

	Question Booklet No
(To be filled up by the candidate by	blue/black ball-point pen
Roll No.	
Roll No.	
(Write the digits in words)	
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect:
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 30

No. of Questions: 180

Time: 2 Hours]

[Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections viz., Section-A and Section-B: Section-A: This is compulsory.

Section-B: This contains three Sub-sections having questions of three disciplines viz.,

Life Science (Sub-section B-1)

Physics (Sub-section B-2)

Geology (Sub-section B-3)

A candidate is required to attempt only one from these three Sub-sections.

SECTION - A

BASIC ENVIRONMENTAL SCIENCES

(Compulsory for all)

i vaturar resources are	sources are	reso	atural	N	1.	1
-------------------------	-------------	------	--------	---	----	---

(1) Always renewable

(2) Always non-renewable

(3) Both

(4) None

2. Biotic resources are obtained from:

(1) Biosphere

(2) Atmosphere

(3) Environment

(4) Minerals

(1)

P. T. O.

3.	Insectivorous plants are placed in eco	osystem in :
	(1) Trophic level-1	(2) Trophic level-2
	(3) Trophic level-3	(4) None of the above
4.	In a dense forest competition develop	ps between :
	(1) Herbs and herbs	(2) Shrubs and shrubs
	(3) Trees and trees	(4) All of the above
5.	Relationship of an epiphyte with its	support represents:
	(1) Amensalism	(2) Commensalism
	(3) Mutualism	(4) Competition
e	Biodiversity degradation is due to:	
6.	(1) Over exploitation	(2) Population pressure
	(3) Over use	(4) All of the above
		cowact?
7.	Which of the following statement is	
	(1) Plant interacts only with plants	
	(2) Animal interacts only with anim	
	(3) Microorganism interact only w	ith microorganism
	(4) Plants, animals and microorgan	nisms interact with each other
8.	Ecosystem diversity means:	5.70
	(1) Species diversity	(2) Genetic diversity
	(3) Landscape diversity	(4) None of the above
9	Bishnois community emphasize:	
	(1) Non-violence for all life	(2) Violence for all life
	(3) Both (1) & (2)	(4) None of the above
10	. Apiko movement is for :	
	(1) Wildlife protection	(2) Air protection
	(3) Water protection	(4) Mineral protection
	3	(2)

11.	Chipko movement was star	ted in:	* 1	
	(1) 1962-63 (2) 197	(3)	1982-83	(4) 1992-93
12.	NWDB stands for:			*
	(1) National wastelands de	velopment boar	đ ,	
	(2) National water develop	ment board		
	(3) National wood develop	ment board		
	(4) National women develo	pment board		
13.	A watershed stand for:			
	(1) An area bounded by the	divide line of w	vater flow	
	(2) Two area divided by wa	ater flow		10
	(3) An area of no flow of wa	ater		
	(4) An area open from all fo	our sides		
	C : 1 (. *	
14.	Social forestry is concerned	to:	180	
	(1) Welfare of the society	(2)	Welfare of the lar	nd
	(3) Welfare of forest	(4)	None of the abov	e
15.	Taungya system is a combin	ation of :		4.4
			Animal man	
	(1) Tree-crop	(2)	Animal-crop	
	(3) Human-crop	(4)	None of the above	ve · · · ·
16.	National forest policy comm	nenced in :		
	(1) 1952 (2) 1963	2 (3)	1972 (4) 1982
17.	The term Biodiversity was o	oined by :		
K/IF . #2	(1) Walter Rosen (2) Nor	e e e e e e e e e e e e e e e e e e e	Mc Neely (4) Wilson
	(1) Walter Roselt (2) IVOI	(0)	Wie receij (1) (113011
18.	Biodiversity rich in:			
	(1) Dry tropical forest	(2)	Moist tropical for	est
	(3) Wet tropical forest	(4)	Temperate forest	
		(3)		P.T.O.

19.	Ecology deals with:				
	(1) Biotic factor	(2)	Abiotic factor		
	(3) Both	(4)	None of the above	ve	
20.	In situ conservation means :				
	(1) Within natural system	(2)	Outside natural	syst	em
	(3) Both	(4)	None		
21.	Ex situ conservation means :				
	(1) Outside natural system	(2)	within natural s	yste	m
	(3) Both	(4)	None		
22.	Key stone species are:		9		
	(1) High impact species	(2)	low impact spec	ies	£
	(3) Middle impact species	(4)	None		
23.	Umbrella species :		¥.		4
	(1) Conservation focus species	(2)	Non focus speci	es	4
	(3) Both	(4)	None of the abo	ve	1,3,
24.	Biosphere reserve has :				
	(1) Core area	(2)	Non-core area		8
	(3) Only Buffer area	(4)	All		
25.	FAO stand for:				
	(1) Food and agriculture organization	n	2		
	(2) Fertilizer and agriculture organize	ation			
	(3) Both		i.		20
	(4) None				
26.	Ramsar Convention is for:				
	(1) Wetlands (2) Dry lands	(3)	Water	(4)	None

