

Test Paper Code: CA

Time: 3 Hours

Max. Marks: 300

INSTRUCTIONS

A. General:

- This Question Booklet is your Question Paper.
- 2. This Question Booklet contains 24 pages and has 100 questions.
- 3. The Question Booklet Code is printed on the right-hand top corner of this page.
- The Question Booklet contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- Clip board, log tables, slide rule, calculator, cellular phone or electronic gadgets in any form are NOT allowed.
- 6. Write your Name and Registration Number in the space provided at the bottom.
- 7. All answers are to be marked only on the machine gradable Optical Response Sheet (ORS) provided along with this booklet, as per the instructions therein.
- 8. The Question Booklet along with the Optical Response Sheet (ORS) must be handed over to the Invigilator before leaving the examination hall.
- 9. Refer to Special Instructions/Useful Data on reverse of this sheet.

B. Filling-in the ORS:

- 10. Write your Registration Number in the boxes provided on the upper left-hand-side of the ORS and darken the appropriate bubble under each digit of your Registration Number using a HB pencil.
- 11. Ensure that the code on the Question Booklet and the code on the ORS are the same. If the codes do not match, report to the Invigilator immediately.
- 12. On the lower-left-hand-side of the ORS, write your Name, Registration Number, and Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else.

C. Marking of Answers on the ORS:

- 13. Each question has 4 choices for its answer: (A), (B), (C) and (D). Only ONE of them is the correct answer.
- 14. On the right-hand-side of **ORS**, for each question number, darken with a **HB Pencil** ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices.
- 15. There will be negative marking for wrong answers.

MARKING SCHEME:

- (a) For each correct answer, you will be awarded 3 (Three) marks.
- (b) For each wrong answer, you will be awarded -1 (Negative one) mark.
- (c) Multiple answers to a question will be treated as a wrong answer.
- (d) For each un-attempted question, you will be awarded 0 (Zero) mark.

Name				
Registration Number				

DATING.

Special Instructions / Useful Data

- N denotes the set of natural numbers.
- Z denotes the set of integers.
- denotes the set of rational numbers.
- R denotes the set of real numbers.
- \vec{x} denotes complement of a Boolean variable x.
- LPP denotes Linear Programming Problem.
- $\operatorname{Max} f$ denotes $\operatorname{Maximum}$ of f.
- Min f denotes Minimum of f.
- f' denotes derivative of f.
- E(X) denotes the expected value of a random variable X.
- Var(X) denotes the variance of a random variable X.
- $P(A \mid B)$ denotes the conditional probability of A given B.
- For all C programs, assume that all standard library functions are accessible.

DO NOT WRITE ON THIS PAGE

- If (2, 1) is a critical point of f(x, y) and $f_{xx}(2, 1) f_{yy}(2, 1) [f_{xy}(2, 1)]^2 < 0$, then Q.1
 - (A) (2, 1) is a saddle point
 - (B) (2, 1) is a point of local maximum
 - (C) (2, 1) is a point of local minimum
 - further investigation is required to determine the nature of the point (\mathbf{D})
- If $f_x(x, y) = 2xy + y^2$, $f_y(x, y) = x^2 + 2xy$ and f(-1, -1) = 5, then Q.2
 - (A) $f(x, y) = x^2y + xy^2 + 5$

(C) $f(x, y) = x^2y + xy^2 + 7$

- (B) $f(x, y) = x^2y + xy^2 5$ (D) $f(x, y) = x^2y + xy^2 7$
- If $f(x, y) = \begin{cases} \frac{x^3 y^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0), \end{cases}$

then

(A) $f_x(0,0) = 0$, $f_y(0,0) = 1$

(B) $f_x(0,0) = 1, f_y(0,0) = 0$

(C) $f_x(0,0) = 1$, $f_y(0,0) = -1$

- (D) $f_x(0,0) = -1$, $f_y(0,0) = 1$
- If $f(x, y) = x^3 \sin^{-1}\left(\frac{y}{x}\right) y^3 \cos^{-1}\left(\frac{x}{y}\right)$, x > 0, y > 0, then $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$ is Q.4equal to
 - $(\mathbf{A}) = 2f$
- (B) 3f
- (C)5*f*
- (\mathbf{D}) 6*f*

- The value of the integral $\int_{0}^{\frac{\pi}{2}} \int_{1}^{\frac{\pi}{2}} \frac{\sin y}{y} dy dx$ is Q.5
 - $(\mathbf{A}) = \mathbf{0}$
- $(\mathbf{B}) = \frac{1}{2}$

- (C) 1
- (D) 2
- The volume of the solid bounded by the planes x + 2y + z = 2, x = 2y, x = 0 and z = 0 is
 - (A) $\int_{a}^{1} \int_{a}^{2-2y} \int_{a}^{2-x-2y} dz dx dy$

(B) $\int_{0}^{1} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2-x-2y} dz \, dy \, dx$

