

... Environmental science codence (190)

et No. 1	18P/290/27	. I É
Fromted Pages : 4	0 Questi	on Booklet No
(To be fi	lled up by the candidate by blue/black ball-po	int pen)
il No.		
No. (Write the digits in work	ds)	***************************************
	neet	
nire Code No.		
and Date	(S	ignature of Invigilator)

INSTRUCTIONS TO CANDIDATES

Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card.
- A separate OMR Answer Sheet is given. I should not be folded or mullated. A second OMR Answer Sheet shall not be provided. Only the OMR Answer Sheet will be valuated.
- 4. Write all the entries by bue/black ball pen in the space provided above.
- 5. On the front page of the OMR Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, write the Question Booklet Number, Centre Code Number and the Set Number (wherever applicable) in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR Answer Sheet and also Roll No. and OMR Answer Sheet Serial No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as
 unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the OMR Answer Sheet by darkening the appropriate circle in the corresponding row of the OMR Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMR Answer Sheet. If you darken more than one
 circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 1. For rough work, use the inner back page of the title cover and the blank page at the end of this
- Booklet.
 On completion of the Test, the Candidate must handover the OMR Answer Sheet to the Invigilator in the examination room/hall. However, candidates are allowed to take away Text Booklet and copy of OMR Answer Sheet with them.
- 13. Candidates are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

पर्यः निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं।

SPACE FOR ROUGH WORK

रफ कार्य के लिए जगह

No. of Questions: 180

Time: 2 Hours Full Marks: 360

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections viz., Section—A and Section—B.

Section—A: This is compulsory. This contains two sub-sections having questions of **two** disciplines.

(i) Basic Environmental Science

(ii) Chemistry

A candidate is required to attempt both the above (all sub-sections are compulsory).

Section—B: This contains three sub-sections having questions of three disciplines viz.,

- (i) Life Science (sub-section B-1)
- (ii) Physics (sub-section B-2)
- (iii) Geology (sub-section B-3)

A candidate is required to attempt only one from these three sub-sections.

Section—A

BASIC ENVIRONMENTAL SCIENCES

(Compulsory for all)

1.	Largest source of freshwater resource on the Earth is		
	(1) glaciers and permanent snow	(2) groundwater	
	(3) lakes and rivers	(4) marshes and wetlands	
2.	Who put forward the view that plant which arises, grows, matures and d	community behaves like a super-organismies?	
	(1) F. E. Clements	(2) H. Gleason	
	(3) J. T. Curtis	(4) R. F. Daubenmire	
3.	In both terrestrial and aquatic ecos	ystems energy pyramid is	
	(1) always inverted	(2) sometime inverted	
	(3) always upright	(4) sometime upright	
4.	Enrichment of water bodies like lak	es and ponds by organic waste is called	
	(1) Oligotrophy (2) Eutrophy	(3) Biotrophy (4) Allogeny	
5.	Y-shaped energy flow model in the	ecosystem was proposed by	
	(1) Lindeman	(2) Wiegert and Owen	
	(3) Odum	(4) Golley	
(70)	2		

6.	The rate of energy storage at consu	imer level in ecosystem is called	
	(1) primary productivity	(2) secondary productivity	
	(3) ecosystem productivity	(4) gross productivity	
7.	The current Earth's atmospheric CO ₂	concentration is estimated to be about	
	(1) 408 ppmv (2) 300 ppmv	(3) 280 ppmv (4) 350 ppmv	
8.	The highest concentration of atmosp	pheric gases occur in	
	(1) Troposphere (2) Stratosphere	(3) Mesosphere (4) Ionosphere	
9.	A river with high BOD values indica	ates	
	(1) heavy metal pollution	(2) organic pollution	
	(3) highly clean state	(4) oxygen rich condition	
10.	MAB program stands for		
	(1) Man and Biotechnology program	n	
	(2) Man and Biology program		
	(3) Man and Biodiversity program		
	(4) Man and Biosphere program		
11.	Hot spots are the regions which are	re rich in	
	(1) biodiversity	(2) invasive species	
	(3) nomadic population	(4) atmospheric pollutants	
(O)	3	(P.T.O.)	

12.	Which one of the following is respon	nsibl	e for ozone lay	er d	lepletion?
	(1) Oxygen	(2)	Carbon dioxid	le	
	(3) Sulphur dioxide	(4)	Chloro-fluoro	cart	oons
13.	Which among the following constitu	ites t	the largest ecos	syste	em in the World?
	(1) Forests (2) Rivers	(3)	Oceans	(4)	Deserts
14.	Human beings are				
	(1) primary producers	(2)	carnivores		
	(3) omnivores	(4)	herbivores		
15.	Renewable source of energy is				
	(1) petroleum (2) coal	(3)	natural gas	(4)	wind energy
16.	CPCB stands for				
	(1) Central Pollution Control Board				
	(2) Central Power Control Board				
	(3) Corporate Pollution Control Boar	rd			
	(4) Corporate Power Control Board				
17.	World Earth Day is celebrated on				
	(1) 6 March (2) 22 April	(3)	10 May	(4)	2 July
(70)	4				