27.	Homoeostatis in ecosystem is maintain	ned by :
10	(1) Check and balance	(2) Prey-predator interaction
	(3) Flow of energy	(4) All
28.	In ecosystem, plants parasites are class	ified as:
	(1) Herbivores (2) Carnivores	(3) Omnivores (4) Reducers
29.	Commensalism is:	
*)	(1) Obligatory	(2) Non-obligatory
	(3) Parasitic	(4) Non-symbiotic
30.	Minimum diversity is observed in:	
*	(1) Climax community	(2) Seral community
*	(3) Pioneers	(4) None of the above
	CHEMIS	TRY
	(Compulsor	y for all)
31.	Which among the following properties	es of water is/are greatly influenced by
	hydrogen bonding?	
i	(i) Absorption in the visible spectrum	;
	(ii) Boiling point;	
	(iii) Density near the freezing point;	We will be a second of the sec
	(iv) Dipole moment	
	(1) (i) and (ii)	(2) (i), (ii) and (iii)
	(3) (iii) and (iv)	(4) (ii) and (iii)
32.	Which of the following molecules/ions	s have planar structures?
	(i) NH_3 (ii) NO_3^-	(iii) CO_3^{2-} (iv) BF_3
	(1) all four (2) (ii), (iii), (iv)	(3) (iii) and (iv) (4) only (iv)
33.	Which of the following is not a green h	nouse gas ?
*	(1) water vapour	(2) nitrogen
8		(1) 27222
10	(3) methane (5)	(4) ozone P.T.O.

34.	Which of the following wave length falls in the infrared region?							
	(1)	100 nm	(2)	400 nm	(3)	700 nm	(4)	1200 nm
35.	Wh	nich element is as	soci	ated with oxyge	n tra	ensport in blood	?	
	(1)	copper	(2)	iron	(3)	vanadium	(4)	chromium
36.	Arı	rhenius equation	rela	ites				
	(1)	volume of a rea	l gas	s to temperature	at c	onstant pressure		
	(2)	rate of a chemic	al re	eaction to temper	ratu	re		
	(3)	rate constant of	a ch	nemical reaction	to te	emperature		16
	(4)	equilibrium cor	ıstar	nt for a chemical	reac	tion to temperat	ure	
37.	Ato	omic orbital		····· •				
	(1) is a wave function for an electron in an atom							
	(2) gives the trajectory of an electron in an atom							
	(3) is a number which is proportional to the energy of an electron in an atom in its ground state							
	(4)			is proportional t s away from the		e probability of leus of an atom	find	ing the electron
38.				gas confined in ne of the bulb sho		ılb at 100 K is to be	exe	rt a pressure of
	(1)	224 ml	(2)	22.4 L	(3)	8.2 ml	(4)	82 ml
39.	Zn	< Fe < Cu. If two	ele	ctrochemical cell	s ar	M, $M = Zn$, Fe , e made by couple the anode in each	ing .	Zn with Cu and
	(1)	Cu in both	(2)	Zn and Fe	(3)	Zn and Cu	(4)	Cu and Fe
40.	The	bond order in I	I_2^{\dagger} i	s		F 8		
	(1)	0	(2)	0.5	(3)	1	(4)	1.5
	(6)							

	41.	From each pair given below identify the ion which is larger in size:						
	8	$\left[Co^{2+}\right]$	Co^{3+}] $\left[K^+, Ca^{2+}\right]$] [N	$a^+, F^ \left[O^{2-}, S^2\right]$	-]		+1
		(1) Co^{2+} , K^+ , F^- , S^{2-}		(2)	Co^{3+} , Ca^{2+} , Na^{3+}	i ⁺ , S	2-	
		(3) Co^{2+} , Ca^{2+} , F^- , S	2-	(4)	Co^{3+} , K^+ , Na^+	$, O^{2-}$	-	
	42.	The bond angles in am	monia molecule a	are	:			
4		(1) 90 degrees (2)	110 degrees	(3)	115 degrees	(4)	108 degre	ees
	43.	Which one of the followand <i>d</i> -block?	wing set contains	s one	element each fr	om s	-block, p-	-block
		(1) K, Cs, V (2)	Li, Ru, Bi	(3)	Al, F, Fe	(4)	Ti, Pd, Se	E
	44.	20 ml of 0.10 N sodium the resultant solution in the titre value at the er	s titrated agains					
		(1) 10 ml (2)	20 ml	(3)	30 ml	(4)	40 ml	
	45.	A Lewis base	pair donor pair acceptor give protons	ns				
	46.	Which one of the find hydroxide? (1) barium hydroxide (3) ferrous hydroxide	ollowing hydro	xides (2)		droxi	de	odium
	47.	Which is the most elements in their comp		ion	state observed	for	the lantl	nanide
	ā.	(1) -1 (2)	.) +2	(3)	+3	(4)		2.5
	į.		(7)				. ·	P.T.C
					196		16	

(4) +4

P.T.O.