(C) $\int_{0}^{1} \int_{0}^{2y} \int_{0}^{2-x-2y} dz \ dx \ dy$

(D) $\int_{a}^{1} \int_{a}^{\frac{1}{2}} \frac{2-x-2y}{dz} dz dy dx$

CA-1/24

- The area of the region bounded by the curves r=1 and $r^2=\cos 2\theta$, $0 \le \theta \le \frac{\pi}{2}$, is Q.7
 - $(\mathbf{A}) = \frac{\pi}{2}$
- $\mathbf{(B)} \quad \frac{\pi}{3}$
- (C) $\frac{\pi}{4}$

- Q.8 If $f(x) = \int_{-\infty}^{x^2} t(t-1) dt$, then
 - (A) f has a local maximum at x = 0 and a local minimum at x = 1
 - (B) f has local minima at x = 0 and x = 1
 - (C) f has a local maximum at x = 1 and a local minimum at x = 0
 - (D) f has local maxima at x = 1 and x = 0
- If $f(x) = ax^3 + bx^2 + x + 1$ has a local maximum value 3 at x = -2, then Q.9
 - (A) $a = \frac{3}{4}$, $b = \frac{5}{9}$ (B) $a = \frac{3}{9}$, $b = \frac{5}{4}$ (C) $a = \frac{3}{4}$, $b = \frac{5}{4}$ (D) $a = \frac{3}{9}$, $b = \frac{5}{9}$

- If a real valued function f is given by $\int \frac{f(t)}{t^2} dt = 2\sqrt{x} + b$, x > 0, where a > 0 and b are Q.10 real constants, then f(4) is equal to
 - $(\mathbf{A}) = \mathbf{4}$
- $(\mathbf{B}) = \mathbf{6}$

- (C) 8
- (D) 10

- The integral $\int_{-\infty}^{\infty} \frac{\log_{\epsilon} x}{x} dx$
 - converges to e

(B) converges to $\frac{1}{-}$

converges to 1

- (D) diverges
- Q.12 Let $I = \int_{0}^{2} \int_{\sqrt{4-y^2}}^{\sqrt{9-y^2}} 2xy \, dx \, dy + \int_{2}^{3} \int_{0}^{\sqrt{9-y^2}} 2xy \, dx \, dy$. Then using the transformation $x = r \cos \theta$, $y = r \sin \theta$, integral I is equal to
 - (A) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{3} r^{3} \sin 2\theta \, dr \, d\theta$

(B) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} \sin 2\theta \, dr \, d\theta$

(C) $\int_{1}^{\frac{\pi}{2}} \int_{1}^{3} r^{3} \sin 2\theta \, dr \, d\theta$

(D) $\int_{1}^{\frac{\pi}{2}} \int_{1}^{3} r^{2} \sin 2\theta \ dr \ d\theta$

CA-2/24

Q.13	Using Taylor's polynomial of the first degree, the approximate value of $\sqrt{(3.01)^2 + (3.98)^2}$ is equal to									
	(A) 4.99	(B) 4.95	(C) 5.01	(D) 4.92						
Q.14	If $z = y + f(x^2 - y)$	r^2), where f is differenti	able, then $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$ is	s equal to						

Q.15 If
$$z = f(x, y)$$
, where $x = g(t)$, $y = h(t)$, $g(3) = 2$, $g'(3) = 5$, $h(3) = 7$, $h'(3) = -4$, $f_x(2, 7) = 6$, $f_y(2, 7) = -8$, then the value of $\frac{dz}{dt}$ at $t = 3$ is

(C) 2xy

(C)

72

(A)

Consider the following C Program

 $(\mathbf{A}) \quad x^2 y$

62

Q.16

#include<stdio.h> void main() int $a[] = \{10, 20, 30, 40\};$ int j; int *p = a+3; for (j=3; j>=0; j--)printf("%d ", --*p); p=p-1;

 $(\mathbf{B}) = xy^2$

(B) 60

The output of the above program is

- (A) 9 19 29 39 **(B)** 39 29 19 9 (C) 40 30 20 10 (D) 38 28 18 8
- Consider the following C program fragment: Q.17

```
int a=100, b=20;
int c,d,e;
c = a&b;
d = a | b;
e = c&d;
printf("%d", e);
```

The output of the above fragment is

- (A) 116
- 100 **(B)**
- (\mathbf{C}) 20
- $(D) \quad \mathbf{4}$

(D) 52

CA-3/24

Q.18Consider the following C program fragment:

```
void get(int n)
    if (n<1)
      return;
     get(n-1);
      printf("%d", n);
     get(n-2);
```

The value returned by the function call get (4) is

- 3421211 (A)
- 3421121 (\mathbf{B})
- (C) 1231412
- Binary equivalent of the hexadecimal number B81F is $\mathbf{Q}.19$
 - 1011100000011111 (A)

1011101000011011 **(B)**

1011110110011111 (\mathbf{C})

- 10111111000011001 (\mathbf{D})
- Consider the following C program fragment: $\mathbf{Q}.20$

```
int i=10, m, n;
   m=++i;
printf("%d,%d,", m, i);
    n=i++;
printf("%d,%d", n, i);
```

The output of the above fragment is

- (A) 11, 11, 11, 12 (B) 11, 11, 12, 12 (C) 11, 12, 12, 11 (D) 11, 11, 12, 11
- Q.21Consider the following C program fragment:

```
int i;
int a[5]={1000,800,600,400,200};
for (i=0; i<5; i++)
 printf("%d ", i[a]);
```

Which of the following is true about this fragment?

