cleavag	e of the following	g peptide
		r - Met - Phe - Arg -	Gly - Asp -	Lys – Glu – Trp	•
	(1) Met - Ala - Ty	r - Met - Phe - Arg,	Gly - Asp - L	ys, Glu – Trp	
	(2) Met - Ala - Ty	r – Met – Phe, Arg –	Gly – Asp – L	ys – Glu – Trp	
(3) Met - Ala - Tyr - Met - Phe - Arg - Gly - Asp, Lys - Gl					
	(4) Met – Ala – Ty	r - Met, Phe - Arg -	Gly – Asp – L	ys – Glu – Trp	
107.	How many high en	nergy phosphate bor ino acids for protein	nd equivalent	are utilized in th	e process
	(1) Öne	(2) Two	(3) Three	· (4) Four	
108.	During anaerohic e	xercise, ATP is produ	iced as a byon	oduct of which pa	thway?
100.	(1) Glycogen brea		(2) Glycoly	si s	20
	(3) Oxidative pho		(4) Pentose	phosphate pathv	vay
	15 EX	(15))	۹-	₽.T. O

109.	dinitrophenol and oligomycin inhibit oxidative phosphorylation. 2, 4-dinitrophenol is an uncoupling agent, therefore, 2, 4-dinitrophenol will:				
	(1) Block electron transfer in the presence of oligomycin				
	(2) Allow electron transfer in the presence of oligomycin				
	(3) Block oxidative phosphorylation in the presence of oligomycin				
	(4) Allow oxidative phosphorylation in the presence of oligomycin				
110.	Which of the following pathways is most correctly considered to be amphibolic?				
	(1) Lipolysis (2) Glycolysis				
	(3) Gluconeogenesis (4) Citric acid cycle				
ırı.	A woman with no family history of color-blindness marries a color-blind man.				
	What are the risks for this couple of having a son or daughter who is color-blind?				
	(1) 100% (2) 50% (3) 25% (4) Virtually 0				
112.	Which of the following statements about hemophilia A is true?				
	(1) The extrinsic clotting pathway is impaired				
	(2) Activation of factor XI is impaired				
	(3) Activation of factor XII is impaired				
	(4) Activation of factor X is impaired				
113.	Which of the following is noted in Cushing's syndrome?				
	(1) Decreased production of epinephrine				
	(2) Excessive production of epinephrine				
•	(3) Excessive production of cortisol				
	(4) Decreased production of cortisol				
114.	A non-competitive inhibitor of an enzyme does which of the following?				
	(1) Decreases V _{max}				
	(2) Decreases K _m and decreases V _{max}				
	(3) Increases K _m with no or little change in V _{max}				
	(4) Increases V _{max}				
115.	The membrane potential will be depolarized by the greatest amount if the				
	membrane permeability increases for :				
	(1) Potassium (2) Sodium and Potassium				
	(3) Potassium and Chloride (4) Sodium				
	(16)				

116.	Dietary fat, after being proce gastrointestinal tract into the lym		
	(1) Monoglycerides	(2) Diglyceric	des
	(3) Free fatty acids	(4) Chylomic	rons
117.	Nearly all binding of cobatamin t	o intrinsic factor occu	rs in :
	(1) Stomach (2) Duodeni	ım (3) Jejunum	(4) Colon
118.	Which of the following substance proximal tubule than at the begin		
	(1) Bicarbonate (2) Creatining	ne (3) Glucose	(4) Sodium
119.	Which of the following is the population?	ultimate source of	genetic variation in a
	(1) Gene flow	(2) Assortive	mating
	(3) Mutation	(4) Selection	
120.	Which of the following is no equilibrium?	ot an assumption	of the Hardy-Weinberg
	(1) Mating occurs preferentially	(2) The size of	of the population is large
	(3) There is no migration	(4) There are	no mutations
	[C	hemistry]	
121.	Which one of the following pairs	represents a set of ele	ectrophiles ?
	(1) $\overset{\oplus}{Br}$ and $\overset{\bullet}{CCl_2}$ (2) H^{\oplus} and	H_2O (3) BF_3 and B	NH_3 (4) $\overset{\Theta}{H}$ and $AICI_3$
122	Which one of the following com	pound is the most bas	sic in aqueous solution?
42	(1) CH ₃ NH ₂	(2) CH ₃	NH ₂
	(3) CH ₃ CH ₂	CH ₃	H NH ₂
	8	(17)	επι. Р.Т.О.
		(17)	,

- In the conversion of a Grignard reagent into an aldehyde, the other components used are:
 - (a) $HCOOC_2H_5$ (b) $CH_3COOC_2H_5$ (c) CO_2

Correct code is:

- (1) "a", "c" and "d" (2) "a" and "d" (3) "a" and "b" (4) "b" and "d"

The compound (I) given below is:

- (1) Aromatic and has high dipole moment
- (2) Aromatic and has no dipole moment
- (3) Non-aromatic and has high dipole moment
- (4) Anti-aromatic and has no dipole moment
- The structural representation of Tartaric acid (I) as shown below, has :

- (1) a plane of symmetry
- (2) a centre of symmetry
- (3) both plane and point of symmetry
- (4) neither plane nor point of symmetry
- An optically active alcohol (I) reacts with SOCl2 to form product (II) as shown below:

H
$$C_2H_5$$
 $\xrightarrow{SOCl_2}$ 2- chlorobutane CH_3 (II)

In this regard, which one of the following statement is true?