48.	Nickel forms a complex ion having formula NiCl4 From among the given
	statements, pick the correct combination : (i) it is a nickel (II) complex; (ii) it is a
	tetrahedral complex; (iii) it is diamagnetic; (iv) nickel atom has a coordination
	number 4 in this complex.

(1) (i); (ii); (iv)

(2) (ii); (iii); (iv)

(3) (i); (iii); (iv)

(4) (i); (ii); (iii)

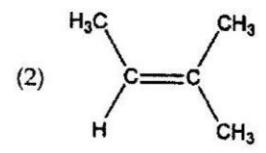
49. What is the best way to describe the geometry of XeF₄?

(1) spherical

(2) octahedral

(3) tetrahedral

(4) planar


Which one of the following gases when dissolved in water gives an acidic solution?

(1) ozone

(2) carbon dioxide (3) nitrogen

(4) oxygen

51. Which structure represents 2-methyl-2-butene

(3)
$$H_3C$$
— C

52. Which of the following is not a macromolecular compound?

(1) starch (2) cellulose

(3) haemoglobin

(4) sucrose

The bond angles in cyclohexane are close to:

(1) 120°

(2) 90°

(3) 109°

(4) 180°

54. Which of the following compounds will undergo Cannizaro reaction?

(1) acetaldehyde

(2) o-chlorobenzaldehyde

(3) 1-chloro-2-methylpropanal

(4) 2-chloropropanal

(8)

				icarboxylic acid?
20	(1) 1	(2) 2	(3) 3	(4) 4
56.	Which of the follo	wing compoun	ds does not contain a	C = O group?
	(1) acetic acid		(2) formaldel	nyde
	(3) cyclopentano	ne	(4) furan	
57.	Which of the follo	wing compoun	ds has the most acidic	c H atom ?
,	(1) ethane	(2) ethylene	(3) acetylene	(4) benzene
58.	What will be the	najor product w	vhen nitrobenzene is 1	nitrated?
	(1) o-dinitrobenz	ene	(2) m-dinitro	benzene
	(3) p-nitrobenzer	ie	(4) 1,3, 5-trin	itrobenzene
59.	How many mono	nitro derivative	s are possible for o-di	bromobenzene?
	(1) 1	(2) 2	(3) 3	(4) 4
60.	Which of the follo	owing is true of	S_N 2 reaction?	
	(1) first order kir	netics and invers	sion of configuration	
	(2) first order kir	netics and racem	nization	
	(3) second order	kinetics and ret	tention of configuration	on
	(4) second order	kinetics and inv	version of configuration	on
61.	Which nucleus is	useful for datin	ng of archaeological sa	imples?
*	(1) ^{13}C	(2) ^{14}C	(3) ^{14}N	(4) ^{15}N
62.		tallizes in a BC	C lattice. How many	atoms are there per unit
	cell?		(2) 2	(4) 4
2	(1) 1	(2) 2	(3) 3	(4) 4
w ;			(9)	P.T.O.

	·
63.	The laws of thermodynamics are :
	(1) derived from theoretical calculations
	(2) deduced from certain axioms (an axiom is a self-evident assertion)
	(3) based on experience
	(4) given to us by philosophers
64.	For which one among the following reactions does ΔH° of the reaction represent an enthalpy of formation?
	(1) $2H_2(g) + C(s) \rightarrow CH_4(g)$
	(2) $2NO_2(g) \to N_2O_4(g)$
	(3) $2N_2(g) + 3O_2(g) \rightarrow 2NO_2(g) + 2NO(g)$
	(4) $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$
65.	Other things being equal, how will the rate of the forward reaction in the following system change if the volume of the reaction vessel is halved?
	$CO(g) + Cl_2(g) = COCl_2(g)$
	(1) the rate will decrease to 50% of the original value
	(2) the rate will decrease to 25% of the original value
	(3) the rate will be doubled
÷	(4) the rate will increase four times
66.	What is the pH of a 10^{-2} M solution of sodium hydroxide?
	(1) -2 (2) 2 (3) 12 (4) 7
67.	What happens to the pH when a small amount of NH_4Cl is added to 1M solution of NH_4Cl ?
	(1) pH decreases (2) pH remains at 7
•	(3) pH increases (4) pH does not change