- Error in the definition of array i (A)
- Execution results in an infinite loop (B)
- (C) The output is 1000 800 600 400 200
- (D) The output is 1001 801 601 401 201

CA-4/24

$\mathbf{Q}.22$	\mathbf{Dec}	imal value of (12	(2) ₁₆ ÷	$(22)_8$ lies in the in	terval					
	(A)	(15.5, 16)	(B)	(16, 16.5)	(C)	(16.5, 17)	(D)	(17, 17.5)		
Q.23	Whi	ich one of the foll	owing	units CANNOT k	e used	f to measure the	speed	of computer?		
	(A)	MIPS	(B)	MFLOPS	(C)	FLOPS	(D)	BAUD		
$\mathbf{Q}.24$	Two	's complement of	f the b	inary number 101	1.01 is					
	(A)	0100.10	(B)	0100.11	(C)	1011.10	(D)	10.0010		
Q.25	Flip	-Flop circuits car	ı be u	sed for						
	(A)	scaling	(B)	rectification	(C)	modulation	(D)	counting		
Q.26	Wha	it will the followi	ng C a	statement print?						
	prir	ntf("%d", ++8));							
	880 68	8			(B)	9				
	(C)	7			(D)	an error messa	ge			
Q.27	The following C program segment									
		a=4, b=6; itf("%d", a==k	o);							
	(A)	prints 1			(B)	prints 0				
	(C)	gives run time e	PITOF		(D)	gives compile ti	me eri	or		
Q.28	Consider the following C program fragment:									
	int		t ar							
	for	str[6]="sach (i=0; i<5; i+ tf("%c", *(1+	-=2)							
	The a	output from the a	above	program will be						
	(A)	sci	(B)	aci	(C)	ahn	(D)	ahi		
Q.29	Wind	lows operating sy	stem	released in 2009 h	as bee	n named as				
	20000 20000 20000 100 100 100 100 100 100 100 100 10	Windows Vista			(B)	Windows 7				
	(C)	Windows 8			(D)	Windows XP++				
				CA-5/24						

Q.30 Consider the following C program fragment:

```
void main()
{ int a[5]={50,60};
  printf("\n%d %d", a[2],a[3),a[4]);
}
```

The output of the above program will be

(A) Garbage values

(B) 50 60 60

(C) 50 60 0

 $(D) \quad 0 \quad 0 \quad 0$

Q.31 Consider the following C program fragment:

```
void main()
  (
   int x=20, y=50;
   if (x<y) return (x=x+y);
   else printf("21");
   printf("22");
}</pre>
```

Then,

(A) the output will be Z1Z2

(B) the output will be Z1

(C) the output will be Z2

(D) no output will be displayed

Q.32 The optimal solution of the LPP

Maximize
$$f = 3x_1 - 2x_2$$

subject to $-2x_1 + 3x_2 \le 6$, $3x_1 + 2x_2 \le 6$, $2x_1 - x_2 = 2$, $x_1, x_2 \ge 0$,

is

(A)
$$x_1 = \frac{10}{7}$$
, $x_2 = \frac{6}{7}$, $Max f = \frac{18}{7}$

(B)
$$x_1 = 2$$
, $x_2 = 0$, $Max f = 6$

(C)
$$x_1 = 1$$
, $x_2 = 0$, $Max f = 3$

(D)
$$x_1 = 2$$
, $x_2 = 1$, $Max f = 4$

CA-6/24

Q.33 The optimal solution(s) of the LPP

Maximize $f = x_1 - x_2$ subject to $x_1 - x_2 \le 1$, $2x_1 + 3x_2 \ge 6$, $x_1, x_2 \ge 0$,

- (A) is unbounded
- (B) are infinitely many along $x_1 x_2 = 1$ with $x_1 \ge \frac{9}{5}$, Max f = 1
- (C) are infinitely many along $x_1 x_2 = 2$ with $x_1 \ge \frac{9}{5}$, Max f = 2
- (D) $x_1 = 1$, $x_2 = 0$, Max f = 1

Q.34 The optimal solution(s) of the LPP

Minimize $f = 3x_1 + 2x_2$ subject to $2x_1 + x_2 \ge 2$, $3x_1 + 2x_2 \le 6$, $x_1, x_2 \ge 0$,

