M.sc Biochemistry code N. (487)

16P/210/4

Question Booklet No.....

	(To be filled up by the candidate by blue/blue	ack ball-point pen)
Roll No.	(10 be filled up by the curtature by blue, on	
Roll No. (Write the	digits in words)	•••••
Serial No.	of OMR Answer Sheet	
Day and	Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 24+2

No. of Questions: 150

Time	: 2 Hours						F	ull Marks : 45
Note	: (1)	One ma	as many q rk will be d I for each t	educted i	for ea	ou can. Each quech incorrect at question.	uestion c	arries 3 marks ero mark will b
	(2)	If more correct a	than one a	alternativ	e an	swers seem to	be app	roximate to th
1.	Which of	f the follo	owing has	highest	redo	x potential in	the resp	iratory chain?
	(1) Ubiq	uinone	(2) FAD		(3)	NAD^+	(4) O ₂	
2.			so found ir			following apar		
3.	Which of (1) Prote (3) Polys	Onic		ot a mac	(2)	Proteins		
(178)				1		7(8):		(P.T.O.)

collegedunia India's largest Student Review Platform

4.	S-Adenosylmethion	nine is required for	r the synthesis of	
	(1) bile salts	(2) melanin	(3) epinephrine	(4) serotonin
5.	Puromycin inhibits	s translation by		
	(1) causing misrea	ading of mRNA		
	(2) acting as tyros	syl tRNA analogue		
	(3) preventing bin	ding of aa-tRNA to	o A site	
	(4) None of the al	bove		
				*
6.	Richest source of	linoleic acid is	200	
	(1) sunflower oil	(2) soyabean oil	(3) safflower oil	(4) corn oil
7.	Maximum content	of endogenous tr	iacylglycerols is se	een in
	(1) chylomicrons	(2) VLDL	(3) LDL	(4) HDL
8.	Kynurenine is for	med from		
	(1) glycine	(2) tryptophan	(3) tyrosine	(4) phenylalanine
9.	Enzyme activity n	neasured in beribe	eri is	
	(1) carboxylase	(2) transaminase	e (3) deaminase	(4) transketolase
10.	Insulin inhibits a	all of the following	enzymes, except	
10.	(1) glucose 6-ph		(2) pyruvate car	
	(3) phosphofruct	tokinase	(4) fructose 1,6	-bisphosphatase
170		,	2	
178)			

. Golgi body is involved in			
(1) protein synthesis	(2) drug metabolism		
(3) protein packaging	(4) protein degradation		
Whi-t-Cut ou			
	as cane sugar?		
(1) Glucose (2) Fructose	(3) Maltose (4) Sucrose		
Which of the following sugar is utilize			
(1) Chacago (0) B			
(1) Glucose (2) Fructose	(3) Sucrose (4) Mannose		
. Rancidity of butter is prevented by th	e addition of		
(1) vitamin A (0)	2) –		
	3) Vitamin E (4) folic acid		
Phospholipids are important cellular components because			
(2) they have glycerol	8		
(3) they can form bilayers in water			
	eins		
	ulose is		
(1) dextrin (2) dextrose (3	3) maltose (4) cellobiose		
TN			
the triglycerides present in plasma lip	The triglycerides present in plasma lipoproteins are hydrolyzed by		
	lipoprotein lipase		
[7] [100 000 0 1 1!	adipokinetic lipase		
	marponine il pase		
3	/h —		
	(1) protein synthesis (3) protein packaging Which of the following is also known (1) Glucose (2) Fructose Which of the following sugar is utilize (1) Glucose (2) Fructose Rancidity of butter is prevented by th (1) vitamin A (2) vitamin D (Phospholipids are important cellular of (1) they have both polar and non-pola (2) they have glycerol (3) they can form bilayers in water (4) they combine covalently with protein The repeating disaccharide unit in cellular of (1) dextrin (2) dextrose (3) The triglycerides present in plasma lips (1) pancreatic lipase (2)		