(10)

(4) pH does not change

6	8. How many degrees of freedom	are there at the boiling point of w	tator 2
	(1) zero (2) one	(2)	three
69	 Steady state approximation for assumption : 	or the reaction A> B>	C makes the
	(1) d[C]/dt = -d[A]/dt	(2) d[C]/dt = 0	
	(3) d[A]/dt = 0	(4) d[B]/dt = 0	
70	 Sulphur dioxide dissolves in wa ions. In this reaction, sulphur die 	ater to produce hydroxonium ions	s and sulphite
	(1) hydrolysed	(2) disproportionated	
*	(3) oxidised	(4) reduced	
71.	In which pair do the two comportroom temperature)?	unds have the same type of crysta	l structure (at
111	n(1) (NaCl, KCl)	(2) (NaCl, CsCl)	
	(3) (KCl, CsCl)	(4) (RbCl, CsCl)	i.
72.	The colour of aqueous solution by	ons of potassium permanganat	e is caused
	(1) d-d transitions	(2) charge transfer transiti	one
	(3) vibrational transitions	(4) ultraviolet absorption	OTIS.
73.	Identify the molecule/ion whose the chelate effect.		operation of
	(1) $Cu(pyridine)_{6}^{2+}$	(2) $Fe(NH_3)_4Cl_2$	4
(30)	(3) Ni(dimethylgyoximate) ₂	(4) Ni(CO) ₄	
74.	Which salt upon heating produces	1311 0-000. 80 0 000 000 000 000 000 000 000 00	
	(1) potassium oxide	(2) potassium chlorate	
	(3) potassium chloride	(4) potassium carbonate	
	•	(11)	P.T.O.

81	. Wittig reaction is useful for								
	(1) converting an alkene to a carboxylic acid								
	(2) converting an aldehyde to an alkene								
	(3) oxidising secondary alcohols								
	(4) resolution of optical isomers								
82.	Which reaction is most convenient to convert aniline to benzonitrile?								
	(1) Friedel-Crafts reaction								
	(2) Diels-Alder reaction								
	(3) Sandmeyer reaction								
	(4) Schmidt reaction								
83.	Which of the following statements about chirality is(are) correct?								
£ .	(i) All L-aminoacids are chiral								
	(ii) All molecules with one asymmetric carbon atom are chiral								
	(iii) Chiral molecules always have one or more asymmetric carbon atoms								
	(iv) All molecules with two asymmetric carbon atoms are chiral								
	(1) only (ii) (2) (i) and (ii) (3) (i), (ii) and (iii) (4) (ii), (iii) and (iv)								
84.	Complete the sentence: Werner proposed his theory to explain								
	(1) bonding in transition metal complexes								
	(2) bonding in benzene								
	(3) structure of silicates								
	(4) optical activity of tartaric acid								
85.	Which of the following molecules does not satisfy the Huckel $4n + 2$ rule?								
	(1) benzene (2) phenanthrene (3) cyclopentane (4) chlorobenzene								
	(13) P.T.O.								

Which of the following is the *correct* representation of the π -bonding orbital of ethylene? (1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{2}$ (4) $\frac{1}{2}$ $H_3N^+ - CH_2 - COO^-$ is an example of: (4) ion radical (3) carbanion (1) carbocation (2) zwitter ion The compound, 1,3-butadiene, has: 88. (1) only sp hybridised carbon atoms (2) only sp² hybridised carbon atoms (3) both sp^2 and sp^3 hybridised carbon atoms £. . (4) both sp and sp^2 hybridised carbon atoms Which of the following decolourises alkaline permanganate? 89. (3) cyclohexane (4) benzene (2) propene (1) butane What product will be obtained when a ketone is treated with a Grignard reagent, followed by hydrolysis with water?