(A) is unique

- (B) is bounded
- (C) are infinitely many along $3x_1 + 2x_2 \le 6$ (D)
 - (D) does not exist

Q.35 The LPP formulation of the unconstrained optimization problem Maximize $y = \min \{|3x_1 + 7x_2|, |3x_1 - 7x_2|\}; x_1, x_2 \ge 0$,

is

- (A) Max y such that $3x_1 + 7x_2 y \ge 0$, $3x_1 7x_2 y \ge 0$, $3x_1 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$
- (B) $Max \ y \ such that \ 3x_1 + 7x_2 + y \le 0$, $3x_1 7x_2 y \ge 0$, $3x_1 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$
- (C) Max y such that $3x_1 + 7x_2 y \ge 0$, $3x_1 7x_2 + y \ge 0$, $3x_1 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$
- (D) $Max \ y \ \text{such that} \ 3x_1 + 7x_2 y \ge 0, 3x_1 7x_2 y \ge 0, 3x_1 7x_2 y \le 0; x_1, x_2, y \ge 0$

Q.36 Let

 $S_1 = \{(x_1, x_2) : 2x_1 + x_2 = 2, x_1 \ge 0, x_2 \in \mathbb{R} \}, \ S_2 = \{(x_1, x_2) : 2x_1 + x_2 = 2, x_1 \in \mathbb{R} \}, x_2 \in \mathbb{R} \}.$ Then the set $S_1 \cup S_2$ is

(A) convex and unbounded

- (B) not convex but bounded
- (C) both convex and bounded
- (D) neither convex nor bounded

CA-7/24

Q.37	With	n the conversion	n rate 1	U.S.D. =	= 48 INR, t	en mil	llion U.S.D. is eq	uivale	ent to	
	(A)	0.48 crores IN	IR.			(B)	4.80 crores INF	L		
	(C)	48 crores INR				(D)	48,000 lacs INF	₹		
Q.38		ch one of the fo ld Cup won by	1000000	crickete	rs did NOI	ľ play	in the final mat	ch of 1	.983 Prude	ntial
	(A)	Sunil Gavask	ar			(B)	Mohinder Ama	rnath		
	(C)	Krishnamach	ari Srik	kanth		(D)	Dilip Vengsark	ar		
Q.39	Con	sider the follow	ing lists	s:						
		List I			List II					
	1. L	Jstad Alla Rakk	18		K. Saxopl	hone				
		Istad Bismillah			L. Tabla					
		Kunnakudi Vaid	7 - 3	an	M. Shehn	ai				
	4. K	Kadri Gopalana	th		N. Violin					
	The	n the correct m	atch is							
	(A)	(1, L), (2, M),	(3, K),	(4, N)		(B)	(1, N), (2, M),	(3, L),	(4, K)	
	(C)	(1, N), (2, L),	(3, M),	(4, K)		(D)	(1, L), (2, M),	(3, N),	(4, K)	
Q.40	Who	Who among the following is NOT related to space exploration?								
	(A)	Kalpana Char	wla			(B)	Bachendri Pal			
	(C)	Rakesh Sharr				(D)	Sunita William	ıs		
Q.41		-				-	fills the same to taken (in minut			
	(A)	10	(B)	12		(C)	16	(D)	20	
Q.42	Who	gave the sloga	n "Jai J	awan, J	ai Kisan"?					
	(A)	Netaji Subhas	sh Chan	dra Bos	е	(B)	Charan Singh			
	(C)	Lal Bahadur	Shastri			(D)	Morarji Desai			
Q.43	Whi	ch one of the fo	llowing	is NOT	a permane	nt sto	rage device?			
	(A)	Pen drive	(B)	Hard d	isk	(C)	Compact disk	(D)	RAM	
					CA-8/24					

$\mathbf{Q.44}$	National Anthem of India was written by								
	(A)	Mohammed Iqh	eal			(B)	C. Rajagopalach	ari	
	(\mathbf{C})	Rabindranath T	Cagore	€		(D)	Bankim Chandr		atterjee
Q.45		among the follunization?	lowing	g has NOT	been t	he Se	ecretary General	of	Jnited Nations
	(A)	Kofi Annan				(B)	Ban Ki Moon		
	(C)	U. Thant				(D)	F. Mitterand		
Q.46	The	first Indian to w	in the	World Junio	or Badm	inton	Championship i	s	
	(A)	Saina Nehwal				(B)	Sania Mirza		
	(C)	Pullela Gopicha	ınd			(D)	Prakash Paduk	one	
Q.47	The average marks of a class of 25 students in a class test is 80. On rechecking of records, it is found that marks of 2 students which were actually 85 and 90 have been wrongly entered as 65 and 55 respectively. The correct average will be								
	(A)	81.40	(B)	81.70		(C)	83.50	(D)	82.20
Q.48	If th	e following table							
		p r							
		* 5							
		s	q						
		神快	r						
		be filled with to mn has distinct a					$q,\ r,\ s\}$ such that espectively	t eacl	n row and each
	(A)	r and p	(B)	q and q		(C)	r and q	(D)	q and p
						31 B			
Q.49	In th	ie sequence 1, 3,	5, 4, 8	3, 9, 12, 17, <i>x</i> ,	, , ,	the va	alue of x is		
	(4)	19	(B)	20		/C)	21	(m)	29
	(A)		(44)	20		(U)		(12)	
				Ç	A-9/24				