- (1) I and II both have S-configuration (2) I and II both have R-configuration
- (3) I is R-isomer and II is S-isomer

I is S-isomer and II is R-isomer

(18)

127. Rapid interconversion of α -D-glucose and β -D-glucose in solution is known as :

(1) Racemization

(2) Fluxional isomerization

(3) Mutarotation

(4) Asymmetric induction

128. From List-I and List-II, the correct answer using the given codes is:

List-I

List-II

- (a) Bayer-Villiger Rearrangement
- (i) $Ph CHO = \frac{Zn|BrCH_2COOE+}{}$
- (b) Haloform Reaction
- (ii) glycerol, H₂SO₄

 NH₂ PhNO₂, FeSO₄
- (c) Scraup Reaction
- (iii) H₂O₂
 NaOH
- (d) Hoffman Rearrangement
- (iv) $Ph CH(OH)CH_3 \xrightarrow{l_2|NaOH}$
- (e) Reformalisky Reaction
- (v) Ph NH_2 $Br_2|NaOH$

Codes:

- (a) (b) (c) (d) (e)
- (1) iv iii i v ii
- (2) iii iv ii v i
- (3) i iii ii v iv
- (4) i iv v ii iii

129. The major product formed in the following reaction is:

OMe OMe (2)
$$NH_2$$
 (3) NH_2 (4) NH_2 NH_2

(19)

In the following reaction:

$$C_2H_5 - C \equiv C - CH_3 \xrightarrow{(i) \text{ Na}|\text{Liq NH}_3|\text{THF} - 40^{\circ}C} (P)$$

the major product (P) will be:

131. Insects can walk on the surface of water due to:

- (1) optical activity (2) refractivity
- (3) surface tension (4) viscosity

Which is not affected by temperature?

- (1) Molarity
- (2) Normality
- (3) Formality

What is the elevation in boiling point for a solution containing 18 g glucose in 100 g water? Given elevation constant of water is 0.52 K kg mol -1:

- (1) 0.72 K
- (2) 0.62 K
- (3) 0.52 K
- (4) 0.42 K

Which of the following compounds is frequently used as an internal inference in 1H NMR spectroscopy?

- (1) DMSO
- (2) THF
- (3) TMS
- (4) DMF

The degree of hydrolysis of a salt of weak acid and weak base is given by the expression:

$$(1) \quad \alpha = \sqrt{\frac{K_w.K_b}{K_a}}$$

(1)
$$\alpha = \sqrt{\frac{K_w \cdot K_b}{K_a}}$$
 (2) $\alpha = \sqrt{\frac{K_w \cdot K_a}{K_b}}$ (3) $\alpha = \sqrt{\frac{K_w}{K_a \cdot K_b}}$ (4) $\alpha = \sqrt{K_w \cdot K_a \cdot K_b}$

(3)
$$\alpha = \sqrt{\frac{K_w}{K_a \cdot K_b}}$$

$$(4) \quad \alpha = \sqrt{K_w \cdot K_a \cdot K_b}$$

The emf of the cell: $Zn \mid Zn^{2+}(0.001M)$ II $Ag^{+1}(0.1M)$ I Ag with standard potentials of Ag/Ag^+ and Zn/Zn^{+2} half cells of + 0.80 V and - 0.76 V, respectively, is:

- (1) 1.985 V
- (2) 1.888 V
- (3) 1.958 V
- (4) 1.589 V

The change in the Gibbs free energy of 4 moles of an ideal gas which expand isothermally from 1 L to 10 L at 300 K ($R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$):

- (1) 21.97 kJ
- (2) 22.97 kJ
- (3) 23.97 kJ
- (4) 24.97 kJ

Ratio of the translational partition functions of hydrogen molecules confined in 138. a 100 cm3 vessel at 300 K and 2700 K is:

- (1) 1:13.5
- (2) 1:27
- (3) 1:54
- (4) 1:108

(20)