SECTION – B LIFE SCIENCE (Sub-section B-1) (Optional)

(2) a secondary alcohol

(4) an alkane

- 91. A fast primary block to polyspermy in sea urchin egg is brought about by:
 - (1) Depolarization of egg plasma membrane
 - (2) Cortical reaction

(1) a carboxylic acid

(3) a tertiary alcohol

- (3) Acrosomal reaction
- (4) Inositol phospholipid cell signalling pathway

(14)

92.	Which of the following is not applicable for HOX genes in vertebrates?							
	(1) specify pattern formation							
	(2) have four paralogous groups							
	(3) mutations in any of these genes cause	e delation of a given region of the body						
	(4) contain conserved homeobox							
93.	The dorsal most vegetal region of an anthe organizer, is called as:	nphibian blastula, capable of inducing						
•	(1) Hensen's node	(2) Primary organizer						
	(3) Nieuwkoop centre	(4) Koller's sickel						
94.	The expansion of outer layer of cells gastrulation is known as:	covering the entire embryo during						
	(1) Imboly (2) Evagination	(3) Involution (4) Epiboly						
95.	Insect eggs have moderate yolk and syn	ncytial cleavage divisions occur in the						
	periphery. Such eggs are considered as:							
	(1) Centrolecithal (2) Telolecithal	(3) Alecithal (4) Mesolecithal						
96.	A dedifferentiation followed by repatters	ning during regeneration is termed as:						
	(1) Morphallaxis	(2) Epimorphosis						
	(3) Compensatory regeneration	(4) Stem cell mediated regeneration						
97.	In the nervous system of nonchordates, tonnect:	the commisures are those nerves which						
	(1) two equal sized dissimilar ganglia							
	(2) one small and one large dissimilar ga	anglia						
	(3) two similar ganglia							
	(4) two main nerves							
	(15)	P.T.O.						

98.	Contractile vacuole of amoeba is analogous to:								
	(1) Sebaceous glands of mammals								
	(2) paragastric cavity of scypha								
	(3) gills of fish								
	(4) uriniferous tubules of kidney of	vertebrates							
99.	Vertebrate with biconcave centra, ar	e known as :							
	(1) Procoelous	(2) Amphicoelous	1						
	(3) Opisthocoelous	(4) Displospondyly							
100.	Nematocytes found in Cnidarians h	ave:							
	(1) nutritive function	(2) sexual function							
	(3) defensive function	(4) endomembrane function							
101.	The specific feature of order Diptera	is:	*						
	(1) one pair of wing and one pair of	fhalteres							
	(2) two pairs of wings								
	(3) one pair of halteres								
	(4) two pairs of wings and one pair	of halteres							
102.	The electron transport chain for cells	ular respiration is located :							
	(1) on inner membrane of mitochon	ndria							
	(2) in the matrix of mitochondria								
	(3) on the luminal face of endoplasm	nic reticulum membrane							
	(4) on nuclear membrane								

: !

103. Bile is produced in:

- liver cells, stored in gall bladder and secreted into the duodenum to help fat emulsification
- (2) gall bladder and secreted into the lower part of stomach for fat and protein digestions
- (3) islets of Langerhans and secreted in large intestine for fat absorption
- (4) spleen and secreted into the stomach

104. Glomerular filteration rate refers to:

- (1) volume of blood plasma delivered to the kidney per unit time
- (2) volume of fluid filtered from glomerular capillaries into Bowman's capsule per unit time
- (3) volume of fluid filtered from Bowman's capsule into glomerulus per unit time
- (4) volume of blood that is cleared of water per unit time
- 105. Carbondioxide transported from the body cells back to lung mainly as:
 - (1) bicarbonate formed when CO_2 released from Krebs cycle combines with H_2O by the enzyme carbonic anhydrase of RBC
 - (2) CO₂ gas released from Krebs cycle
 - (3) Oxyhemoglobin formed by enzyme carbonic anhydrase in RBC

(17)

(4) bicarbonate as oxyhemoglobin

106. Colour blindness results from:

(1) absence of rods

- (2) absence of cones
- (3) absence of sensory cilia
- (4) absence of retina

P.T.O.

107.	Syna	ptic	fatigue	is	due	to	:
	Dynu	PLIC	rangue	10	uuc	w	

- (1) release of extra adrenaline
- (2) release of additional acetylcholine
- (3) exhaustion of neurotransmitter
- (4) exhaustion of water

108. TSH is synthesized and secreted by:

- (1) Neural lobe of pituitary
- (2) Pars intermedia of pituitary
- (3) Pars distalis of pituitary
- (4) Pars proximalis of pituitary

109. Ovarian Follicle Atresia is a degenerative process whereby:

- (1) mature eggs are lost through ovulation
- (2) single dominant follicle becomes a corpus luteum
- (3) immature ovarian follicles degenerate and reabsorbed
- (4) mature oocyte degenerates

110. The zymogen chymotrypsin is converted to active chymotrypsin by:

- (1) binding of a necessary metal ion
- (2) reduction of disulfide bond
- (3) proteolytic cleavage
- (4) phosphorylation of an amino acid side chain

111. If adrenal cortex was producing high levels of aldosterone, it would cause urine to have:

- (1) low Na^+ and high K^+ concentrations
- (2) high Na^+ and low K^+ concentrations
- (3) high Na^+ and high K^+ concentrations
- (4) low Na^+ and low K^+ concentrations

(18)

114.