18.	Prostaglandin syn	thesis is increased	by activating phospholipase	es by
	(1) indomethacin		(2) glucocorticoids	
	(3) aspirin	ž.	(4) angiotensin II	
19.	The phosphoprote	in present in milk	is	
	(1) avidin	(2) casein	(3) ovalbumin (4) ovog	lobulin
20.	Glutathione is a			
	(1) dipeptide	(2) tripeptide	(3) oligopeptide (4) poly	peptide
21.	The protein prese	nt in hair is	•	
	(1) keratin	(2) elastin	(3) prolamine (4) gliad	iin
22.	Which of the follo	owing is not an ess	sential fatty acid?	
	(1) Oleic acid		(2) Linoleic acid	
	(3) Linolenic acid	į.	(4) Arachiclonic acid	
23.	Enoyl-CoA isome	rase is needed for	the complete β-oxidation of	
	1.50 miles	fatty acids with tra		
	(2) saturated fatt			
	(3) odd chain fat		3	
	(4) unsaturated	fatty acids with cis	s double bonds	

	(1) They confer resistance to antibiotics
	(2) They create a double-stranded break in the donor DNA after moving to new site
	(3) They encode transposases
•	(4) They have terminal repeats that are homologous to sequences on their target site
25.	Serpentine receptors
	(1) are located on the plasma membrane
	(2) act in the nucleus
	(3) are ion channels
	(4) have single transmembrane domain
26.	Maximum damage to DNA:
	Maximum damage to DNA is caused by
	(1) α-rays (2) β-rays (3) UV rays (4) γ-rays
27.	Mechanism of action of orlistat is
	(1) stimulation of BMR
	(2) inhibition of gastric and pancreatic lipase
	(3) inhibition of appetite centre
	(4) inducing satiety
28.	Sakaguchi test is used for the detection of
	(1) tyrosine (2) proline (2)
(178)	(3) arginine (4) histidine 5
	(P.T.O.)

24. Which of the following is true for all transposons?

29.	Cutaneous hypersensitivity is not a	feature of
	(1) variegate porphyria	(2) congenital erythropoietic porphyria
	(3) hereditary coproporphyria	(4) acute intermittent porphyria
		i' -1letion of
30.	Fructosamine is formed by non-enzy	
	(1) albumin (2) haemoglobin	(3) myoglobin (4) immunoglobulins
31.	Highest percentage of modified base	s are present in
	(0) (DNA	(3) snRNA (4) rRNA
	(1) mRNA (2) tRNA	
32.	Citrate buffer inhibits glycolysis by	inhibiting
	(1) phosphofructokinase	(2) enolase
	(3) pyruvate kinase	(4) phosphoglycerate kinase
33.	In gene cloning largest fragment car	
	(1) bacteriophage	(2) cosmid
	(3) plasmid	(4) retrovirus
	due to	
34.		(2) translocation
	(1) insertion	(4) deletion
	(3) non-disjunction at meiosis	
	Components of biological membrar	nes include all, except
35.		(2) triacylglycerols
	(1) phospholipids	(4) glycolipids
	(3) cholesterol	
(178	3)	6

36.	Glycosaminoglycan responsible for n	naintenance of corneal transparency is
	(1) keratan sulfate	(2) chondroitin sulphate
	(3) heparin	(4) hyaluronic acid
37.	Fatty acid accumulated in Refsum's	disease is
	(1) stearic acid	(2) phytanic acid
	(3) arachidonic acid	(4) linoleic acid
38.	Phospholipid involved in blood clotti	ing is
	(1) plasmalogen	(2) lecithin
*	(3) cephalin	(4) None of the above
39.	Hyperextensibility of skin and joints	is seen in
	(1) Pendred syndrome	(2) Lesch-Nyhan syndrome
	(3) Osteogenesis imperfecta	(4) Ehlers-Danlos syndrome
40.	Amino acid sequence in a protein is	determined by
-	(1) Biuret reagent	(2) Edman's reagent
	(3) Seliwanoff's reagent	(4) Barfoed's reagent
41.	Sticky foot structures are	
	(1) N-linked glycoproteins	(2) GPI-linked glycoproteins
	(3) O-linked glycoproteins	(4) S-linked glycoproteins
(178)	7	