139.	The heat of combustion of ethyl alcohol is -330 Kcal. If the heat of formation CO_2 (g) and H_2O (l) be -94.3 Kcal and -68.5 Kcal, respectively. The heat of formation of ethyl alcohol is: (1) -64.1 Kcal (2) -84.1 Kcal (3) -104.1 Kcal (4) -124.1 Kcal
140.	50 mL of 1 M oxalic acid (molar mass = 126 g mol ⁻¹) is shaken with 0.5 g of wood charcoal. The final concentration of the solution after adsorption is 0.5 M. What is the amount of oxalic acid adsorbed per gram of carbon? (1) 12.60 g (2) 6.30 g (3) 3.15 g (4) 1.575 g
141.	(1) $12.60 \mathrm{g}$ (2) $6.30 \mathrm{g}$ (3) $3.15 \mathrm{g}$ (4) $1.575 \mathrm{g}$ The stability of dihalides of elements of carbon family increases in the order: (1) $CX_2 < SiX_2 < GeX_2 < SnX_2 < PbX_2$ (2) $CX_2 < GeX_2 < SnX_2 < SiX_2 < PbX_2$ (3) $GeX_2 < CX_2 < SnX_2 < PbX_2 < SiX_2$ (4) $SnX_2 < PbX_2 < GeX_2 < SiX_2 < CX_2$ (4) $SnX_2 < PbX_2 < GeX_2 < SiX_2 < CX_2$
192.	Which one of the following is not tetrahedral and diamagnetic? (1) $Ni(CO)_4$ (2) $Ni(CN)_4^{4-}$ (3) $Ni(PR_3)_4$ (4) $NiCl_4^{2-}$
143.	Which one of the following does not have spinal structure? (1) Mn_3O_4 (2) Co_3O_4 (3) Fe_3O_4 (4) $Mg[Cr_2O_4]$
144.	Intensity of d-d transitions is governed by a set of selection rules given by : (1) $\Delta s = 0$, $\Delta l = 0$ (2) $\Delta s \neq 0$, $\Delta l = \pm 1$ (3) $\Delta s \neq 0$, $\Delta l = 0$ (4) $\Delta s = 0$, $\Delta l = \pm 1$
145	Purple colour of $[Ti(H_2O)_6]$ Cl_3 is due to: (1) d-d transition (2) charge transfer transition (3) ligand transition (4) charge transfer and ligand transition
146.	Ba^{2*} , Sr^{2*} and Ca^{2*} are precipitated as carbonates in their qualitative analysis by adding NH_4OH , NH_4CI and $(NH_4)_2CO_3$ solution. The reagents are added in the following sequence: (1) NH_4OH , NH_4CI , $(NH_4)_2CO_3$ (2) NH_4CI , NH_4OH , $(NH_4)_2CO_3$ (3) $(NII_4)_2CO_3$, NH_4OH , NII_4CI (4) All are added simultaneously

(21)

Clathrate compounds like $Xe(H_2O)_6$ involve:

(1) Ionic bond

(2) Covalent bond

- (3) Coordinate bond
- 4 (4) Weak forces

148. Fe(Et₂NCS₂)₃ shows magnetic moments 4.3 BM at 297 K and 2.2 BM at 79 K. This is because:

(1) 10 Dq > P

(2) 10 Dq < P

 $\mathcal{J}(3)$ 10 Dq \cong P

(4) No relation between 10 Dq and P

(10 Dq and P are crystal field splitting energy and pairing energy of metal ion respectively.)

149. Zinc-EDTA complex has following coordination number and geometry:

- (1) 6, octahedral
- (2) 4, octahedral
 - (3) 4, square planar (4) 4, tetrahedral

The bond angle in hydrides of nitrogen family decreases in the order : 10° 10° 10

- (3) $AsH_3 > PH_3 > NH_3 > SbH_3$ (4) $SbH_3 > AsH_3 > NH_3 > PH_3$

151. Two essential prerequisites for the validity of distribution law are:

- (1) constant temperature and the existence of similar species in two phases
- (2) varying temperature and the existence of similar species in two phases
- (3) constant pressure and the existence of similar species in two phases
- (4) constant temperature and the existence of at least one species in either of the two phases

152. The units of absorbance and molar absorptivity are:

- (1) no unit and dm³mol⁻¹cm⁻¹, respectively
- (2) dm³mol⁻¹cm⁻¹ and no unit, respectively
- (3) both unitless
- (4) mol -1 cm -1 and dm 3 mol -1 cm -1

Beer's law governs the behaviour of: 153.

- (1) concentrated solutions only
- (2) dilute solutions only
- (3) both dilute and concentrated solutions
- (4) pure solvent only

(22)