Q.50 Consider the following C program fragment:

```
void main()
{
  int p.b.c.d.e;
  int a=2;
p=10;
c=p*p;

switch(p<<a)
  {
    case 20: (b=p*a; printf("%d", b); break;)
    case 40: (b=p*a*a; printf("%d", b); break;)
    case 80: {b=p*a*a*a; printf("%d", b); break;}
    default: {b=p*a*a*a*a; printf("%d", b); break;}
}</pre>
```

The output of the above program fragment yields

- (A) = 20
- (B) 40
- (C) = 80
- (D) 160

Q.51 Consider the following lists:

List I

- 1. FIFO
- 2. LIFO
- 3. OS
- 4. LINDO

List II

- P. Linear Programming
- Q. Queue
- R. Stack
- S. Unix

The correct match is

- (A) (1, R), (2, P), (3, S), (4, Q)
- (B) (1, R), (2, Q), (3, S), (4, P)
- (C) (1, Q), (2, R), (3, S), (4, P)
- (D) (1, Q), (2, P), (3, S), (4, R)

Q.52 http stands for

- (A) hyper text transfer protocol
- (B) hyper text transmission protocol
- (C) high transfer transport protocol
- (D) hyper transfer text protocol

CA-10/24

Consider the following lists:. Q.53

List I

List II

- 1. Procedural Oriented Language
- P. COBOL
- 2. Object Oriented Programming
- Q. HTML
- 3. Business Oriented Language
- R. C++

4. Web Page

S. Pascal

The correct match is

- (1, S), (2, Q), (3, P), (4, R)
- (B) (1, S), (2, R), (3, P), (4, Q)
- (C) (1, R), (2, S), (3, P), (4, Q)
- (1, S), (2, P), (3, Q), (4, R)
- Let a_1 , a_2 and a_3 be chosen randomly in Boolean algebra. The probability that $a_3=0$, Q.54given that $(a_1 \cdot a_2) \oplus (\overline{a}_1 \cdot a_3) = 0$, is
 - $(A) \quad \frac{1}{4} \qquad (B) \quad \frac{1}{2}$
- $(\mathbf{C}) = \frac{\mathbf{2}}{3}$

Let $T: \mathbb{N} \cup \{0\} \rightarrow \mathbb{N} \cup \{0\}$ be defined as follows. Q.55

$$T(0)=0$$
 , $T(1)=1$ and for $n\geq 2$, $T(n)=egin{cases} 2Tigg(rac{n}{2}igg)+T(n-2), & ext{if} & n ext{ is even} \ 2Tigg(rac{n-1}{2}igg)+T(n-2), & ext{if} & n ext{ is odd} \ 0, & ext{otherwise} \end{cases}$

Then T(7) is

- $(A) \quad 13$

- Which one of the following is NOT a search engine? Q.56
 - Zing (A)
- Google (B)
- Yahoo
- Bing (\mathbf{D})

CA-11/24

- Q.57Which one of the following matrices CANNOT be obtained by elementary row operations on the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 3 \end{pmatrix}$?

- Q.58Consider the non-homogeneous system Ax = b where A is a square matrix of order n. If the matrix A and the augmented matrix (A $| b \rangle$ have the same rank r where r < n, then the system has
 - (\mathbf{A}) no solution

(B) a unique solution

(C) exactly two solutions

- infinite number of solutions
- Let W be the subspace of \mathbb{R}^4 given by $W = \{(x, y, z, w) : x + z + w = 0, y + z + w = 0\}$. Then Q.59the dimension of Wis
 - $(\mathbf{A}) = \mathbf{4}$
- (\mathbf{B}) 3

- $(\mathbf{C}) = \mathbf{2}$
- $(\mathbf{D}) = \mathbf{1}$
- Eigenvectors of the matrix $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ corresponding to the eigenvalues (1+i) and (1-i)Q.60are respectively (where $i = \sqrt{-1}$)
 - (A) $\begin{bmatrix} -1 \\ i \end{bmatrix}$ and $\begin{bmatrix} i \\ 1 \end{bmatrix}$

(B) $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ and $\begin{pmatrix} i \\ -1 \end{pmatrix}$