112	2. I	n response to a stimulus, if the mem han the resting potential, the membran	brai e is	ne potential bed said to be:	comes more negative
	. (1) polarized	(2)	hyperpolarize	d
	(3) unpolarized	(4)	depolarized	
113.	Ţ	he first step in the catabolism of most a	mir	no acids is :	
	(1) removal of carboxylate groups			
	(2	enzymatic hydrolysis of peptide bor	ıds		
	(3	removal of the amino group			
	(4) catabolism of carbon skeleton			
114.	Er	win Chargaff studied DNA from vario	us c	organisms and d	lemonstrated that :
		DNA is the genetic material			
	(2)	RNA is transcribed from DNA			20
	(3)	the amount of adenine in a given org is equal to cytosine	anis	m is equal to th	ymine and guanine
	(4)	the double helix is held together by h	ydr	ogen bonding b	etween the bases
115.	Th	e final step in the process of cellular in. What best describes the first step in	res	spiration is the electron transp	electron transport ort chain ?
49	(1)	Energized electrons from NADH an proteins	d F	ADH ₂ activate	electron transport
	(2)	Hydrogen ions diffuse through the ou	iter	mitochondrial r	nembrane
	(3)	Electron from NADH and FADH ₂ bo molecules	nd '	with hydrogen	ions to form water
	(4)	Electrons in the inner membrane are e	nerş	gized by the sun	L
		(19)			P.T.O.

116.	Wernicke-Korsakoff	syndrome is caus	sed in alcoholics due	to severe deficiency
	of:			
	(1) Retinol	(2) Tochoferol	(3) Cholecalciferol	(4) Thiamine
117.	When mammalian p	roteins are expres	ssed in bacteria, cDNA	A is used rather than
• • • •	genomic DNA. This	is because:		
	(1) most of the euka	aryotic gene prom	oters do not function	in bacteria
	(2) cDNA is easier			4
	(3) the entire genor	nic sequence is di	fficult to clone	
	(4) prokaryotes car protein	nnot remove intr	rons to make the fu	nctional mammalian
118.	If genetic code con	sisted four bases	as codon in place of	three bases, then the
	maximum number	of amino acid cod	led would have been:	
	(1) 256	(2) 64	(3) 16	(4) 20
440		arting from a sing	gle molecule of gluco	se upto the formation
119.	of two molecules o	f pyruvic acid are	accomplished in:	out:
	(1) absence of O ₂		(2) presence of (02
	(3) presence of nu	cleotides	(4) mitochondria	A ()
120	. The palindromic se	equence recognize	ed by the restriction en	ndonuclease EcoR1 is:
	(1) GAAAAG	(2) GAATTC	(3) GAAGAA	(4) CTTTTC
j	3	PHYSICS (Su	ıb-section B-2)	*
		(Opt	tional)	
121	. Formation of drop	olets water and me	ercury are due to the	phenomenon of:
	(1) Surface tension		(2) Archimedes	
	330-50 y			2
	(3) Pascal Law	7	(4) None of the 20)	
			20)	

- 122. Young's modulus 'Y' modulus of rigidity ' η ' and Poisson's ratio ' σ ' are related as:
 - (1) $Y = 2\eta(1 + \sigma)$

(2) $\sigma = \frac{2Y}{(1+\eta)}$

(3) $\frac{Y}{\sigma} = 2(1+\eta)$

- $(4) \quad \eta = \frac{2Y}{(1+\sigma)}$
- 123. Zener diode is used in:
 - (1) Amplifier

(2) Oscillator

(3) Voltage regulation

- (4) Modulation
- **24.** The equation $\nabla \times \vec{B} = \mu_0 \vec{J}$ represents:
 - (1) Faraday's law

(2) Ampere's law

(3) Gauss's law

- (4) Ohm's law
- 25. A virtual image larger than the object can be produced by:
 - (1) Concave mirror

(2) Convex mirror

(3) Plane mirror

- (4) Concave lens
- 16. Rutherford's alpha scattering experiment lead to the discovery of:
 - (1) protons

(2) electrons

(3) atomic nucleus

- (4) None of these
- 7. If angular momentum of a system is constant, which of the following will be zero?
 - (1) force

(2) torque

(3) linear impulse

(4) linear momentum

(21)

P.T.O.