	(2:	3)	P.T.O.		
	$(3) ye^P = \int Qe^{\int Pdx} dx + c$	(4)	None of these		
	$(1) ye^{\int P dx} = \int Qe^{\int P dx} dx + c$	(2)	$y = e^{\int P dx} \int Q e^{\int P dx} dx + c$ None of these		
	$\frac{dy}{dx} + Py = Q \text{ is :}$		e dat		
161.	If P and Q are functions of x , A	then s			
	[Mathematics]				
	I * /		940		
	solutions? (1) 6.9, 1.0, 2.0 (2) 6.9, 0.0, 12.0	(3)	6.9, 1.0, 2.0 (4) 6.9, 1.1, 12.0		
160.	What are pH values of:10-9 M HC	!, 1.0 !	M HCl and 10 ⁻² M NaOH aqueous		
	(3) $A = \ln \% T - 2$	(4)	$A = 2 - \log \% T$		
extenses (4. 1947) (6. S	(1) $A = \log \% T - 2$	(2)	$A = \log T - 2$		
159.	Which of the following relationships	is <i>corr</i>	ect one?		
	(3) pH-metric titration method	(4)	Winkler's method		
	(1) conductrometric method	\$650 K10K1	spectrophotometric method		
158.	The dissolved oxygen levels in na determined by:	aturai	as well as waste-waters can be		
150	48500 M6500 M5500				
	(1) strong basic medium (3) weak acidic medium	3350 FA0	strong acidic medium		
157.	Ce(IV) solution is used for the titration		ductants only in : weak basic medium		
		10.00	# ### ################################		
	(1) in acidic range (3) in mild basic range	0.00	in basic range neutral		
S	hydrochloric acid is:				
156.	The equivalence point pH in the	titrat	ion of weak base with standard		
	(3) three moles Br ₂	(4)	four moles Br ₂		
	(1) one mole Br_2	(2)	two moles Br ₂		
155.	One mole of KBrO ₃ in bromate-brom	ide rea	action produces :		
	(3) TLC	(4)	Ion-exchange chromatography		
	(1) Gas chromatography	(2)	HPLC		
154.	Which of the following is a planar chr	omato	graphy ?		

The general solution of a differential equation $y'' + n^2y = 0$ is: 162.

(1) $y = A \cos nx + B \sin nx$

 $(2) \quad y = A(\cos nx)^2 + B(\sin nx)^2$

 $(3) \quad y = A\cos n^2 x + B\sin n^2 x$

(4) None of these

163. If P and Q are functions of x such that P + Qx = 0, then a solution of the differential equation y'' + Py' + Qy = 0 is:

(1) $y = e^x$ (2) $y = e^{2x}$ (3) y = x (4) None of these

 $P_n(x)$ is the coefficient of h^n in the expansion of:

(1) $(1+2hx+h^2)^{\frac{1}{2}}$ (2) $(1-2hx+h^2)^{\frac{1}{2}}$ (3) $(1+2hx-h^2)^{\frac{-1}{2}}$ (4) None of these

The necessary condition for convergence of the series $\sum_{n=1}^{\infty} u_n$ of real numbers is: 165.

(1) $u_n \to 0$ as $n \to \infty$

(2) $u_n \to 1 \text{ as } n \to \infty$

(3) $u_n \rightarrow 2$ as $n \rightarrow \infty$

(4) None of these

The radius of curvature at origin for the curve for $x^3 - y^3 - 2x^2 + 6y = 0$ is: 166.

(1) 1/3

(2) 2/3

(3) 3

(4) None of these

167. If $u = r \cos \theta$, $v = r \sin \theta$, w = z, then $\frac{\partial(u, v, w)}{\partial(r, \theta, z)}$ is:

(1) 1

(2) 2

(3) 3

(4) None of these

The volume generated by revolving the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about x-axis is:

(1) $\frac{16}{35}\pi a^3$ (2) $\frac{16}{105}\pi a^3$ (3) $\frac{32}{105}\pi a^3$ (4) None of these

 $2\int_{0}^{\frac{\pi}{2}} \sqrt{\tan\theta} \ d\theta =$

(1) $\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{2}\right)$ (2) $\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)$ (3) $\frac{1}{2}\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)$

(4) None of these

(24)

- The maximum value of directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1, 1, -1) is:

- (4) None of these

- The set [a, b] with a < b is: 171.
 - (1) an open set
 - (2) bounded
 - (3) neither bounded below nor bounded above
 - (4) none of these
- 172. Let X = C[a, b] be the space of real-valued continuous functions defined on the interval [a, b] and define $d(x, y) = \sup_{s \in [a, b]} |x(s) - y(s)|, x, y \in X$ and $d_1(x,y) = \int_0^x |x(s) - y(s)| ds, x, y \in X$. Then:
 - (1) (X, d) is not a metric space
- (2) (X, d_1) is not a metric space
- (3) (X, d_1) is a complete metric space
- (4) None of these
- 173. Which of the following is **not** a basis of $\mathbb{R}^3(\mathbb{R})$?
 - (1) [(1, 2, 3), (-1, -2, 0), (0, 0, -3)]
 - (2) [(1,-1,-1),(-1,1,-1),(-1,-1,1)]
 - (3) [(1, 1, 1), (1, 1, 0), (1, 0, 0)]
 - (4) [(1, 2, 3), (2, 1, 3), (3, 1, 2)]
- The function f(z) = |z| is:
 - (1) analytic

(2) f is differentiable at z = 0

(3) not analytic

- (4) None of these
- 175. If L(F(t)) = f(s), then $L(t^n F(t)) =$

 - (1) $\frac{d^n}{ds^n}[f(s)]$ (2) $(-1)^n \frac{d^n}{ds^n}[f(s)]$ (3) $\int_{-1}^{\infty} f(x) dx$
- (4) None of these