18.	Which one of the following is a primary producer?					
	(1) Birds	(2) Tiger		Gaur	(4) Plants	
19.	The most abunda	nt mineral in the	surf	ace of Earth is		
	(1) Quartz	(2) Granite	(3)	Mica	(4) Feldspar	
20.	Decibel is the uni	t of				
	(1) water pollution	n	(2)	noise pollutio	n	
	(3) air pollution		(4)	soil pollution		
21.	Richter Scale is th	ne unit of				
	(1) landslides	(2) tsunamis	(3)	earthquakes	(4) volcanoes	
22.	NPP stands for					
	(1) Net Primary Pr	roductivity	(2)	Net Primary F	Producers	
	(3) Natural Primar	ry Producers	(4)	National Prim	ary Productivity	У
23.	Mangroves are fou	ınd in				
	(1) coastal areas		(2)	ponds and lal	ces	
	(3) dry forests and	d arid areas	(4)	flood plains		
24.	Medha Patekar wa	as associated with				
	(1) Narmada Move	ement	(2)	Gene Campaig	gn	
	(3) Chipko Movem	ent	(4)	WWG—India		
(70)		5				(P.T.O.)

(70)

25.	Landslide Prone S	tate of India is				
	(1) Uttar Pradesh		(2)	Uttarakhand		
	(3) Rajasthan		(4)	Bihar		
26.	The word 'ecology'		(2)	D 1		
	(1) Charles Darwi	n	(2)	Robert Whittal	ker	
	(3) Ernst Haeckel		(4)	Arthur Tansley	y	
27.	Ecological success	sion on a sandy ar	ea i	s called as		
	(1) Xerosere	(2) Lithosere	(3)	Psammosere	(4)	Hydroscic
28.	Which one of the	following is an end	danş	gered migratory	bir	d?
	(1) Peacock	(2) Eagle	(3)	Crow	(4)	Siberian crane
29.	'The Environment	(Protection) Act' c	ame	into force in t	he y	year
	(1) 1974	(2) 1980	(3)	1984	(4)	1986
30.	Which one of the	following is not re ration (1992)	late	d to sustainable	e de	velopment?
	(2) The Earth Su	mmit (1992)				
	(3) Agenda 21					
	(4) Pipeline Mode	of Economic Grov	vth			

6

CHEMISTRY

(Compulsory for all)

31.	Which one of the following ion is coloured?				
	(1) Cu+	(2) Ti ⁴⁺	(3) Ni ²⁺	(4) Zn^{2+}	
32.	Predict the numb	er of unpaired e	lectron in [Co(l	NH ₃) ₆ JCl ₃	
	(1) 1	(2) 2	(3) 3	(4) 0	
33.	The geometrical a	arrangement of b	onds produced	by dsp^2 hybrid orbital is	
	(1) tetrahedral		(2) octahed	Iral	
	(3) square plana	•	(4) plane t	riangular	
34.	Which one of the	following is a c	oordination cor	mpound?	
	(1) KCl·MgCl ₂ ·6	H ₂ O	(2) [Fe(CN)	5]4-	
	(3) K ₂ SO ₄ · Al ₂ (So	$O_4)_3 \cdot 24H_2O$	(4) FeCl ₃		
35.	The complexes [C	Co(NH ₃) ₅ Br]SO ₄ a	and [Co(NH ₃) ₅ S	O ₄]Br exhibit	
	(1) hydrate isom	erism	(2) ionizati	on isomerism	
	(3) coordination	isomerism	(4) geometr	rical isomerism	
36.	The ground state	electronic confi	guration of Gd	(Z = 64) is	
	(1) $4f^76s^2$	(2) $4f^96s^2$	(3) $4f^86s^2$	(4) $4f^75d^16s^2$	
(70)			7	(P.T.O.)	

37.	Which one of the	following elemen	nts exhibits bot	h (+3,+4) oxidation states?	
	(1) La	(2) Ce	(3) Nd	(4) Lu	
38.	The size of (Zr, F	If) is almost ider	itical because o	of the	
	(1) variable oxidation states of lanthanides				
	(2) metallic natu	re of lanthanides			
	(3) lanthanide co	ntraction effect			
	(4) high sum of	first three ionizat	ion energies of	lanthanides	
39.	The reaction NH ₃	+ H ⁺ → [NH]] illustrates		
	(1) Lewis acid-base definition				
	(2) Lux-flood acid-base definition				
	(3) Bronsted Lowry acid-base definition				
	(4) Solvent system acid-base definition				
40.	The ability of a s	solvent to dissolve	e ionic solids st	trongly depends on its	
	(1) wide liquid ra	ange	(2) high die	lectric constant	
	(3) nature of aut	oionization	(4) donor a	nd acceptor properties	
41.	Which one of the	following is an	aprotic solvent?		
	(1) H ₂ O	(2) NH ₃	(3) H ₂ SO ₄	(4) CCl ₄	
(70)			8		

