Sample Paper

Time : 90 Minutes

General Instructions

1. The Question Paper contains three sections.
2. Section A has $\mathbf{2 5}$ questions. Attempt any $\mathbf{2 0}$ questions.
3. Section B has 24 questions. Attempt any 20 questions.
4. Section C has $\mathbf{6}$ questions. Attempt any $\mathbf{5}$ questions.
5. All questions carry equal marks.
6. There is no negative marking.

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1. Two wires A and B of the same material, having radii in the ratio $1: 2$ and carry currents in the ratio $4: 1$. The ratio of drift speed of electrons in A and B is
(a) 16:1
(b) $1: 16$
(c) $1: 4$
(d) $4: 1$
2. The relaxation time in conductors
(a) increases with the increases of temperature
(b) decreases with the increases of temperature
(c) it does not depends on temperature
(d) all of sudden changes at 400 K
3. The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
(a) 200%
(b) 100%
(c) 50%
(d) 300%
4. A unit charge moves on an equipotential surface from a point A to point B, then
(a) $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=+\mathrm{ve}$
(b) $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0$
(c) $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-\mathrm{ve}$
(d) it is stationary
5. When a body is charged by induction, then the body
(a) becomes neutral
(b) does not lose any charge
(c) loses whole of the charge on it
(d) loses part of the charge on it
6. When an electric dipole \vec{P} is placed in a uniform electric field \vec{E} then at what angle between \vec{P} and \vec{E} the value of torque will be maximum?
(a) 90°
(b) 0°
(c) 180°
(d) 45°
7. Three capacitors each of $4 \mu \mathrm{~F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{~F}$. This can be done by connecting them :
(a) all in series
(b) all in parallel
(c) two in parallel and one in series
(d) two in series and one in parallel
8. Four point charges $-Q,-q, 2 q$ and $2 Q$ are placed, one at each corner of the square. The relation between Q and q for which the potential at the centre of the square is zero is
(a) $Q=-q$
(b) $Q=-\frac{1}{q}$
(c) $Q=q$
(d) $Q=\frac{1}{q}$
9. Which of the following graphs shows the correct variation of force when the distance r between two charges varies?
(a)

(b)

(c)

(d)

10. The potential at a point x (measured in $\mu \mathrm{m}$) due to some charges situated on the x-axis is given by $V(x)=20 /\left(x^{2}-4\right)$ volt. The electric field E at $x=4 \mu \mathrm{~m}$ is given by
(a) $(10 / 9)$ volt $/ \mu \mathrm{m}$ and in the $+\mathrm{ve} x$ direction
(b) $(5 / 3)$ volt $/ \mu \mathrm{m}$ and in the -ve x direction
(c) $(5 / 3)$ volt $/ \mu \mathrm{m}$ and in the $+\mathrm{ve} x$ direction
(d) $(10 / 9)$ volt/ $\mu \mathrm{m}$ and in the -ve x direction
11. The self inductance associated with a coil is independent of
(a) current
(b) time
(c) induced voltage
(d) resistance of coil
12. At a point A on the earth's surface the angle of dip, $d=+25^{\circ}$. At a point B on the earth's surface the angle of dip, $d=-25^{\circ}$. We can interpret that:
(a) A and B are both located in the northern hemisphere.
(b) A is located in the southern hemisphere and B is located in the northern hemisphere.
(c) A is located in the northern hemisphere and B is located in the southern hemisphere.
(d) A and B are both located in the southern hemisphere.
13. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnet ic dipole moment $\overrightarrow{\mathrm{m}}$. Which configuration has highest net magnetic dipole moment?
A.

B.

C.

D.

(a) A
(b) B
(c) C
(d) D
14. A positively charged particle enters in a uniform magnetic field with velocity perpendicular to the magnetic field. Which of the following figures shows the correct motion of charged particle?
(a)

(b)

(c)

(d)