(25)

176. For the values
$$f(0) = 3$$
, $f(1) = 6$, $f(2) = 11$, $f(3) = 18$, $f(4) = 27$, the form of the function $f(x)$ is:

(1)
$$x^2 + 2x + 3$$

(2)
$$x^2 - 2x + 3$$

(1)
$$x^2 + 2x + 3$$
 (2) $x^2 - 2x + 3$ (3) $x^2 + 4x + 3$ (4) $x^2 + 2x + 4$

(4)
$$x^2 + 2x + 4$$

177. Newton's iterative formula for obtaining
$$a^{-1}$$
 is:

(1)
$$x_{n+1} = x_n(2 + ax_n)$$

(2)
$$x_{n+1} = x_n (2 - ax_n)$$

(3)
$$x_{n+1} = x_n (1 + ax_n)$$

(4)
$$x_{n+1} = x_n (1 - ax_n)$$

178. If
$$A = \{1, 2, 3, 4\}$$
, then which of the following is function from A to itself:

(1)
$$f_1 = \{(x, y) : x - y = 5\}$$

(2)
$$f_2 = \{(x, y) : x - y = 6\}$$

(3)
$$f_3 = \{(x, y) : x + y = 5\}$$

(3)
$$f_3 = \{(x, y) : x + y = 5\}$$
 (4) $f_4 = \{(x, y) : x + y > 4\}$

179. If
$$A = \{(x, y) : y = e^x, x \in \mathbb{R}\}$$
 and $B = \{(x, y) : y = e^{-x}, x \in \mathbb{R}\}$, then :

(1)
$$A \cap B = \phi$$

(2)
$$A \cap B \neq \emptyset$$

(2)
$$A \cap B \neq \emptyset$$
 (3) $A \cup B = \mathbb{R}^2$

180. The maximum value of
$$a \sin x + b \cos x$$
 is:

$$(1) \quad \sqrt{a^2 + b^2}$$

(2)
$$\sqrt{a+b}$$

(3)
$$\sqrt{a-b}$$

(4)
$$2\sqrt{a^2+b^2+a+b^2}$$

$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$$
 and $\frac{x-4}{2} = \frac{y-6}{3} = \frac{z-7}{3}$ is:

$$(1)$$
 $(2,3,3)$

182. If the lines
$$\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$$
 and $\frac{x-1}{-3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are perpendicular to each other, then k is equal to:

(1)
$$\frac{10}{7}$$

(2)
$$\frac{7}{10}$$

(3)
$$\frac{10}{11}$$

(26)

(1)
$$\frac{10}{7}$$
 (2) $\frac{7}{10}$ (3) $\frac{10}{11}$ (4) $\frac{-10}{7}$

The radius of curvature at the origin for the curve $r^n = a^n \sin(n\theta)$ is given by:

$$(1) \quad \frac{a^n}{(n+1)r^{n-1}}$$

(1)
$$\frac{a^n}{(n+1)r^{n-1}}$$
 (2) $\frac{na^n}{(n+1)r^{n-1}}$ (3) $\frac{a^n}{(n+1)r^n}$ (4) None of these

$$(3) \ \frac{a^n}{(n+1)r^n}$$

184. If z = f(x + ay) + g(x - ay), then:

$$(1) \quad \frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$

(2)
$$\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$$

(3)
$$\frac{\partial^2 z}{\partial y^2} = a \frac{\partial^2 z}{\partial x^2}$$

(4)
$$\frac{\partial^2 z}{\partial y^2} = a \frac{\partial^2 z}{\partial x^2} = 0$$

185. $\lim_{n\to\infty} \left[\frac{n!}{n^n}\right]^{\frac{1}{n}}$ is equal to:

(4)
$$e^{-1}$$

 $\lim_{n\to\infty} x^n = 0$ for: 186.

(1)
$$x < 1$$

(2)
$$-1 < x \le 1$$

(3)
$$|x| < 1$$

(4)
$$x = 1$$

If two spheres of radii r_1 and r_2 , respectively cut orthogonally, then the radius of common circle is:

(1)
$$r_1 r_2$$

(2)
$$\sqrt{r_1^2 + r_2^2}$$

(2)
$$\sqrt{r_1^2 + r_2^2}$$
 (3) $r_1 r_2 \sqrt{r_1^2 + r_2^2}$ (4) $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$

$$(4) \quad \frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$

The equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2z}{c}$;

(1) an ellipsoid

- (2) a hyperboloid
- (3) an elliptic paraboloid
- (4) a hyperbolic paraboloid

189. $\lim_{x\to\infty} (3^x + 4^x)^{\frac{1}{x}}$ is equal to:

- (1) 3e
- (2) 4/e
- (3) 4e
- (4) 4

The polar equation $\frac{4}{2} = 3 + 4\cos\theta + 3\sin\theta$ represents:

- (1) a hyperbola
- (2) an ellipse
- (3) a parabola
- (4) a circle

191. The orthogonal trajectory of the curve $r^n \sin n\theta = a^n$ is:

- (1) $r^n \tan n\theta = c$
- (2) $r^n \operatorname{cosec} n\theta = c$ (3) $r^n \operatorname{cos} n\theta = c$
- (4) None of these

(27)

192.	The number of the asymptotes parallel t	to the coordinates axes, of the curve
	$x^2y^3 + x^3y^2 = x^3 + y^3$ is:	<u>₹</u>

- (1) 1 (2) 2
- (3) 3
- (4) 4

193. The set
$$\{1, -1\} \cup \left\{ \pm \left(1 + \frac{1}{n}\right) : n \in \mathbb{N} \right\}$$
 is:

- (1) closed but not open
- (2) open but not closed
- (3) closed and open both
- (4) None of these

194. The value of the integral
$$\int_{0}^{\infty} 2^{-9x^2} dx$$
 is:

- (1) $\frac{1}{2} \frac{\sqrt{\pi}}{\log 2}$ (2) $\frac{1}{3} \sqrt{\frac{\pi}{\log 2}}$ (3) $\frac{1}{6} \sqrt{\frac{\pi}{\log 2}}$

195. The function
$$f(x,y) = \begin{cases} \frac{x^3 + 2y^3}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
 is:

- (1) continuous and differentiable at (0, 0)
- (2) continuous but not differentiable at (0, 0)
- (3) neither continuous nor differentiable at (0, 0)
- (4) continuous but partial derivatives does not exits at (0, 0)

- (1) $A + A^*$
- (2) A*A
- (3) AA*
- (4) $A A^*$

197. The matrices
$$A^{-1}B$$
 and BA^{-1} have:

- (1) same eigenvalues and same eigenvectors
- (2) different eigenvalues and different eigenvectors
- (3) same eigenvalues; but different eigenvectors
- (4) None of these

198. Solution of a differential equation
$$ydx - xdy + e^{\frac{1}{x}}dx = 0$$
 is:

(1)
$$y^2 + xe^{\frac{1}{x}} = cx^2$$

(2)
$$y^2 + xe^{\frac{1}{x}} = cx^3$$

(3)
$$y + x^2 e^{\frac{1}{x}} = cx$$

$$(4) \quad y + xe^{\frac{1}{x}} = cx$$

(28)

199. Let α and x_0 be positive numbers and $\{x_n\}$ is a sequence defined by $x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$. Then $\lim_{n \to \infty} \frac{x_n}{\sqrt{\alpha}}$ is:

- (1) 0
- (2) 1
- $(3) \alpha$
- (4) 1

200. Let G be a finite abelian group of odd order and $H = \{x^2 : x \in G\}$. Then :

- (1) H = G
- (2) H is a proper subgroup of G
- (3) H is a subgroup of G iff G is cyclic
- (4) H may not be a subgroup of G

[Physics]

201. De-Broglie wavelength λ is defined as:

- (1) $\lambda = h/p$
- (2) $\lambda = p/h$
- (3) $\lambda = \hbar/p$
- (4) $\lambda = c/v$

where h and p are Planck's constant and momentum respectively

202. Two springs of spring constants k_1 and k_2 respectively, are connected in series. The effective spring constant k_{eff} will be:

(1) $k_{eff} = k_1 + k_2$

(2) $1/k_{eff} = \frac{1}{k_1} + \frac{1}{k_2}$

(3) $k_{eff} = k_1 / k_2$

 $(4) \quad k_{eff} = \sqrt{k_1 k_2}$

203. Kepler's third law implies that:

(1) $\tau/a = \text{constant}$ (2) $\tau^3/a^2 = \text{constant}$ (3) $\tau^2/a^3 = \text{constant}$ (4) $a/\tau = \text{constant}$ where τ is the time period and a is the average distance (semi major axis).

204. In a Balmer series, frequencies of successive lines tend to a limiting value :

- (1) cR/8
- (2) $cR^2/8$
- (3) $c^2R/8$
- (4) cR/4

where c is the speed of light and R is the Rydberg constant.

205. Suppose that two particles are travelling opposite to each other with velocity $v_x = \pm 0.9c$ as observed in the frame of reference S. What is the velocity of one particle with respect to the other that is measured by other?