collegedunia India's largest Student Review Platform

42.	Which of the following is the Golgi is	marker enzyme?
	(1) ATP synthase	(2) Hexokinase
	(3) Galactosyltransferase	(4) Restriction endonuclease
43.	All of the following are channel form	ners, except
	(1) adriamycin (2) gramicidin	(3) valinomycin (4) amelogenin
44.	The ring structure present in proline	e is
	(1) cyclopentanoperhydrophenanthre	ne
	(2) imidazole	
	(3) indole	
	(4) pyrrolidine	
45.	Pauly's test is answered by	
	(1) cysteine	(2) histidine
	(3) proline	(4) aromatic amino acids
46.	Secondary structure of proteins is p	preserved by all of the following, except
	(1) covalent bonds	(2) hydrogen bonds
	(3) ionic bonds	(4) van der Waals forces
	Aldehyde test is negative for	
47.	(1) haemoglobin (2) gelatin	(3) albumin (4) casein
		8
(178	1	

48.	3. Glutamine synthetase is a	
	(1) oxidoreductase (2) ligas	е
	(3) lyase (4) hydr	rolase
49.	Which of the following enzymes requires calci	ium for its activity?
	(1) Lysyl oxidase (2) Xant	thine oxidase
	(3) Carbonic anhydrase (4) Lipas	se -
50.	7	
	(1) carboxyl protease (2) meta	alloprotease
	(3) cysteine protease (4) serin	ne protease
51.	. Competitive inhibitor of thymidylate synthase	is
	(1) 6-mercaptopurine (2) 5-flu	orouracil.
	(3) methotrexate (4) None	of the above
52 .	Which of the following enzymes is active in it	s phosphorylated form?
	(1) Chroners (1	vate kinase
	(3) Glycogen phosphorylase (4) HMG	-CoA reductase
53.	. The heteropolysaccharide in which uronic acid	d is not present is
	(1) 1	atan sulphate
	(3) chondroitin sulphate (4) hepar	
(178)	9	

54.	Molecular weight of a protein can be	e determined by using	
	(1) native PAGE	(2) SDS-PAGE	
	(3) isoelectric focusing	(4) dansyl chloride	
55.	Which of the following glucose trans	porters is present in testis?	
	(1) GLUT 1 (2) GLUT 5	(3) GLUT 3 (4) GLUT 7	
56.	Which of the following enzymes is n	ot required for pyruvate dehydro	ogenase?
	(1) TPP (2) NADP	(3) FAD (4) None of	these
57 .	Glycogen storage disease type O occ	urs due to deficiency of	
	(1) glycogen phosphorylase	(2) phosphofructokinase	
	(3) glycogen synthase	(4) transglucosidase	
58.	Pentoses in the human body are ob	tained from	
	(1) glycolysis (2) Krebs' cycle	(3) HMP shunt (4) Cahill cy	rcle
59.	Best biomarker for thyroid disorders	s is	
	(1) FT 3 (2) TSH	(3) FT4 (4) rT3	
60.	All of the following parameters are	elevated in chronic renal failure	, except
e m em(10)	(1) urea (2) sodium	(3) potassium (4) phospho	
(100)	10	0	
(178)			