(C) $\binom{i}{1}$ and $\binom{-i}{1}$

- (D) $\binom{-i}{1}$ and $\binom{i}{1}$
- Q.61 Let N be a nilpotent matrix of order 4 with real entries. Then which one of the following statements is true about eigenvalues of N?
 - All eigenvalues are non-zero real numbers (\mathbf{A})
 - All eigenvalues are purely imaginary (\mathbf{B})
 - Zero is the only eigenvalue (\mathbf{C})
 - At least one cigenvalue is real and at least one eigenvalue has non-zero imaginary **(D)** part

CA-12/24

Q.62 The nullity of the matrix

$$\begin{pmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{pmatrix}$$

is

- (A) = 1
- $(\mathbf{B}) = \mathbf{2}$

- (C) 3
- (D) 4

Q.63 The Boolean expression for the logic circuit

ÍŞ

- $(\mathbf{A}) = \mathbf{x} \bullet \mathbf{y}$
- (C) $\bar{x} \oplus y$

- (B) $x \oplus y$
- (D) $x \oplus y \oplus (x \cdot y)$
- Q.64 The Boolean expression $(\overline{x} + \overline{y}) \oplus (\overline{x \oplus y})$ is equivalent to
 - (A) OR gate

(B) NAND gate

(C) NOR gate

- (D) XOR gate
- Q.65 Let S be the set of all four variable Boolean functions f having the property $f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1) = f(x_3, x_4, x_1, x_2) = f(x_4, x_1, x_2, x_3)$. Then the cardinality of S is
 - $(A) = 2^8$
- $(B) = 2^6$

- $(C) = 2^5$
- (D) 2^4

CA-13/24

In Boolean algebra, the majority function M(x, y, z) is equal to 1 if at least two of Q.66 x, y and z are equal to 1. Then the output of the following circuit

is

- (\mathbf{A})
- $(\mathbf{B}) \qquad p + q + \overline{p} \cdot \overline{q}$
- (C) $p \cdot q + \overline{p}$

In Boolean algebra, if $p \cdot \overline{q} + \overline{p} \cdot q = r$, then $p \cdot \overline{r} + \overline{p} \cdot r$ is equal to Q.67

- (A) p
- $(\mathbf{B}) = \overline{q}$

- (C) r
- (\mathbb{D}) q

Consider the lattice given by the following Hasse diagram: Q.68

This lattice is

- distributive (A)
- complemented

- non-distributive (\mathbf{B})
- a Boolean algebra (\mathbf{D})

Q.69 Let $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$. Then $\nabla (\vec{r} \cdot \nabla (\vec{r} \cdot \vec{r}))$ is equal to

 $(\mathbf{A}) = 2\vec{r}$

 (\mathbf{C})

- $(\mathbf{B}) = \mathbf{4} \, \vec{r}$

For any two unit vectors \vec{a} and \vec{b} , $|\vec{a} \times \vec{b}|^2$ is equal to Q.70

- $(\mathbf{A}) = 1 + (\overrightarrow{a} \bullet \overrightarrow{b})^2 \qquad (\mathbf{B}) = (\overrightarrow{a} \bullet \overrightarrow{b})^2 1 \qquad (\mathbf{C}) = 1 (\overrightarrow{a} \bullet \overrightarrow{b})^2 \qquad (\mathbf{D}) = (\overrightarrow{a} \bullet \overrightarrow{b})^2$

CA-14/24

- Let P be the point (3, 4, 1). Let L be the line through P parallel to the vector $\vec{i} + \vec{j} + \vec{k}$. $\mathbf{Q}.71$ If Q is a point on L in the first octant such that $|\overrightarrow{PQ}|^2 = 48$, then Q is
 - (A) (7, 8, 5) (B) (8, 7, 5) (C) (5, 8, 7) (D) (8, 5, 7)

- The unit tangent vectors to the curve $3x^2 + 8xy + 2y^2 3 = 0$ at the point (1, 0) are $\mathbf{Q}.72$
- (A) $\pm \left(\frac{3\vec{i} + 4\vec{j}}{5} \right)$ (B) $\pm \left(\frac{3\vec{i} 4\vec{j}}{5} \right)$ (C) $\pm \left(\frac{4\vec{i} + 3\vec{j}}{5} \right)$ (D) $\pm \left(\frac{4\vec{i} 3\vec{j}}{5} \right)$
- Q.73 Consider the differential equation $\frac{dy}{dx} y = -y^2$. Then $\lim_{x \to \infty} y(x)$ is equal to
 - (A) -1
- $(\mathbf{B}) = \mathbf{0}$

- (C) 1
- The solution of the differential equation $\frac{d^2y}{dx^2} y = e^x$ satisfying y(0) = 0 and $\frac{dy}{dx}(0) = \frac{3}{2}$ is
 - (A) $y(x) = \sinh x + \frac{x}{2}e^x$