128.	In Bernoulli's theorem which of the	e following is conserved?
	(1) Angular momentum	(2) Linear momentum
	(3) Energy	(4) None of these
129.	 increases with area increases with temperature 	(2) decreases with temperature (4) decreases with area
130.	The displacement of a particle in	an simple harmonic motion in one time period
	is: (1) A (2) 2A	(3) 4A (4) zero
131.	X-rays can be deflected by: (1) an electric field (3) a gravitational field	(2) a magnetic field(4) None of these
132	. The photo-electric effect can be	understood on:
	(1) the electromagnetic theory	of liquid
	(2) the special theory of relative	ity
	(3) the quantum theory of light	*
	(4) None of the above	
13	 The energy of Sun is produced gravitation (2) oxidat 	- () (A) must look tice (Off
13	4. Which one is invariant under a	Galilion transformation?
10	(1) Displacement (2) Veloci	- (A) Momontum
13	35. Primary cosmic rays are comp	osed of very energetic :
5.07	(1) electrons (2) meson	ns (3) protons (4) neutrons
		(22)

136	Fission of nucleus is condition:	possible only	when its mass nu	ımber 'A' sati	isfy the	
法	(1) $A > 15$ (2)	A < 15	(3) A > 85	(4) A < 85		
137.	The most important cha	racteristics of l	laser is :			
	(1) polarization	ē	(2) coherence			
	(3) high intensity		(4) directionality			
138.	The direction of propaga	ation of electro	magnetic wave is given	ven by :		
	(1) Vector \vec{E}		(2) Vector \overrightarrow{B}		*	
	(3) Poynting vector \overrightarrow{S}		(4) Vector \overrightarrow{H}			
139.	Suppose a magnetic requations will be modifi	nonopole exis ed :	ts, which of the f	following Ma	xwell's	
	$(1) \nabla \cdot \overrightarrow{E} = \rho / \epsilon_{o}$		(2) $\nabla \cdot \overrightarrow{B} = 0$	9	*	
	(3) $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$		$(4) \nabla \times \vec{B} = \mu_o \vec{J} +$	$\mu_o \in_o \frac{\partial \overrightarrow{E}}{\partial t}$		
140.	Working of thermopile is	based upon :				
	(1) Peltier effect		(2) Seeback effect	2		
	(3) Thomson effect		(4) Hall effect			
141.	In the manufacture of e because:	electronic devi	ces silicon is prefer	red to Germa	ınium	
	(1) Silicon is cheaper that	n Germanium				
	(2) Silicon is more compact than Germanium					
	(3) The leakage current is	s less in silicon	than Germanium			
	(4) Silicon has a better ap	*				
8		(23)		ı	P.T.O.	
					and the second	

142.	In which of the following configuration highest?	ration of a transistor the voltage gain is
	(1) Common emitter	(2) Common base
	(3) Common collector	(4) None of the above
143.	completely polarized as:	the light reflected from water would be (3) 40° (4) 48.7°
	(1) 53° (2) 45°	(3) 40° (4) 48.7°
144.	respectively. The body which has	herical shell have the same mass and radius the highest moment of inertia about the
	central axis is :	(2) ring
	(1) disc	(4) ambanical shall
	(3) solid sphere	
145.	The zeroth law of thermodynamics	shows the existence of:
	(1) Internal energy	(2) Pressure
	(3) Temperature	(4) Entropy
146.	The base of a transistor is doped:	
	(1) lightly	(2) heavily
	(3) moderate	(4) None of the above
147.	It is possible to distinguish between studing the property of :	veen transverse and longitudinal waves by
	(1) Interference	(2) Diffraction
	(3) Reflection	(4) Polarization
148	In a single slit diffraction pattern separation between central maxim	, for a slit width 'd' and wavelength ' λ ', thum and first minimum is :
	(1) $\theta = \lambda/d$ (2) $\lambda/2d$	(3) $\theta = \lambda/4d$ (4) $\theta = \pi/2$
		(24)

149.	Interference may be seen using two independent:					
31	(1) sodium lamps	(2)	fluorescent tubes			
	(3) lasers	(4)	mercury lamps			
150.	Gravitational field is:					
	(1) Non-conservative	(2)	Conservative			
4	(3) Electromagnetic	(4)	Magnetic	*		
Li.	GEOLOGY (Sub-s	secti	ion B-3)			
r1)	(Optional	al)				
151.	The crust and upper part mantle together	er co	onstitute :			
	(1) Troposphere	(2)	Asthenosphere			
	(3) Lithosphere	(4)	Biosphere			
152.	Long, narrow and sinuous ridges of san ground moraines are :	nds a	nd gravels situated	d in the middle of		
	(1) Drumlins (2) Crag and tail	(3)	Eskers (4	1) Kames		
153.	Which one among the following is a fea	ture	produced by wind	1?		
	(1) Drumlins (2) Loess	(3)	Delta (4	1) Canyons		
154.	'Conorad discontinuity' lies between:			3.6		
	(1) Crust and mantle	(2)	Sial and sima			
	(3) Sima and mantle	(4)	Mantle and core			
155.	Newly deposited clays have porosity:	16				
	(1) up to 5%	(2)	up to 100%			
	(3) up to 70%	(4)	up to 30%			
	(25)			P.T.O.		