61.	Deficiency of pantothenic acid leads	to .
	(1) scurvy	(2) beriberi
	(3) burning feet syndrome	(4) rickets
62.	Gastrectomized patient is likely to s	suffer from deficiency of
	(1) vitamin A (2) vitamin C	(3) vitamin B_1 (4) vitamin B_{12}
63.	Active form of vitamin D is	
	(1) cholecalciferol	(2) ergosterol
	(3) calcitriol	(4) lanosterol
64.	Consumption of raw eggs can cause	deficiency of
	(1) calcium (2) lipoic acid	(3) vitamin C (4) biotin
65.	Overlapping DNA segments are repe	atedly cloned in .
	(1) chromosomal walking	(2) chromosomal jumping
	(3) FISH	(4) linkage study
66.	What percentage of human genome	encodes proteins?
	(1) 1–1.5% (2) 10–15%	() / > > 0 / 0
67.	Tyrosine residues are iodinated at w	hich positions in thyroxine?
	(1) 1 and 3 (2) 3 and 5	(3) 5 and 7 (4) 3 and 7
(178)	11	
		(P.T.O.)

16P/210/4

68.	Anticogon region	is found in			
	(1) tRNA	(2) rRNA	(3)	mRNA	(4) snRNA
69.	TSH is a			*	
	(1) carbohydrate	(2) steroid	(3)	glycoprotein	(4) peptide.
70.	Reverse transcript	ase is also known	as	*	
	(1) DNA depender	nt DNA polymerase			
	(2) RNA depender	nt DNA polymerase		•	
	(3) DNA depender	nt RNA polymerase			
	(4) RNA depender	nt RNA polymerase			
71.	Amanitin inhibits				
	(1) ATP synthesis		(2)	mRNA synthe	sis
	(3) DNA synthesis	S	(4)	glycoprotein s	ynthesis
72 .	Nucleic acids sho	w strongest absorp	tion	at wavelength	
	(1) 260 nm	(2) 480 nm	(3)	360 nm	(4) 220 nm
73.	Biological half-life	of catecholamines	is		
	(1) 10-30 second	S	(2)	1-3 days	
	(3) 10-30 minute	es .	(4)	1-3 weeks	
		9			

74.	Synacthen's test is used for the dia	gnosis of
	(1) adrenogenital syndrome	(2) Addison's disease
	(3) pheochromocytoma	(4) Down's syndrome
75.	Human insulin gene is located on	
	(1) chromosome 8	(2) chromosome 6
	(3) chromosome 21	(4) chromosome 11
76 .	Insulin increases the activity of all	of the following enzymes, except
	(1) acetyl CoA carboxylase	(2) glycogen synthase
	(3) hormone sensitive lipase	(4) HMG CoA reductase
77.	Metachromatic leukodystrophy is du	ie to deficiency of
	(1) ceramidase	(2) sphingomyelinase
	(3) arylsulfatase	(4) hexosaminidase
78.	Which of the following anti-cancer of	lrugs is a purine analogue?
	(1) Mitomycin C	(2) 6-Mercaptopurine
	(3) Vinblastine	(4) Cyclophosphamide
79 .	Which of the following is a tumor su	appressor gene?
	(1) Rb (2) Erb	(3) Ras (4) Abl
		*
(178)	13	*

(P.T.O.)

80.	Which of the following purine is pre-	sent in tea?
	(1) 1,3,7-Trimethylxanthine	(2) 1,3-Dimethylxanthine
	(3) 3,7-Dimethylxanthine	(4) Methylxanthine
81.	All of the following are the end prod	ucts of pyrimidine catabolism, except
	(1) CO ₂	(2) β-alanine
	(3) ammonia	(4) γ-amino isobutyrate
82.	Which of the following statements translation?	s does not hold true for prokaryotic
	(1) The initiation tRNA carries N-for	mylated methionine
	(2) Initiation sequence is kozak sequ	ience
	(3) Three initiation factors are requi	red
	(4) Prokaryotic mRNAs are polycistro	onic
83.	In prokaryotes, the sequence present	t at promoter site is
	(1) Hogness box (2) GC box	(3) CAAT box (4) Pribnow box
84.	In hemolytic jaundice, urine bilirubi	n is
	(1) usually present	(2) very high
	(3) usually absent	(4) very low
25	Carnitine is synthesized from	
55.	(1) threonine (2) lysine	(3) alanine (4) taurine
/1 70	1	4
(178		