(B) $y(x) = x \cosh x + \frac{x}{2}e^x$

(C) $y(x) = \sinh x - \frac{x}{2}e^x$

- (D) $y(x) = 2x \cosh x \frac{x}{2}e^x$
- The general solution of the differential equation $\frac{d^3y}{dx^3} 9\frac{dy}{dx} = \cos x$ is
 - (A) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 + \frac{1}{10} \sin x$
 - (B) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 \frac{1}{10} \sin x$
 - (C) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 + \frac{1}{10} \cos x$
 - (D) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 \frac{1}{10} \cos x$
- An integrating factor of the differential equation $2xy dx + (y^2 x^2) dy = 0$ is $\mathbf{Q}.76$
 - (\mathbf{A})
- $\mathbf{(B)} \quad \frac{1}{\mathbf{y}}$
- $(\mathbf{C}) = \frac{1}{v^2} \qquad (\mathbf{D}) = \frac{1}{v^3}$

CA-15/24

- The differential equation representing all circles centred at (1, 0) is Q.77

- (A) $x + y \frac{dy}{dx} = 1$ (B) $x y \frac{dy}{dx} = 1$ (C) $y + x \frac{dy}{dx} = 1$ (D) $y x \frac{dy}{dx} = 1$
- Q.78Consider the following data:

x	0.1	0.2	0.3	0.4	0.5
f(x)	0.45	0.47	0.52	0.58	0.63

Using the central difference formulae for numerical differentiation, the values of f'(0.3)and f''(0.3) are respectively

- (A)
 - 0.85, 0.99 (B) 0.86, 0.99
- 0.86, 1.00
- 0.85, 1.00

Q.79Consider the following forward difference table:

x	f	Δf	$\Delta^2 f$	$\Delta^3 f$
-2	-15			
		11		
-1	4		у	5
		x	- 30. 0.00-0000 300-0 - 30.00-0000 300-0	Ż
0	0		16	
		20	0	
1	20			

The values of x, y and z are respectively

- (A) 4, -7, 9
- (B) -11, 22, 6
- (C) 4, -3, 1
- (D) 4, -7, 23
- Consider the non-linear equation $x^3 2x 3 = 0$. If $x_0 = 2$ is the initial approximation of Q.80the root, then the value of the root at first iteration using the Newton-Raphson method yields
 - (A) = 2.20
- 2.10 (\mathbf{B})
- (C) 1.90
- 1.80
- For evaluating the integral $\int y dx$ by Simpson's one-third rule, the error term for 2 < w < 11 is
 - (A) $-\frac{1}{20}h^4y^{(iv)}(w)$

(C) $-\frac{1}{12}h^4y^{(w)}(w)$

(B) $-\frac{3}{4}h^4 y^{(iv)}(w)$ (D) $-\frac{1}{6}h^4 y^{(iv)}(w)$

CA-16/24

Q.82Consider the following table:

x	1	2	3
у	-5	0	7

Then by Lagrange's interpolation y(1.5) is

$$(A) = -2.50$$

(B)
$$-2.75$$

(C)
$$-2.25$$

(D)
$$-3.25$$

If A and B are two independent events and $P(A \mid B) = \frac{2}{5}$, $P(B) = \frac{1}{3}$, then $P(A \cup B)$ is Q.83

$$(A) = \frac{11}{15}$$

$$\mathbf{(B)} \quad \frac{3}{5}$$

$$(\mathbf{C}) = \frac{13}{15}$$

$$(D) \quad \frac{2}{15}$$

Q.84 Let $P(A) = \frac{3}{5}$, $P(B) = \frac{4}{5}$ and $P(A \cap B) = \frac{13}{95}$. Consider the following lists:

List I

List II

1.
$$P(A \mid B)$$

P.
$$\frac{7}{20}$$

2.
$$P(A \mid B^c)$$

$$Q_1 = \frac{13}{20}$$

3.
$$P(A^c \mid B)$$

$$\mathbf{R.} \ \frac{\mathbf{3}}{\mathbf{5}}$$

$$4. \ P(A^e \mid B^e)$$

$$S. = \frac{2}{5}$$

Then the correct match is

(A)
$$(1, \mathbf{Q}), (2, \mathbf{S}), (3, \mathbf{R}), (4, \mathbf{P})$$

(B)
$$(1, S), (2, R), (3, P), (4, Q)$$

(C)
$$(1, \mathbf{Q}), (2, \mathbf{S}), (3, \mathbf{P}), (4, \mathbf{R})$$

Eight couples are participating in a game. Four persons are chosen randomly. The Q.85probability that at least one couple will be among the chosen persons is

$$(A) = \frac{5}{13}$$

$$\mathbf{(B)} = \frac{1}{26}$$

(C)
$$\frac{25}{26}$$

$$(D) = \frac{2}{5}$$

Let X and Y be binomial random variables with the same number of trials such that Q.86E(X) = 2E(Y) and 2Var(X) = Var(Y). Then the respective probabilities of successes are