42.	Shape of XeOF4 is	s		
	(1) square pyrami	idal	(2) octahedral	
	(3) pyramidal		(4) square planar	
43.	Which one is an	electron deficient c	ompound?	
	(1) NaCl	(2) B ₂ H ₆	(3) BeCl ₂	(4) CaCl ₂
44.	Which one of the	following has a cr	adle shaped struct	ure?
	(1) SF ₄	(2) SeCl ₂	(3) S ₄ N ₄	(4) S ₂ F ₄
45.	In NO+ the bond	order is		
	(1) 2.5	(2) 3	(3) 2	(4) 1.5
46.	The greater probab	oility of finding an e	lectron close to nucl	leus is in the orbital
	(1) 2p	(2) 3p	(3) 3d	(4) 2s
47.	Which one of the Hund's rule?	following electron	nic configurations i	is in accordance with
	(1) $1s^2 2s^2 2p_x^2 2p_y^1$	$2p_z^0$	(2) $1s^2 2s^2 2p_x^2 2p_y^1$	$2p_x^1$
	(3) $1s^2 2s^2 2p_x^2 2p_y^1$	$2p_z^3$	(4) $1s^2 2s^2 2p_x^2 2p_y^2$	$2p_z^0$
48.	KO ₂ is an example	le of		
	(1) suboxide	(2) peroxide	(3) superoxide	(4) normal oxide
(70)		9		(P.T.O.)

The HAH angle is smallest in the me	olecule AH_3 (A = N, P, As, Sb), where
(1) A is the largest	(2) A is the smallest
(3) A is more electronegative	(4) A has more electron affinity
van der Waals radii are	
(1) much larger than covalent radii	
(2) much shorter than covalent radi	i
(3) little larger than covalent radii	
(4) equal to covalent radii	
In cubic close packing of ionic solid	s, the pattern is
(1) AB AB AB	(2) ABC ABC ABC ···
(3) BCA CBA ACB ···	(4) BC AB BC ···
Which one of the following is a weal	kest bond?
(1) Covalent bond	(2) Ionic bond
(3) Hydrogen bond	(4) Metallic bond
Ionization energy of nitrogen is great	ter than oxygen because of the
(1) smaller electronegativity of nitrog	gen
(2) smaller atomic number of nitroge	en
(3) half filled p-orbitals of nitrogen	
(4) smaller electron affinity of the ni	trogen
10	
	van der Waals radii are (1) much larger than covalent radii (2) much shorter than covalent radii (3) little larger than covalent radii (4) equal to covalent radii In cubic close packing of ionic solidi (1) AB AB AB (3) BCA CBA ACB Which one of the following is a weal (1) Covalent bond (3) Hydrogen bond Ionization energy of nitrogen is great (1) smaller electronegativity of nitrogen (2) smaller atomic number of nitrogen (3) half filled p-orbitals of nitrogen (4) smaller electron affinity of the nitrogen

54.	Which one of the following properties of a metal is responsible for photoelectric effect?			
	(1) High ionization energy (2) Low ionization energy			
	(3) High electron affinity (4) Low reduction potential			
55.	The first ionization energy of hydrogen is somewhat greater than the first ionization energy of chlorine, yet chlorine does not form simple Cl+ ion because of the			
(1) greater electron egativity of chlorine (2) greater electron affinity of chlorine				
	(4) the low lattice and hydration energies of chlorine			
56.	In the following dehydration			
	CH_3 — $CONH_2$ $\xrightarrow{P_2O_5}$ CH_3CN			
	the hybridization state of carbon changes from			
	(1) $sp \text{ to } sp^3$ (2) $sp^2 \text{ to } sp^3$ (3) $sp^2 \text{ to } sp$ (4) $sp^3 \text{ to } sp^2$			
57	Ontical isomerism is shown by			

11

(2) 2-butanol

(1) 1-butanol

(70)

(P.T.O.)

(3) 3-pentanol (4) 4-heptanol

58.	Baeyer's reagent is					
	(1) alkaline permanganate solution					
	(2) acidified permanganate solution					
	(3) neutral permanganate solution					
	(4) aqueous bromine solution					
59.	Which one of the following will carbon-carbon bond?	have least hindered rotation about				
	(1) Ethane	(2) Ethylene				
	(3) Acetylene	(4) Hexachloromethanc				
60.	Kind of six carbon atoms of benzene	e are of				
	(1) one (2) two	(3) three (4) four				
61.	Which xylene is most easily sulphor	nated?				
	(1) Ortho	(2) Para				
	(3) Meta	(4) All at the same rate				
62.	(CH ₃) ₃ CMgBr on reaction with D ₂ O	produces				
	(1) (CH ₃) ₃ CD (2) (CH ₃) ₃ C-OD	(3) (CD ₃) ₃ CD (4) (CD ₃) ₃ C-OD				
63.	Cannizzaro reaction is not given by					
	(1) tri-methylacetaldehyde	(2) acetaldehyde				
	(3) benzaldehyde	(4) formaldehyde				
(70)	12					