86.	Synthesis of Apo B-48 by the inter	stinal cells is an example of
	(1) mRNA editing	(2) methylation
	(3) splicing	(4) hydroxylation
0.5	m	
87.	The most commonly used prokaryot	tic host cell in genetic engineering is
	(1) E. coli (2) insect cells	(3) Aspergillus (4) H. influenza
88.	Cystic fibrosis is due to defect in	
	(1) deletion of one nucleotide	(2) deletion of the
		(2) deletion of three nucleotides
	(3) insertion of one nucleotide	(4) trinucleotide expansion
89.	DNA is a very stable molecule beca	use of
	(1) presence of OH group at 2' posi	tion
	(2) absence of OH group at 2' posit	ion
	(3) presence of OH group at 4' posi	tion
	(4) absence of OH group at 4' posit	ion
90.	The enzyme responsible for mitocho	md=i=1 Data
	(1) alpha polymerase	
	The Assessment Control of the Contro	(2) delta polymerase
	(3) beta polymerase	(4) gamma polymerase
91.	The most processive DNA polymeras	e is
	(1) DNA polymerase I	(2) DNA polymerase II
	(3) DNA polymerase III	(4) DNA gyrase
(78)	15	
	13	

92.	All of the following diseases are asse	ociated with defective DNA repair, except
	(1) ataxia telangiectasia	(2) Werner syndrome
	(3) cystic fibrosis	(4) xeroderma pigmentosum
93.	Multiple codons can decode the same code is called	amino acid. This characteristic of genetic
	(1) universality (2) degeneracy	(3) unambiguity (4) specificity
94.	Embryonic hacmoglobin is composed	d of
	(1) alpha and beta chains	(2) alpha and gamma chains
	(3) alpha and delta chains	(4) epsilon and zeta chains
95.	Digitalis is detoxified by	
	(1) oxidation (2) methylation	(3) hydrolysis (4) reduction
96.	Most common cause of hypercalcem	ia is
	(1) hyperparathyroidism	(2) malignancy
	(3) pheochromocytoma	(4) use of thiazide diuretics
97.		he production of progesterone by corpus
	luteum?	(3) LH (4) Prolactin
	(1) FSH (2) Oestrogen	(3) LH (4) Prolactin
	Symptoms of methylmalonic acidem	ia are almost identical to
98.		(2) ethylene glycol poisoning
	(1) OPC poisoning	(4) celphos poisoning
	(3) methanol poisoning	(')
(178)		6
(1.0)	*	

99.	Ratio of amount of nitrogen retained	d to the nitrogen absorbed is called
	(1) biological value	(2) caloric value
	(3) net protein utilization	(4) protein efficiency ratio
100.	Glucose tolerance factor contains	
	(1) molybdenum (2) magnesium	(3) selenium (4) chromium
101.	All of the following decrease iron ab	osorption, except
	(1) phytates	(2) gastric HCl
	(3) ascorbic acid	(4) calcium
102.	Slow reacting substance of anapleukotrienes, except	ohylaxis contains all of the following
	(1) LTC ₄ (2) LTB ₄	(3) LTD ₄ (4) LTE ₄
103.	The major antibody present in colos	trum is
	(1) IgM (2) IgG	(3) IgA (4) IgE
104.	Sphingolipids contain all of the follow	
	(1) phosphate	
	(3) oligosaccharide	(2) glycerol
		(4) sphingosine
105.	Vitamin E functions as an antioxidar	nt due to
	(1) its association with the cell mem	brane
	(2) isoprenoid chain	
	(3) aromatic ring structure	
	(4) its hydrophobic nature	
(178)	17	