15. Ampere's circuital law states that
(a) the surface integral of magnetic field over the open surface is equal to μ_{0} times the total current passing through the surface.
(b) the surface integral of magnetic field over the open surface is equal to μ_{0} times the total current passing near the surface.
(c) the line integral of magnetic field along the boundary of the open surface is equal to μ_{0} times the total current passing near the surface.
(d) the line integral of magnetic field along the boundary of the open surface is equal to μ_{0} times the total current passing through the surface.
16. A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with the galvanometer is
(a) $\frac{S^{2}}{(S+G)}$
(b) $\frac{\mathrm{SG}}{(\mathrm{S}+\mathrm{G})}$
(c) $\frac{\mathrm{G}^{2}}{(\mathrm{~S}+\mathrm{G})}$
(d) $\frac{G}{(S+G)}$
17. The cause of heat production in a current carrying conductor is
(a) collisions of free electrons with one another
(b) high drift speed of free electrons
(c) collisions of free electrons with atoms or ions of the conductor
(d) high resistance value
18. A primary cell has an e.m.f. of 1.5 volt. When short-circuited it gives a current of 3 ampere. The internal resistance of the cell is
(a) 4.5 ohm
(b) 2 ohm
(c) 0.5 ohm
(d) $(1 / 4.5) \mathrm{ohm}$
19. A liquied drop having 6 excess electrons is kept stationary under a uniform electric field of $25.5 \mathrm{KVm}^{-1}$. The density of liquid is $1.26 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. The radius of the drop is (neglect buoyany)
(a) $4.3 \times 10^{-7} \mathrm{~m}$
(b) $7.3 \times 10^{-7} \mathrm{~m}$
(c) $0.078 \times 10^{-7} \mathrm{~m}$
(d) $3.4 \times 10^{-7} \mathrm{~m}$
20. Two capacitors of capacitances $3 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are charged to a potential of 12 V each. They are now connected to each other, with the positive plate of each joined to the negative plate of the other. The potential difference across each will be
(a) zero
(b) $4 V$
(c) 6 V
(d) 12 V
21. An ac voltage is represented by

$$
\mathrm{E}=220 \sqrt{2} \cos (50 \pi) \mathrm{t}
$$

How many times will the current become zero in 1 s ?
(a) 50 times
(b) 100 times
(c) 30 times
(d) 25 times
22. In a series resonant LCR circuit, the voltage across R is 100 volts and $R=1 \mathrm{k} \Omega$ with $C=2 \mu \mathrm{~F}$. The resonant frequency ω is 200 $\mathrm{rad} / \mathrm{s}$. At resonance the voltage across L is
(a) $2.5 \times 10^{-2} \mathrm{~V}$
(b) 40 V
(c) 250 V
(d) $4 \times 10^{-3} \mathrm{~V}$
23. In an a.c. circuit V and I are given by
$\mathrm{V}=100 \sin (100 \mathrm{t})$ volts
$\mathbf{I}=100 \sin (100 \mathrm{t}+\pi / 3) \mathrm{mA}$
the power dissipated in the circuit is
(a) 10^{4} watt
(b) 10 watt
(c) 2.5 watt
(d) 5.0 watt
24. A wire of length 50 cm moves with a velocity of $300 \mathrm{~m} / \mathrm{min}$, perpendicular to a magnetic field. If the e.m.f. induced in the wire is 2 V , the magnitude of the field in tesla is
(a) 2
(b) 5
(c) 0.8
(d) 2.5
25. The mutual inductance between two planar concentric rings of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ placed in air is given by
(a) $\frac{\mu_{0} \pi r_{2}^{2}}{2 r_{1}}$
(b) $\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}}$
(c) $\frac{\mu_{0} \pi\left(r_{1}+r_{2}\right)^{2}}{2 r_{1}}$
(d) $\frac{\mu_{0} \pi\left(r_{1}+r_{2}\right)^{2}}{2 r_{2}}$

SECTION-B

This section consists of 24 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.
26. A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves
(a) Potential gradients
(b) A condition of no current flow through the galvanometer
(c) A combination of cells, galvanometer and resistances
(d) Cells
27. A charged particle having drift velocity of $7.5 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$ in an electric field of $3 \times 10^{-10} \mathrm{Vm}^{-1}$, has a mobility in $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ of :
(a) 2.5×10^{6}
(b) 2.5×10^{-6}
(c) 2.25×10^{-15}
(d) 2.25×10^{15}
28. Three capacitors are connected in the arms of a triangle ABC as shown in figure 5 V is applied between A and B . The voltage between B and C is

(a) 2 V
(b) 1 V
(c) 3 V
(d) 1.5 V
29. The voltage time $(\mathrm{V}-\mathrm{t})$ graph for triangular wave having peak value V_{0} is as shown in figure. The rms value of V in time interval from $t=0$ to $T / 4$ is $\frac{V_{0}}{\sqrt{x}}$ then find the value of x.

(a) 5
(b) 4
(c) 7
(d) 3
30. In a series resonant circuit, having L, C and R as its elements, the resonant current is i. The power dissipated in circuit at resonance is
(a) $\frac{i^{2} R}{(\omega \mathrm{~L}-1 / \omega \mathrm{C})}$
(b) zero
(c) $\mathrm{i}^{2} \omega \mathrm{~L}$
(d) $i^{2} R$

Whereas ω is angular resonant frequency
31. An electron is taken from point A to point B along the path $A B$ in a uniform electric field of intensity $E=10 \mathrm{Vm}^{-1}$. Side $A B$ $=5 \mathrm{~m}$, and side $\mathrm{BC}=3 \mathrm{~m}$. Then, the amount of work done on the electron is