- (1) 1.8c
- (2) 0
- (3) .9c
- (4) 0.994c

(29)

206. At T = 0 K, which will exert maximum pressure?

	(1) particles, which	h follow ideal gas eq	luation -	£	
	(2) particles, which follow Maxwell Boltzmann distribution				
	(3) particles, which follow Bose-Einstein distribution				
	(4) particles, which	h follow Fermi-Dira	c distribution	6.7	
207.	The reduced mass	μ of a binary system	of mass m_1 and m_2	is given by:	
	(1) $\mu = \frac{m_1 m_2}{m_1 + m_2}$	(2) $\mu = \frac{m_1 + m_2}{m_1 m_2}$	(3) $\mu = \frac{m_1 m_2}{m_1 - m_2}$	(4) $\mu = \frac{m_1 - m_2}{m_1 m_2}$	
208.	The source of energ	gy of Sun is due to :	•		
	(1) fusion		(2) fission	- ,	
	(3) radioactive de	cay	(4) black body ra	diation ·	
209.	The voltage across a diode in a central tap full wave rectifier having inpuvoltage of peak value V_m , during its non-conducting period is:				
	(1) 0	$(2) V_m$	(3) $-2V_m$	$(4) -4V_m$	
210.	For an emitter follo	ower amplifier, the v	oltage gain is :		
	(1) greater than ur	nity	(2) less than unit	v	
	(3) exactly unity		(4) zero	,	
	12.77.00				
211.	normal to the area		n angle of 90° with	rm electric field. The the electric field. The	
	(1) E	(2) 0	(3) $A.E/\sqrt{2}$	(4) A.E	
212.	Out of the following	g, which one is the o	consequence of the l	Maxwell's equation ?	
	$(1) D = \epsilon_0 E$	(2) $D = \epsilon_0 E + P$	(3) $B = \mu_0 H$	$(4) c\sqrt{\in_{O'}\mu_{O}}=1$	
	where symbols hav	e their usual meani	ngs.	78	
213.	For any operator, A	$i, i(A^+ - A)$ is:	¥	· · · · · · · · · ·	
	(1) Unitary		(2) Anti-Hermitia	iñ e e'	
	(3) Hermitian		(4) Orthogonal		
	where i is an imagi	nary number.			
		(30)			

214. Eigen values of the matrix
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2i \\ 0 & 0 & 2i & 0 \end{pmatrix}$$
 are:

- (1) -2, -1, 1, 2 (2) -1, 1, 0, 2 (3) 1, 0, 1, -2 (4) -1, 1, 0, 3

- If q_1 and q_2 are generalized coordinates and p_1 and p_2 are corresponding generalized momenta, then the Poisson bracket $\{q_1^2 + q_2^2, 2p_1 + p_2\}$ is:
 - (1) 0
- (2) $(q_1^2 + q_2^2)p_1$ (3) $3(q_1^2 + q_2^2)$ (4) $2(q_1 + q_2)$
- A system is described by the Lagrangian $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) \frac{\alpha}{r}$ where α is a constant. Which one of the following statement is not true?
 - (1) p_{θ} is conserved

- (2) p_r is conserved
- (3) Total energy is conserved
- (4) θ is cyclic
- The operator $\left(x\frac{d}{dx}-1\right)^2$ is equal to

(1)
$$x^2 \frac{d^2}{dx^2} - 2x \frac{d}{dx} + 1$$
 (2) $x^2 \frac{d^2}{dx^2} + x \frac{d}{dx} + 1$

(2)
$$x^2 \frac{d^2}{dx^2} + x \frac{d}{dx} + 1$$

$$\sqrt{3}) \quad x^2 \frac{d^2}{dx^2} - x \frac{d}{dx} + 1 \qquad (4) \quad x^2 \frac{d^2}{dx^2} - 1$$

(4)
$$x^2 \frac{d^2}{dx^2} - 1$$

A free particle is moving in +x direction with a linear momentum p. The wave function of the particle normalized in a length L is:

$$(1) \frac{1}{\sqrt{L}} \sin \frac{p}{\hbar} x$$

(1)
$$\frac{1}{\sqrt{L}}\sin\frac{p}{\hbar}x$$
 (2) $\frac{1}{\sqrt{L}}\cos\frac{p}{\hbar}x$ (3) $\frac{1}{\sqrt{L}}e^{\frac{-ipx}{\hbar}}$ (4) $\frac{1}{\sqrt{L}}e^{\frac{ipx}{\hbar}}$

$$(3) \quad \frac{1}{\sqrt{L}}e^{\frac{-ipx}{\hbar}}$$

$$(4) \quad \frac{1}{\sqrt{L}}e^{\frac{ipx}{\hbar}}$$

- 219. Degeneracy of the first excited state of an isolated hydrogen atom is:

- (2) 4 (3) 6 (4) 8

:1.