(A)
$$\frac{5}{7}$$
 and $\frac{5}{14}$

(B)
$$\frac{2}{7}$$
 and $\frac{1}{7}$

(C)
$$\frac{6}{7}$$
 and $\frac{3}{7}$

(A)
$$\frac{5}{7}$$
 and $\frac{5}{14}$ (B) $\frac{2}{7}$ and $\frac{1}{7}$ (C) $\frac{6}{7}$ and $\frac{3}{7}$ (D) $\frac{3}{14}$ and $\frac{3}{28}$

CA-17/24

Q.87	The random variable $P(X = 1 X > 0)$ is	e X follows the	Poisson distribution	with variance 3. Then
	(A) $\frac{1-e^{-3}}{e^{-3}}$	$\mathbf{(B)} \frac{1-e^{-\sqrt{3}}}{e^{-\sqrt{3}}}$	(C) $\frac{\sqrt{3}e^{-\sqrt{3}}}{1-e^{-\sqrt{3}}}$	(D) $\frac{3e^{-3}}{1-e^{-3}}$
Q.88	Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b \right\}$	$\{b, c, d \in \{0, 1\}\}$. Ar	$_{ m i}$ element of S is chose	en randomly. Then the

probability that	t the chosen matrix is a	n invertible matrix is	
3		5	3

(A)	8	(B)	<u>-</u> 2	(C)	8	(D)	4

Q.89 Let X denote the set of all real-valued functions defined on
$$\mathbb{Z}$$
. Define a relation \sim in X by $f \sim g$ if $f(0) \neq g(0)$. Then the relation \sim is

- neither reflexive nor symmetric (\mathbf{B}) both reflexive and symmetric (A)
- neither transitive nor reflexive transitive but not reflexive (\mathbf{D}) (\mathbf{C})

Q.90 Let
$$X = \{1, 2, 3, 4\}$$
. Then the total number of partitions of the set X is

(A) 5 (B) 12 (C) 15 (D) 16

- The total number of non-trivial proper subgroups of the group \mathbb{Z}_{12} under addition modulo
- 12 is $(\mathbf{D}) = 7$ (C) 6 $(\mathbf{A}) = \mathbf{4}$ (B) 5

Q.91

Q.92 The total number of generators of the cyclic group
$$\mathbb{Z}_{21}$$
 under addition modulo 21 is

 (\mathbf{D}) (A) 18 (\mathbf{B})

Q.93 Let
$$S_5$$
 denote the group of all permutations on the finite set $\{1,2,3,4,5\}$ under the operation of permutation multiplication. Then the order of the subgroup of S_5 generated by
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$
 is

	(A)	1	(B)	2	(C)	3	(D)	infinite
Q.95				subgroup generate otient group Z ₄ × Z	22	N.# 100	. The	n the order of
	(A)	4	(B)	8	(C)	16	(D)	32
Q.96	Let I to	R be a commutat	ive ri	ng with unity of cha	racte	ristic 3. For a, b	= R , ($(a+b)^6$ is equal
		0, the additive is $a^6 - a^3b^3 + b^6$	denti	ty in the ring R		$a^{6} + b^{6}$ $a^{6} + a^{3}b^{3} + b^{6}$		
Q.97	The	remainder of 8 ³¹	whe	n it is divided by 13	is			
	(A)	1	(B)	5	(C)	8	(D)	12
Q.98		total number of th are NOT onto		r maps from the v	ector	space R³(R) to th	ie ve	ctor space R(R)
	(A)	0	(B)	1	(C)	3	(D)	infinite
Q.99	Let	$M_5(\mathbb{R})$ denote th	e veç	tor space consisting	of all	5×5 matrices w	ith r	eal entries over
		real number field n the dimension o		${f W} \subset {f M}_5\left({\Bbb R} ight)$ be the	subs	pace of all skew-	symo	netric matrices.
	(A)	10	(B)	15	(C)	20	(D)	25
Q.100	Cons	sider the followin	g sub	sets of R ²				
	33 31 3	$= \{ (x, y) : 2x + y \\ = \{ (x, y) : xy = 0 \}$	4.1 	3				
		$= \{(x, y) : xy = 0$ $= \{(x, y) : \sin^2 x\}$	2001000	$2 \mathbf{v} = 0$				
	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	$= \left\{ (x, y) : \sin^2 x \right\}$						
	Whi	ch one of the follo	wing	pairs has the prope	erty tł	at they are NOT	' subs	spaces of R ² ?
	(A)	W_1 , W_2	(B)	$oldsymbol{W_2}$, $oldsymbol{W_3}$	(C)	W_3 , W_4	(D)	$\boldsymbol{W_2}$, $\boldsymbol{W_4}$

The number of distinct group homomorphisms from (\mathbb{Z} , +) onto (\mathbb{Z} , +) is

Q.94

End of the paper

CA-19/24

CA-20/24

CA-21/24

CA-22/24

CA-23/24

CA-24/24

DO NOT WRITE ON THIS PACE.

OT WRITE ON THIS PACE