(a) 50 eV
(b) 40 eV
(c) -50 eV
(d) -40 eV
32. A capacitor has two circular plates whose radius are 8 cm and distance between them is 1 mm . When mica (dielectric constant $=6$) is placed between the plates, the capacitance of this capacitor and the energy stored when it is given potential of 150 volt respectively are
(a) $1.06 \times 10^{-5} \mathrm{~F}, 1.2 \times 10^{-9} \mathrm{~J}$
(b) $1.068 \times 10^{-9} \mathrm{~F}, 1.2 \times 10^{-5} \mathrm{~J}$
(c) $1.2 \times 10^{-9} \mathrm{~F}, 1.068 \times 10^{-5} \mathrm{~J}$
(d) $1.6 \times 10^{-9} \mathrm{~F}, 1.208 \times 10^{-5} \mathrm{~J}$
33. A surface has the area vector $\vec{A}=(2 \hat{i}+3 \hat{j}) m^{2}$. The flux of an electric field through it if the field is $\vec{E}=4 \hat{i} \frac{V}{\mathrm{~m}}$:
(a) $8 \mathrm{~V}-\mathrm{m}$
(b) $12 \mathrm{~V}-\mathrm{m}$
(c) $20 \mathrm{~V}-\mathrm{m}$
(d) zero
34. Two point charges $+Q$ and $+q$ are separated by a certain distance. If $+Q>+q$ then in between the charges the electric field is zero at a point
(a) closer to +Q
(b) closer to +q
(c) exactly at the mid-point of line segment joining +Q and +q .
(d) no where on the line segment joining +Q and +q .
35. The electric field at a point on equatorial line of a dipole and direction of the dipole moment
(a) will be parallel
(b) will be in opposite direction
(c) will be perpendicular
(d) are not related
36. A coil has 200 turns and area of $70 \mathrm{~cm}^{2}$. The magnetic field perpendicular to the plane of the coil is $0.3 \mathrm{~Wb} / \mathrm{m}^{2}$ and take 0.1 sec to rotate through 180°.The value of the induced e.m.f. will be
(a) 8.4 V
(b) 84 V
(c) 42 V
(d) 4.2 V
37. A circular coil and a bar magnet placed nearby are made to move in the same direction. If the coil covers a distance of 1 m in 0.5 sec and the magnet a distance of 2 m in 1 sec , the induced e.m.f. produced in the coil is
(a) zero
(b) 0.5 V
(c) 1 V
(d) 2 V .
38. In series L-C-R circuit, the voltages across R, L and C are V_{R}, V_{L} and V_{C} respectively. Then the voltage of applied a.c. source must be
(a) $V_{R}+V_{L}+V_{C}$
(b) $\sqrt{\left[\left(\mathrm{V}_{\mathrm{R}}\right)^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}\right]}$
(c) $\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{L}}$
(d) $\left[\left(\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}\right)^{2}+\left(\mathrm{V}_{\mathrm{C}}\right)^{2}\right]^{1 / 2}$
39. Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area $\mathrm{A}=10 \mathrm{~cm}^{2}$ and length $=20$ cm . If one of the solenoid has 300 turns and the other 400 turns, their mutual inductance is
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}\right)$
(a) $2.4 \pi \times 10^{-5} \mathrm{H}$
(b) $4.8 \pi \times 10^{-4} \mathrm{H}$
(c) $4.8 \pi \times 10^{-5} \mathrm{H}$
(d) $2.4 \pi \times 10^{-4} \mathrm{H}$
40. A bar magnet is cut into two equal halves by a plane parallel to the magnetic axis. Of the following physical quantities the one which remains unchanged is
(a) pole strength
(b) magnetic moment
(c) intensity of magnetisation
(d) None of these
41. The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4 cm from the centre is $54 \mu \mathrm{~T}$. What will be its value at the centre of loop?
(a) $125 \mu \mathrm{~T}$
(b) $150 \mu \mathrm{~T}$
(c) $250 \mu \mathrm{~T}$
(d) $75 \mu \mathrm{~T}$
42. Three wires are situated at the same distance. A current of $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$ flows through these wires in the same direction. What is ratio of $\mathrm{F}_{1} / \mathrm{F}_{2}$, where F_{1} is force on 1 and F_{2} on 2 ?
(a) $7 / 8$
(b) 1
(c) $9 / 8$
(d) None of these

43. On interchanging the resistances, the balance point of a meter bridge shifts to the left by 10 cm . The resistance of their series combination is $1 \mathrm{k} \Omega$. How much was the resistance on the left slot before interchanging the resistances?
(a) 990Ω
(b) 505Ω
(c) 550Ω
(d) 910Ω
44. In a large building, there are 15 bulbs of $40 \mathrm{~W}, 5$ bulbs of $100 \mathrm{~W}, 5$ fans of 80 W and 1 heater of 1 kW . The voltage of electric mains is 220 V . The minimum capacity of the main fuse of the building will be:
(a) 8 A
(b) 10 A
(c) 12 A
(d) 14 A

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false and R is also false.
45. Assertion : A laminated core is used in transformers to increase eddy currents.