- $\nabla^2 V = 4\pi\rho$ represents:
 - (1) Maxwell's equation (1)
- (2) Poisson's equation
- (3) Laplace's equation (1)
- (4) Gauss law

- An atom with singlet electronic states in placed in a weak magnetic field. The line due to the transition ${}^{1}D_{2} - {}^{1}P_{1}$ will:
 - (1) split into 3 components of same polarization
 - (2) split into 9 components of same polarization
 - (3) split into 3 components of two different polarization
 - (4) split into 2 components of different polarization
- **222.** Line width of a LASER light is 20 Hz. If $c = 3 \times 10^8$ m/s, the value of coherence length is:
 - (1) 15×10^5 km (2) 15×10^3 m (3) 15 m
- (4) 15×10^6 m
- In a Fresnel biprism experiment on interference, if half of the biprism (one side of biprism edge) is covered with a semi-transparent sheet to reduce the amplitude of the transmitted light to half of its original value:
 - (1) the interference pattern will disappear
 - (2) the pattern will be formed with increased fringe contrast
 - (3) the pattern will be formed with visibility V = 0.8
 - (4) the pattern will be formed with visibility V = 1/3
- A medium suitable for producing LASER radiation has been activated to the condition of population inversion. In this situation, the system:
 - (1) has positive temperature (in Kelvin)
 - (2) has negative temperature (in Kelvin)
 - (3) has temperature as 0°K
 - (4) may have positive and/or negative temperature (in Kelvin)
- 225. Which of the following is true? ESR and NMR spectroscopies are related to:
 - (1) radio and microwave regions respectively
 - (2) radio and IR regions respectively
 - (3) microwave and radio wave regions respectively
 - (4) microwave and IR regions respectively

220.	In molecule the enelectronic (ΔE_e) trans	nergies involved in sitions lie in :	rota	itional (ΔE_r), vil	oratio	onal (Δ	E _v) and
	(1) microwave, IR	and VIS/UV regions	res	pectively			320
	981265 PR	S/UV and IR regions				1	
		and VIS/UV regions	10	5.			
		d microwave regions	- 1	5 A			
227.							
A-A-1 .		(2) ${}^4S_{3/2}$	(2)	¹ S ₀	(4)	3 p	
	(1) 31/2	(2) 33/2	(3)	30	(4)	P_0	
228.	ABABA repres	sents an arrangemen	t of	layers called :			
	(1) hexagonal close	ed packing	(2)	cubic closed pa	cking	3	
	(3) body centered	cubic packing	(4)	face centered cu	ıbic p	acking	
229.	In x-ray diffraction	studies, x-rays are so	catte	red by :			
*	45435751 414 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2) Protons only		500 CO	(4)	Electro	ns only
230.	Which one of the fo	llowing is <i>not</i> an exa	amp	le of intrinsic ser	nicor	nductor	?
	53 Feb 2007 - 164 2007	(2) Ge	100000000			9277	
231.	Mobility of holes	s as compared to	n	obility of elec	tron	s in i	ntrinsic
95-17 (TV 2072), DI	semiconductor:			,			
	(1) equal			greater			
	(3) cannot be defin	ea	(4)	less			
232.	According to Hall effect, if a conducting material is placed in a uniform magnetic field and a current is passed, a voltage is found to develop at :				ıniform		
	(1) parallel to the c			parallel to the r		1950 1950 Page 121	d
	07 N500 20€03 9000000 10000 00000	to the magnetic field	98 SES	1. 5 0	_		
000	ASTROCOS AS THE DESCRIPTION OF THE STATE OF			A-10 CA-200 - 100			
233.		ne of a nucleus is rela		- 1			
	(1) λ	(2) 1/λ	(3)	λ In 2	(4)	2 In λ	
234.	The surface energy	term of liquid drop	mod	lels is proportion			
	(1) A	(2) $A^{2/3}$	(3)	$A^{1/3}$	(4)	$A^{3/4}$	
		(33)					P.T.O.

Complete the fusion relation:

 $D+^3He_2 \rightarrow ^4He_2 +$

- (1) 2p
- (2) n
- (3) p
- (4) 3n

here, D is the deuteron.

236. The Poynting vector S of an electromagnetic wave is:

- (1) $S = E \times B$
- (2) $S = E \times H$
- (3) S = E/H (4) S = E/B

where symbols have their usual meaning.

237. The dimensions of action are:

(1) ML^2T^{-1} (2) MLT^{-2} (3) MLT^{-1} (4) M^2LT^{-1}

238. A 2 × 2 matrix has determinant 1 and trace 2. Its eigen values are:

- $(1) \pm 1$
- (2) 0, 1
- (3) 1, 1
- (4) 0, 2

In a diffraction experiment (of Fraunhoffer type) with a simple slit if the wavelength of the light used is equal to the slit-width, which of the statements is true?

- (1) Diffraction pattern disappears
- (2) The central maximum fills the entire screen
- (3) Theory used becomes invalid
- (4) The pattern is unaffected

240. Coupling of orbital and spin motions of electron gives rise to:

(1) Zeeman effect

- (2) Stark effect
- (3) Hyperfine splitting
- (4) Fine splitting

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ट पर तथा उत्तर-पत्र के दोनों पृष्ठों पर कंवल *नीली। काली बाल-प्वाइंट पेन* रो ही लिखे)

- 1. प्रश्न-पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्न-पुस्तिका में सभी पृष्ठ मौजूद है और कोई प्रश्न छूटा नहीं है। प्रश्न-पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से* निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ -जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आ२० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।