64.	Benzyl alcohol is obtained from ber	nzald	ehyde by
	(1) Wurtz reaction	(2)	Cannizzaro reaction
	(3) Claisen reaction	(4)	Perkin reaction
65.	Which one of the following reagent pentanol and pentanone?	s ca	nnot be used to distinguish between
	(1) Tollens reagent	(2)	Fehling solution
	(3) I ₂ in NaOH	(4)	Br ₂ in CCl ₄
66.	Acetanilide is treated separately with would give methylamine?	the	following reagents. Which one of these
	(1) PCl ₅	(2)	NaOH + Br ₂
	(3) Soda lime	(4)	Hot concentrated H ₂ SO ₄
67.	Which compound will liberate CO ₂	from	NaHCO ₃ ?
	(1) CH ₃ NH ₂ (2) CH ₃ NHNH ₂	(3)	(CH ₃) ₄ N ⁺ Cl ⁻ (4) CH ₃ COOH
68.	Amongst the following, the most ba	sic c	ompound is
	(1) benzylamine	(2)	aniline
	(3) acetanilide	(4)	<i>p</i> -nitroaniline
69.	Benzenediazonium chloride on react gives	ion	with phenol in weakly basic medium
	(1) diphenyl ether	(2)	p-hydroxyazobenzene
	(3) chlorobenzene	(4)	benzene
(O)	13	3	(P.T.O.)

70. Acetoxybenzoic acid is

- (1) antiseptic
- (2) aspirin
- (3) antibiotic

(4) mordant

71. Most reactive towards electrophilic nitration is

(1) benzene

(2) chlorobenzene

(3) nitrobenzene

(4) xylene

72. Which one of the following will form carbanion most easily?

(1) Formic acid

(2) Acetophenone

(3) Picric acid

(4) H₂O

73. Which one of the following reaction is reversible reaction?

- (1) Bromination on benzene
- (2) Nitration on benzenc
- (3) Friedel-Crafts alkylation
- (4) Sulphonation on benzene

74. Which one of the following set of values is correct for the isothermal free expansion of an ideal gas into vacuum?

- (1) $\Delta U = 0$, q > 0, w < 0
- (2) $\Delta U > 0$, q > 0, w = 0
- (3) $\Delta U = 0$, q = 0, w = 0
- (4) $\Delta U < 0$, q = 0, w < 0

75. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is

- (1) critical temperature
- (2) Boyle's temperature
- (3) inversion temperature
- (4) reduced temperature

(70)

14

76.	For	the	reaction	2NO(~)	01/	$(1) \Rightarrow 2NOCl(a)$	
	1 01	uic	reaction	ZNO(g)	+ Cla (a	$11 \Rightarrow 2NOCL(a)$	1

- (1) $k_p = k_c \times RT$
- $(2) k_p = k_c \times (RT)^2$
- (3) $k_p = k_c/(RT)^2$

 $(4) k_p = k_c/RT$

The rise of liquid in a capillary is due to

(1) viscosity

(2) osmosis

(3) surface tension

(4) diffusion

Which one of the following expresses the correct relationship between mean free path (λ) and molecular diameter (d)?

- (1) $\lambda \propto \frac{1}{d}$ (2) $\lambda \propto d^2$ (3) $\lambda \propto \sqrt{d}$ (4) $\lambda \propto \frac{1}{d^2}$

- (1) Clausius-Clapeyron equation
- (2) Joule-Thomson equation
- (3) Kirchhoff's equation
- (4) Gibbs-Helmholtz equation

80. The value of van der Waals' constant
$$a$$
 for gases NH₃, CH₄, O₂ and N₂ are 4·170, 2·253, 1·360 and 1·390 lit² atm mol⁻¹ respectively. The gas which can easily be liquefied is

15

- (1) NH₃
- (2) CH₄
- (3) O₂
- (4) N₂

- The extent to which a real gas departs from ideal behavior may be depicted in terms of a function called compressibility factor (z), which is defined as
 - (1) RT/M
- (2) pV/nRT (3) 2pV/RT (4) RV/PT
- The maximum external work that can be obtained from a system is represented 82. by
 - (1) $-\Delta U$
- $(2) \Delta G$
- (3) $-\Delta S$ (4) $-\Delta H$
- The ratio $\frac{\eta_{solution} \eta_{solvent}}{\eta_{solvent}}$ defines
 - (1) intrinsic viscosity

(2) reduced viscosity

(3) specific viscosity

- (4) relative viscosity
- Which one of the following thermodynamic equation is wrong?
 - $(1) \left(\frac{\partial A}{\partial T}\right)_{V} = S$

 $(2) \left(\frac{\partial G}{\partial T} \right)_{P} = -S$

 $(3) \left(\frac{\partial G}{\partial P}\right)_T = V$

- $(4) \left(\frac{\partial A}{\partial V}\right)_T = -P$
- 85. If the initial concentration of the reactant is reduced to half, the half life period of the reaction becomes half. The order of reaction would be
 - (1) 3
- (2) 2
- (3) 1
- (4) 0