Reason : The efficiency of a transformer increases with increase in eddy currents.
46. Assertion : A capacitor blocks direct current in the steady state.

Reason : The capacitive reactance of the capacitor is inversely proportional to frequency f of the source of emf.
47. Assertion : Magnetic moment of an atom is due to both the orbital motion and spin motion of every electron.

Reason : A charged particle produces magnetic field.
48. Assertion : In the absence of an external electric field, the dipole moment per unit volume of a polar dielectric is zero.

Reason : The dipoles of a polar dielectric are randomly oriented.
49. Assertion : In the purely resistive element of a series LCR, AC circuit the maximum value of rms current increases with increase in the angular frequency of the applied emf.

Reason : $\varepsilon_{\max }=\frac{I_{\max }}{z}, z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$, where $I_{\max }$ is the peak current in a cycle.

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.
50. A rod of length 2.4 m and radius 4.6 mm carries a negative charge of $4.2 \times 10^{-7} \mathrm{C}$ spread uniformly over it surface. The electric field near the mid-point of the rod, at a point on its surface is
(a) $-8.6 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}$
(b) $8.6 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}$
(c) $-6.7 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}$
(d) $6.7 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}$
51. Consider the following statements and select the correct option
I. In an external electric field, the positive and negative charges of a non-polar molecule are displaced in opposite directions.
II. In non -polar molecules displacement stops when the external force on the constituent charges of the molecule is balanced by the restoring force.
III. The non-polar molecule develops an induced dipole moment.
(a) I and II
(b) II and III
(c) I and III
(d) I, II and III

Case Study : Read the following paragraph and answers the questions.
A particle of mass m and charge q, moving with velocity V enters Region II normal to the boundary as shown in the figure. Region II has a uniform magnetic field B perpendicular to the plane of the paper. The length of the Region II is l.

52. (a) The particle enters Region III only if its velocity $V>\frac{q B}{m}$
(b) The particle enters Region III only if its velocity $V<\frac{q l B}{m}$
(c) The particle enters Region III only if its velocity $V=\frac{q l B}{m}$
(d) All of the above
53. Path length of the particle in Region II is maximum when
(a) velocity $V=\frac{q l B}{2 m}$
(b) velocity $V=\frac{2 q l B}{m}$
(c) velocity $V=\frac{q l B}{m}$
(d) velocity $V=\frac{4 q l B}{m}$
54. Time spent in Region II as long as the particle returns to Region I is
(a) two times if velocity V is doubled
(b) halved if velocity is doubled
(c) halved if velocity is halved
(d) same for any value of V
55. A charged particle moves with velocity \vec{V} in a uniform magnetic field \vec{B}. The magnetic force experienced by the particle is
(a) always zero
(b) never zero
(c) zero, if \vec{B} and \vec{V} are perpendicular
(d) zero, if \vec{B} and \vec{V} are parallel

OMR ANSWER SHEET

Sample Paper No - \square

* Use Blue / Black Ball pen only.
* Please do not make any atray marks on the answer sheet.
* Rough work must not be done on the answer sheet.
* Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start time : \qquad End time \qquad Time taken \qquad

1. Name (in Block Letters)
\square
2. Date of Exam

3. Candidate's Signature

Section-A

Section-B

26.	(a)	(b)	c)	(d)	34.	(a)	(b)	(c)	(d)	42.	(a)	(b)	(c)	(d)
27.	(a)	(b)		(d)	35.	(a)	(b)	(c)	(d)	43.	(a)	(b)	(c)	(d)
28.	(a)	(b)		(d)	36.	(a)	(b)		(d)	44.	(a)	(b)		(d)
29.	(a)	(b)		(d)	37.	(a)	(b)		(d)	45.	(a)	b)		(d)
30.	(a)			(d)	38.	(a)	(b)		(d)	46.	(a)	(b)		(d)
31.	(a)			(d)	39.	(a)	(b)		(d)	47.	(a)	(b)		(d)
32.	(a)			(d)	40.	(a)	(b)		(d)	48.	(a)	(b)		(d)
33.	(a)	(b)	(C)	(d)	41.	(a)	(b)	(c)	(d)	49	(a)	(b)	(c)	(d)

Section-C

50.	a	b	c	d	53.	a	b	c	d
51.	a	b	c	d	54.	a	b	c	d
52.	a	b	c	d	55.	a	b	c	d

No. of Qns. Attempted	Correct		Incorrect		Marks	