106.	Glycosidic linkage	present in cellulo	se is	
	(1) α -1,2	(2) β-1,4	(3) β -1,2	(4) $\alpha - 1, 4$
107.	The level of which	of the following hor	mones falls in the b	olood after a meal?
	(1) Insulin	(2) PYY [3-36]		(4) Lipase
108.	The number of A	TP produced durin	g oxidation of stea	ric acid is
	(1) 129	(2) 141	(3) 131	(4) 120
109.	Which of the follo	owing enzymes is t	used in ELISA?	
	(1) Aspartate tra	nsaminase	(2) Alkaline pho	osphatase
	(3) Alanine trans		(4) Asparaginase	
110.	All are polyamine	es, except		
	(1) putrescine		(2) spermine	
	(3) S-adenosylmo	ethionine	(4) spermidine	
111.	All of the followi	ng are substrates	of gluconeogenesis	, except
111.	(1) alanine		(2) acetyl-CoA	
	(3) propionic ac	id	(4) glycine	
	of DN	A found in guanine	e and cytosine rich	regions is
112	(1) B-DNA	(2) A-DNA	(3) Z-DNA	(4) C-DNA
			18	

113.	Gene for major histocompatibility comple	ex is located on
	(1) short arm of chromosome 6 (2)	long arm of chromosome 6
	(2) 1	short arm of chromosome 8
114.	Fidelity of translation depends on	
	(1) DNA polymerase (2)	RNA polymerase
	(3) aminogord +DNA	peptidyl transferase
	(4)	peptidyi transferase
115.	. Which of the following enzymes is not re	egulated by calmoduling
	(1) 0	Pyruvate carboxylase
	(0) D	Hexokinase
	(4)	TICXORITIASE
116.	Increased level of which amino acid is as infarction?	sociated with high risk of myocardial
	(1) Ornithine (2) Homocysteine (3)	Cystein (4) Methionine
117.	. Cytochrome P-450 enzymes are located i	_
	(1) coll man-1	
	(3) nucleus	smooth endoplasmic reticulum
	(4)	Golgi complex
118.	All of the following are decided	
	All of the following are derivatives of isop	entenyl pyrophosphate, except
	III Carotenoids (0)	dolichol (4) vitamin B
110		
119.	AUG, the initiation codon, also codes for	
	(1) methionine (2) phenylalanine (3) 1	eucine
		(4) valine
(1 78)	19	
		/n =

120.	DNA glycosylases	are involved in			
	(1) base excision	repair	(2)	nucleotide exc	ision repair
	(3) mismatch repa	uir	(4)	direct repair	*
121.	The amino acid th	nat transports amn	noni	a from skeletal	muscle to liver is
	(1) glutamate	(2) valine	(3)	alanine	(4) lysine
122.	Beta pleats and b	eta bends are exa	mple	es of	~
	(1) primary struct	ure	(2)	tertiary struct	ure
	(3) secondary stru	acture	(4)	quarternary s	tructure
123.	All of the following except	electron carriers a	re co	omponents of el	ectron transport chain
	(1) FMN	(2) FAD	(3)	NAD+	(4) NADP ⁺
124.	The iron in haem	is linked to the g	lobii	n through	
	(1) arginine	(2) lysine	(3)	histidine	(4) glycine
125.	Creatinuria is rel	ated with the defic	cienc	cy of	
	(1) vitamin A	(2) vitamin E) vitamin K	(4) thiamine
126.	Sulpha drugs interfere with bacterial synthesis of				
	(1) vitamin D	(2) vitamin E	(3) folic acid	(4) lipoic acid
(178	3)		20		
1	1				19