86.	At 300 K one mole of an ideal gas expands reversibly and isothermally from 1 L to 10 L. What is the entropy change for the process?						
	(1) 9·2 calK ⁻¹ mo	ol^{-1}	(2)	6.9 call	K-1 mo	01-1	
	(3) 4.6 calK-1 mc	01^{-1}	(4)	2·3 call	ζ⁻¹ mo	I^{-1}	
87.	The temperature $k = Ae^{-E_{\alpha}/RT}$. The	dependence of reaction will occ	rate ur m	constant ore rapid	for a	reaction is	given as
	(1) A	(2) E _a		T		(4) All of th	
88.	Catalyst is a mat	erial which					
	(1) increases the	equilibrium conc	entrat	ion of th	e prod	lucts	
	(2) changes the v						
	(3) helps in attair						
				quickly			
	(4) provides energ	gy for the reaction	n				
89.	For solid ⇌ liquid is correct?	equilibra at transi	tion to	emperatu	re, wh	ich one of the	following
	(1) $\Delta G = 0$	(2) $\Delta H = 0$	(3)	$\Delta S = 0$		(4) $\Delta Q = 0$	
90.	Which one of the	following is not a	an int	ensive va	riable	?	
	(1) Density		(2)	Specific	heat		
	(3) Pressure		(4)	Tempera	ture		
70)		1	7				(P.T.O.)

Section-B

LIFE SCIENCE (sub-section B-1)

(Optional)

91.	In population interaction of two affected, the interaction is termed	species when both species are adverse
	(1) Commensalism	(2) Competition
	(3) Amensalism	(4) Epiphytism
92.	Which factor maintains the distinct	tive traits of a species?
	(1) Specific niche	(2) Reproductive isolation
	(3) Cooperative interaction	(4) Continuous intercommunication
93.	The first plants to appear on a bu	rnt forest area will be
	(1) grasses (2) ferns	(3) mosses (4) liverworts
94.	In ecological succession from pionee	r to climax community, the biomass shall
	(1) decrease	(2) increase and then decrease
	(3) no relation	(4) increase continuously
95.	Total organic matter present in an	ecosystem is called
	(1) litter (2) biome	(3) biomass (4) food
70)		18

96.	96. Which one of the following has the highest global warming potential				?	
	(1) CFC-11	(2) CFC-12	(3) CH ₄		(4) CO ₂	
97.	Which range of w	avelength is abs	orbed by the	stratosp	heric O ₃ ?	
	(1) 280-320 nm	(2) < 280 nm	(3) 321-3	390 nm	(4) > 390 nm	1
98.	Which State of In	dia has maximu	n area of sa	aline soils	5?	
	(1) Uttar Pradesh	i	(2) Rajas	sthan		
	(3) West Bengal.		(4) Harya	ana		
99.	Transverse whiteh	ands on fingerna	ils is a toxi	city sym _l	otom of	
	(1) lead	(2) mercury	(3) arsen	nic	(4) cadmium	
100.	Grasslands with	clumps of trees a	re known a	S		
	(1) Chaparral bio	mass	(2) Deser	rt biomes		
	(3) Tropical savar	nna	(4) Tund	ra biome	S	
101.	Which one of the	following gives t	ne best pict	ure of foo	od chain?	
	(1) Standing crop		(2) Pyran	nid of en	ergy	
	(3) Pyramid of bio	omass	(4) Pyran	nid of nu	mber	
(70)			9			(P.T.O.)

(70)

102.	Which one of the following is no conservation?	ot an in situ approach of biodiversity
	(1) Biosphere reserves	(2) Sanctuaries
	(3) Nature reserves	(4) Botanical gardens
103.	Which one of the following is a corr	ect order in plant succession?
	(1) Migration—Ecesis—Aggregation—	Reaction
	(2) Aggregation—Ecesis—Migration—	-Reaction
	(3) Ecesis—Aggregation—Migration—	-Reaction
	(4) Reaction—Ecesis—Migration—Ag	gregation
104.	Acid rain is defined by pH	
	(1) between 3.5 and 6.5	(2) below 6.5
	(3) below 5.6	(4) below 7·0
105.	The kind of soil water most useful	to plant is
	(1) hygroscopic water	(2) capillary water
	(3) crystalline water	(4) free water
106.	Number of Barr bodies in XXXX fer	male is
	(1) 3 (2) 1	(3) 4 (4) 2

20

107	O			
107.	Speciation requires			
	(1) reproductive isolation		(2) molecular	isolation
	(3) phyletic gradu	alism	(4) directiona	l isolation
108.	08. In Down's syndrome of a male child, the sex chromosomes complement			
	(1) XXY	(2) XY	(3) XX	(4) XO
109.	Both husband and blind. The probab		-	h their fathers were colour colour blind is
	(1) 50%	(2) 0%	(3) 75%	(4) 25%
110.	The lac harvested	before swarming	g is called	
	(1) Ari lac	(2) Stick lac	(3) Seed lac	(4) Button lac
111.	Isinglass is a high	n grade collagen	produced from t	he
	(1) air bladder of	fish	(2) fish skin	•
	(3) fish fin		(4) fish scale	
112.	Albinism is a con	genital disorder	resulting from th	ne lack of
	(1) fructokinase		(2) tyrosinase	•
	(3) xanthine oxida	ase	(4) catalase	
(70)			21	(P.T.O.)