156.	Debris flows produ	uce:					*	
	(1) Clast supporte	d text	ure					
	(2) Grain-support	ed tex	ture					
	(3) Matrix-supported texture							
A1	(4) Cement suppor	rted te	exture					
157.	Granophyres are h	ypaby	ssal equival	ent of :				
	(1) Basalt		Granite		Gabbro	(4)	Diorite	
158.	Chalcopyrite is ore	mine	ral of :					
	(1) Aluminium	(2)	Copper	(3)	Iron	(4)	Silver	
159.	The chief ore of Al	umini	um is :					
	(1) Pyrolucite	(2)	Sphalerite	(3)	Bauxite	(4)	Chalcopyrite	
160.	The most importan	nt ore o	of lead is:					
	(1) Rutile			(2)	Psilomelane			
	(3) Sphalerite			(4)	Galena			
161.	Triassic begins wit	h first	appearance	of:				
	(1) Olenus	9		(2)	Nautilus	1.		
	(3) Otoceras woodu	pardi	ž ×	(4)	Macrocephalites			
162.	Find odd one out :							
	(1) Period	(2)	Zone	(3)	Age	(4)	Epoch	
163.	The close of Cretac	eous r	marks the ex	tinction	n of			
	(1) Bivalves	Ţ		(2)	Trilobites			
	(3) Corals	3	*	(4)	Dinosaurs			
				٥.	e .		*	

164.	Cephalopods with o	complex suture are :						
	(1) Ceratites		(2)	Nautilus				
	(3) Goniatites		(4)	Ammonites				
165.	Which one is not a l	oivalve?		6.		2		
	(1) Nautilus	(2) Lima	(3)	Nucula	(4)	Trigonia		
166.	Abrupt termination of strata marks the presence of :							
	(1) Fold and Joint	8	(2)	Joint				
	(3) Fold		(4)	Fault				
167.	The structure having dip towards a common central point from all sides is:							
,	(1) Basin	(2) fault		Dome		Joint		
168.	168. Joints developed perpendicular to the fold axis are termed as:							
	(1) Columnar join			Release joints				
	(3) Extension joint	SS .	(4)	Cross joints				
169.	Which one is not a	potash felspar ?				*		
100.	(1) Orthoclase	(2) Oligoclage	(3)	Sanidine	(4)	Microcline		
			,	3	9	•		
170.	Manual American Communication (Communication Communication		(0)	m	tom.			
	(1) Orthorhombic	system		Tetragonal sys				
	(3) Cubic system		(4) Monoclinic sy	stem			
171.	Which of the following system has all closed forms?							
	(1) Triclinic	(2) Cubic) Trigonal	(4)) Monoclinic		
172								
112	(1) Baryte	(2) Gypsum		3) Galena	(4) Rutile		
	(-)	3.7				DTO		
	2	(27	")			P.T.O.		

173.	Texture in which phenocrysts are embedded in fine grained ground mass is						
	(1) Perthite		(2) Porphyritic				
	(3) Graphic textu	ire	(4) Seriate texture	e			
174.	Peridotite is:						
	(1) An amphibole	e	(2) A pyroxene				
	(3) An acid igneo	ous rock	(4) An ultra mafi	c rock			
175.	Lavas containing numerous gas cavities of irregular shape are:						
	(1) Scoria	(2) Pumice	(3) Amygdales	(4) Ignimbrites			
176.	Fibrous variety of quartz is:						
	(1) Flint	(2) Chalcedony	(3) Chert	(4) Amethyst			
177.	Which of the following is not a magnetic mineral?						
	(1) Pyrrhotite	(2) Hematite	(3) Orthoclase	(4) Magnetite			
178.	The native mineral having hackly fracture is:						
	(1) Sulphur	(2) Copper	(3) Gold	(4) Borax			
179. Which of the following properties is not observed under ordinary							
	(1) Colour		(2) Inclusions	,			
	(3) Pleochroism		(4) Refractive Inde	ex			
180.	The Lower Gondw	ne Lower Gondwana rocks are of age.					
	(1) Cambrian	(2) Permian	(3) Jurassic	(4) Triassic			

13

*

•

5 x

*

×

1

. Irani

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ट पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली। काली बाल-प्वाइंट पेन से ही लिखं

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ गौजूद हैं और को प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देक सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागर साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नह विया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ट पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्त को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथ प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ वें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. २फ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।