127.	Selenium poisoning can be treated	with the administration of
	(1) benzylamine	(2) P-bromobenzene
	(3) P-nitrobenzaldehyde	(4) dithiopropanol
128.	The two nitrogens in unce and devi-	
140.	and ogono in urca are ueri	ved from
	(1) ammonia and glutamine	(2) glutamine and glutamic acid
	(3) glutamine and alanine	(4) glutamine and aspartic acid
129.	β-oxidation of odd-chain length of f	atty golda produces
	i i i i i i i i i i i i i i i i i i i	arry acids produces
	(1) succinyl-CoA	(2) malonyl-CoA
	(3) propionyl-CoA	(4) acetyl-CoA
130.	Which of the following marks prote	ins for destruction?
		Tor destruction?
	(1) Clathsin (2) Chaperone	(3) Laminin (4) Ubiquitin
131.	Isoenzyme fraction of LDH elevated	in myocardial infarction :-
	(1) LDH 1 (2) LDH 2	(3) LDH 3 (4) LDH 5
132.	Inhibition of succinate dehydrogena	se hy malonate is a-
	(1) sommet's	of maioriate is an example of
	(1) competitive inhibition	(2) non-competitive inhibition
	(3) uncompetitive inhibition	(4) allosteric inhibition
		() minution
133.	All of the following are essential am	ino acids, except
	(1) leucine (2) threonine	
		(3) phenylalanine (4) tyrosine
(178)	21	
		(P.T.O.)
		(-1.0.)

16P/210/4

134.	Amylin is secreted by pancreatic cell	s type
	(1) alpha	(2) beta
	(3) gamma	(4) pancreatic polypeptide
135.	Which of the following fatty acids be	longs to w-3 series?
	(1) Linoleic acid	(2) Arachidonic acid
	(3) Linolenic acid	(4) Oleic acid
136.	Acute hemolytic episodes after admir due to deficiency of	nistration of anti-malarial drugs are seen
	(1) glucose-6-phosphatase	
	(2) glycogen synthase	
	(3) glucose-6-phosphate dehydrogena	ase
	(4) glycogen phosphorylase	
137.	Main apoprotein present in chylomic	eron is
	(1) apo B-48 (2) apo a	(3) apo B-100 (4) apo A-II
138.	All of the following are constituents	of renal calculi, except
200.	(1) calcium (2) xanthine	(3) cholesterol (4) uric acid
	Carbon atoms that are involved in	osazone formation are
139.	(1) 1 and 2 (2) 5 and 6	(3) 1 and 3 (4) 1 and 6
(178)	2	2
(1/2		

140.	γ-glutamyl transpeptidase levels are more specific for diagnosis of		
	(1) viral hepatitis	(2) alcoholic liver disease	
-	(3) myocardial infarction	(4) Wilson's disease	
141.	or and lonowing mormones doe	s not act at the level of trans	cription?
	(1) Cortisol (2) Calcitonin	(3) Calcitriol (4) Aldoster	rone
142.	Transamination of alanine leads to the	ne formation of	
	(1) pyruvate	(2) phenyl pyruvate	
	(3) oxaloacetate	(4) aspartate	
143.	Hypolipidemic agents act on		
	(1) HMG CoA synthetase	(2) HMG CoA reductase	**
	(3) HMG CoA mutase	(4) HMG CoA hydratase	
144.	Which of the following is a lipotropic	factor?	
	(1) Insulin (2) HDL	(3) Carnitine (4) Choline	
145.	Which of the following enzymes fits in	the class of hydrolases?	
	(1) 111:	2) Chymotrypsin	
	(3) Glycogen phosphorylase	4) Triose-phosphate isomerase	
1.50		-	
(178)	23		/m -
			(P.T.O.)

1 46 .	Cytochromes are		
	(1) iron-porphyrin proteins	(2) riboflavin-containing nucleotides	
	(3) metal-containing flavoproteins	(4) pyrimidine nucleotides	
147.	The accepted hypothesis for DNA rep	eplication is	
	(1) conservative theory	(2) semi-conservative theory	
	(3) dispersive theory	(4) evolutionary theory	
148.	What is the main source of natural	1 fluoride?	
	(1) Mushroom (2) Potatoes	(3) Meat (4) Water	
149.	Which of the following amino acids porphyrins in mammals?	ls is the major precursor for synthesis	0
	(1) Alanine (2) Glycine	(3) Glutamate (4) Asparagine	
150.	CA 19-9 is a marker of		
	(1) Hodgkin's disease	(2) pancreatic cancer	
	(3) prostate cancer	(4) ovarian cancer	

D/6(178)-2350

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- ग्रिश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