113.	The most striking example of point mutation is found in a disease called					
	(1) Down's syndrome	(2) Thalassemia				
	(3) Night blindness	(4) Sickle cell anaemia				
114.	Sternum is lacking in					
	(1) Reptilia (2) Aves	(3) Pisces (4) Amphibia				
115.	Haemophilia is more common in ma	ales because				
	(1) recessive trait carried by X-chromosome					
	(2) recessive character carried by Y-chromosome					
	(3) dominant character carried by Y-chromosome					
	(4) dominant trait carried by X-chromosome					
116.	During submergence in aquatic turt (1) gills	les, the accessory respiratory organ is				
	(3) cloacal bladder	(4) skin				
	(5) Cloacai bladdei	(4) SKIII				
117.	The volume of urine is controlled by					
	(1) adrenaline (2) insulin	(3) ADH (4) thyroxine				
(70)	22					

118.	Hormone controlling the contraction of uterine muscles at the time of child birth is					
	(1) oxytocin (2) vasotocin	(3) vasopressin (4) isotocin				
119.	In Hippocampus, the brood pouch is	found				
	(1) on the back of male	(2) on the back of female				
	(3) on the belly of male	(4) on the belly of female				
120.	In chromatin, nucleosome core cons	ists of two molecules each of histones				
	(1) H2, H26, H1 and H1a	(2) H2a, H2b, H3 and H4				
	(3) H1, H2, H3, H4	(4) H6, H4, H5, H2b				

PHYSICS (sub-section B-2)

(Optional)

121.	Polarisation of light indicates that light is							
	(1) a longitudinal wave							
	(2) a transverse wave							
	(3) a longitudinal and transverse wave simultaneously							
	(4) not a wave at all							
122.	When an unpolarised light is incident rays. This phenomenon is known as	on a calcite crystal, it splits into refracted						
	(1) scattering	(2) dispersion						
	(3) double refraction	(4) diffraction						
123.	The phenomenon of rotating the plan	e of vibration of a polarised light is known						
	(1) polarisation	(2) optical activity						
	(3) double refraction	(4) Kerr effect						
124.	The magnetic susceptibility of a paratemperature T is	amagnetic substance varies with absolute						
	(1) T^{-2} (2) T	(3) T^{-1} (4) T^2						
(70)	24							

125.	Michelson's interferrometer is based	d on the principle of
	(1) division of amplitude	(2) division of wavefront
	(3) addition of amplitudes	(4) addition of wavefronts
126.	The substances in which the molecu	ules have zero magnetic moment are
	(1) paramagnetic	
	(2) diamagnetic	
	(3) ferromagnetic	
	(4) paramagnetic or ferromagnetic d	depends on temperature
127.	The temperature at which the ferron becomes paramagnetic is known as	magnetism disappears and the substance
	(1) temperature of inversion	(2) Boyle temperature
	(3) Curie temperature	(4) Kelvin temperature
128.	The sweep voltage used in a CRO is	s of the shape of
	(1) square wave	(2) rectangular wave
	(3) saw-tooth wave	(4) sine wave
129.	Mosley's law is concerned with	
	(1) continuous X-rays	(2) characteristic X-rays
	(3) γ-rays	(4) β-rays
(70)	25	5 (P.T.O.)

130.	The element to be semiconductor is	e doped in a pure	germanium crysta	al to make it a p-type		
	(1) As	(2) Sb	(3) P	(4) Al		
131.	With the rise of t	emperature, the re	esistivity of a semic	conductor		
	(1) remains unch	anged				
	(2) increases					
	(3) decreases					
	(4) first increases	and then decreas	es			
132.	The Poisson ratio	of any material σ	, satisfies the inequ	uality		
	(1) $-1 < \sigma < \frac{1}{2}$	(2) $-\frac{1}{2} < \sigma < 1$	(3) $-1 < \sigma < 0$	(4) $1 > \sigma > 0$		
133.	The Fermi-level o	f an intrinsic semi	conductor lies			
	(1) near the top of valence band in the band gap					
	(2) near the bott	om of the conduct	ion band in the ba	nd gap		
	(3) in the middle	of the band gap				
	(4) close to the b	oottom but inside t	he conduction ban	d		
134.	In which one of thighest?	he following config	uration of a transis	stor, the voltage gain is		
	(1) Common base	•	(2) Common emi	tter		
	(3) Common colle	ector	(4) Same in all t	he three		
(70)		26	5			

135.	The wave which does not belong to the electromagnetic spectrum is						
	(1) heat		traviolet		X-rays	12/11/04	ultrasonic
136.	When a beam of angle between re	light is i	incident or and refract	n a gla	ass plate at po ams is	larisi	ng angle, then the
	(1) 0°	(2) 45	0	(3)	60°	(4)	90°
137.	Wien's law of rad	iation i	S				
	(1) $\lambda_m T^{-1} = \text{cons}$	tant		(2)	$\lambda_m T = \text{constan}$	nt	
	(3) $\lambda_m^{-1} T^3 = \text{constant}$	int		(4)	$\lambda_m^{-1}T^2 = \text{consta}$	nt	
138.	The first law of the	nermody	namics m	ay be	written in us	ual s	ymbols as
	(1) $dS = TdQ$			(2)	$\delta Q = TdS$		
	$(3) \ \delta Q = dU + pdV$			(4)	$dU = \delta Q + pdV$	+ Va	lP
139.	The equation $\overrightarrow{\nabla} \times \overrightarrow{I}$	$\vec{\beta} = \mu_0 \vec{J}$	represents	S			
	(1) Faraday's law			(2)	Ampere's law		
	(3) Gauss's law			(4)	Ohm's law		
140.	The ripple factor of	of half-w	vave rectifi	er is			
	(1) 0.482	(2) 1.7	1	(3)	1.21	(4)	1.57

27

(70)

(P.T.O.)

141. The depression of a cantilever is directly proportional to

(1) square of length

- (2) length
- (3) cube of the length
- (4) square root of length

142. The de Broglie wavelength λ of a molecule of mass m having thermal energy k7 is

$$(1) \lambda = \frac{h}{2mkT}$$

$$(2) \lambda = \frac{h}{\sqrt{2mkT}}$$

$$(3) \lambda = \frac{h}{(2mkT)^{3/2}}$$

$$(4) \lambda = \frac{h}{(2mkT)^2}$$

143. Two light waves are called coherent if their

- (1) amplitudes are equal
- (2) frequencies are same
- (3) wavelengths are same
- (4) phase difference is same

144. Newton's rings are fringes of

- (1) equal inclination
- (2) equal thickness
- (3) both equal inclination and thickness
- (4) equal radii

145. In Compton effect, the shift in wavelength Δλ depends upon

- (1) properties of scatterer
- (2) wavelength of incident radiation
- (3) scattering angle
- (4) All of the above

(70)

146.	The quality fa	actor Q of an LCR e	lectrical circuit is	
	(1) $Q = \frac{L\omega}{R}$	(2) $Q = \frac{LR}{\omega}$	(3) $Q = \frac{R\omega}{L}$	$(4) Q = \frac{R}{\omega L}$

where w is angular frequency of oscillation.

147. The photoelectric effect can be understood on

- (1) the electromagnetic theory of light
- (2) the special theory of relativity
- (3) the quantum theory of light
- (4) wave theory of light

148. The most important characteristics of a LASER light is

(1) polarisation

(2) coherence

(3) high intensity

(4) directionality

A high entropy system should be in great 149.

- (1) order (2) disorder
- (3) amount
- (4) quality

The process in which no heat enters or leaves the system is called 150.

- (1) isothermal
- (2) isobaric
- (3) adiabatic
- (4) isochoric

GEOLOGY (sub-section B-3)

(Optional)

- 151. The Moho discontinuity is located in between
 - (1) Mantle and Core
 - (2) Crust and Mantle
 - (3) Lithosphere and Asthenosphere
 - (4) Lower Mantle and Upper Mantle
- 152. Match the hypotheses and their propounder of the origin of the Earth :
 - (a) Tidal Hypothesis
- (i) Kant and Laplace
- (b) Nebular Hypothesis
- (ii) Moulton and Chamberlin
- (c) Planetesimal Hypothesis
- (iii) Jeans and Jeffreys
- (d) The Meteorite Hypothesis
- (iv) Schmidt, Weizsacker and Kuiper
- (1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (3) (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
- (4) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)

(**70**)

153.	What	is	the	name	of	deepest	oceanic	trench
			LIIC	name	OI	uccpest	oceanic	trench

(1) Mariana Trench

- (2) The South Sandwich Trench
- (3) The Tonga Trench
- (4) The Diamantina Trench

154. Which one of the following geomorphic features belongs to the glacial topography?

- (1) Hamada, Loess and Zeugens
- (2) Rapids, Meanders and Point Bars
- (3) Drumlins, Cirques and Roches Moutonnees
- (4) Doline, Stalactites and Stalagmites

155. Which one is the correct form of crystal system?

- (1) Triclinic: $\alpha \neq b \neq c$ and $\alpha \neq \beta \neq \gamma = 90^{\circ}$
- (2) Monoclinic: $a \neq b \neq c$ and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
- (3) Orthorhombic: $\alpha \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$
- (4) Tetragonal: a = b = c and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

156. The Si: O ratio in Tectosilicate is

- (1) 1:3
- (2) 1:4
- (3) 4:10
- (4) 1:2

		the following sets o						
157.	What is the correct ascending order of the hardness of the following sets o minerals?							
	(1) Quartz, Topaz, Calcite and Orthoclase							
	(2) Calcite, Orthoclase, Quartz and Topaz							
	(3) Quartz, Calcite, Topaz and Orthoclase							
	(4) Quartz, Orthoclase, Topaz and (Calcite						
158.	Name the mineral which shows par	allel extinction						
	(1) Muscovite (2) Anorthite	(3) Augite (4) Hornblende						
159.	The Indo-Gangetic Alluvial Plains took shapes during							
	(1) Sirmurian Orogeny	(2) Karakoram Orogeny						
	(3) Siwalik Orogeny	(4) Kirthar Orogeny						
160.	Which types of microscope is used for metallic ores?	or the identification of polished sections of						
	(1) Polarizing Microscope	(2) Reflected Microscope						
	(3) Binocular Microscope	(4) Compound Microscope						
161.	The true dip of a bed is measured al the bed?	ong N 50°E. What is the strike direction of						
	(1) N-S (2) E-W	(3) N 55°W (4) N 40°W						
(70)	3:	2						

162. Fold axis lies in the direction

(P.T.O.)

167.	The study of trace	e fossils is known	as			
	(1) Paleoecology	(2) Synecology	(3)	Ichnology	(4)	Ichthyology
168.	The trilobite faun	a are restricted to				
	(1) Proterozoic	(2) Palaeozoic	(3)	Mesozoic	(4)	Cenozoic
169.	Name the basic u	unit of geologic tim	e			
	(1) Era	(2) Epoch	(3)	Period	(4)	Eon
170.	Select a lithostra	tigraphic unit from	the	following		
	(1) system	(2) group	(3)	stage	(4)	series
171.	What is the origi	n of disseminated	or 'po	orphyre' coppe	er de	posits?
	(1) Hypothermal	origin	(2)	Epithermal o	rigin	
	(3) Telethermal		(4)	Mesothermal	orig	in
172.	Which one of the	e following is not a	lead	mineral?		
	(1) Galena	(2) Sphalerite	(3)	Cerrusite	(4)	Anglesite
173.	The mineralogy of similar to that of	of which one of th f the high grade ar	e foll	owing contact polite facies?	me	tamorphic facies i
	(1) Hornblende-h	ornfels facies	(2)	Pyroxene hor	nfels	3
	(3) Albite-epidote	-hornfels facies	(4)	Sanidinite fa	cies	
/=-:			4			
(70)		3	4			

174.	Choose the correct sequence of increasing grade of metamorphism							
	(1) Shale—Phyllite—Schist—Slate—Gneiss							
	(2) Shale—Slate—Schist—Phyllite—Gneiss							
	(3) Shale—Slate—Phyllite—Schist—Gneiss							
	(4) Shale—Gneiss—Phyllite—Schist—	-Slate						
175.	Ripple formed by water and wind di (1) ripple index (2) azimuth	differ in their (3) symmetry (4) scale						
176.	Which one of the following are characteristically associated with transitional environments?							
	(1) Orthoquartzite	(2) Arkoses						
	(3) Graywackes	(4) Orthoconglomerate						
177.	Select a metamorphic rock from the	e following						
	(1) Marble	(2) Granite						
	(3) Basalt	(4) Conglomerate						
178.	Which one of the following is the gla	lassy modification of acidic lava?						
	(1) Tektite (2) Tachylite	(3) Obsidian (4) Limburgite						
70)	35	5 (P.T.O.)						

179.	An impermeable formation that neither (1) Aquitard (2) Aquifer	er contains nor trar (3) Aquiclude	nsmits water is called				
180.	Consider the following processes:						
	(i) Evaporation	(ii) Oxidation					
	(iii) Injection	(iv) Leaching					
	The supergene enrichment zone is developed by						
	(1) (i) and (ii) (2) (ii) and (iii)	(3) (ii) and (iv)	(4) (i) and (iv)				

SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा ओ॰एम॰आर॰ उत्तर-पत्र क दाना पृष्ठी पर केवल नीली/काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न-पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई पृष्ठ या प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी प्रस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में प्रवेश-पत्र के अतिरिक्त, लिखा वा सादा कोई भी खुला कागज साथ में न लायें।
- आं०एम०आर० उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा ओ०एम०आर० उत्तर-पत्र नहीं दिया जायेगा। केवल ओ०एम०आर० उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. सभी प्रविष्टियां प्रथम आवरण-पृष्ठ पर नीली/काली बाल पेन से निर्धारित स्थान पर लिखें।
- 5. ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें नथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक एवं केन्द्र कोड नम्बर नथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰एम॰आर॰ उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰एम॰आर॰ उत्तर-पत्र सं॰ की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपकों ओ०एम०आर० उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहने हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शृत्य अंक दिये जायेंगे।
- 11. एक कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करे।
- 12. परीक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ॰एम॰आर॰ उत्तर-पत्र परीक्षा कक्ष/हाल में कक्ष निरीक्षक को सींप दें। अभ्यर्थी अपने साथ प्रश्न-पुस्तिका तथा ओ॰एम॰आर॰ उत्तर-पत्र की प्रति ले जा सकते हैं।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की. भाग होगा/होगी।

