Sample Paper

General Instructions

1. The question paper contains three parts A, B and C.
2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
5. There is no negative marking.

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1. If $\tan ^{2} \theta=1-a^{2}$, then the value of $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta$ is
(a) $\left(2-a^{2}\right)$
(b) $\left(2-a^{2}\right)^{1 / 2}$
(c) $\quad\left(2-a^{2}\right)^{2 / 3}$
(d) $\quad\left(2-a^{2}\right)^{3 / 2}$
2. Mrs. Vidya bought a piece of cloth as shown in the figure. The portion of the cloth that is not coloured consists of 6 identical semi-circles.

Find the area of the coloured portion.
(a) $144 \mathrm{~cm}^{2}$
(b) $126 \mathrm{~cm}^{2}$
(c) $195 \mathrm{~cm}^{2}$ (d)
$243 \mathrm{~cm}^{2}$
3. A factory has 120 workers in January, 90 of them are female workers. In February, another 15 male workers were employed. A worker is then picked at random. Calculate the probability of picking a female worker.
(a) $\frac{3}{4}$
(b) $\frac{4}{9}$
(c) $\frac{2}{3}$
(d) $\frac{1}{2}$
4. When 2^{256} is divided by 17 , then remainder would be
(a) 1
(b) 16
(c) 14
(d) None of these
5. Which of the following is true if following pair of linear equations has unique solution?
$3 x-2 y=-8$
$(2 m-5) x+7 y-6=0$
(a) $m=\frac{11}{4}$
(b) $m=-\frac{11}{4}$
(c) $\quad m \neq-\frac{11}{4}$
(d) $\quad m \neq \frac{11}{4}$
6. In the given figure, P and Q are points on the sides $A B$ and $A C$ respectively of a triangle $A B C . P Q$ is parallel to $B C$ and divides the triangle $A B C$ into 2 parts, equal in area. The ratio of $P A: A B=$

(a) $1: 1$
(b) $(\sqrt{2}-1): \sqrt{2}$
(c) $1: \sqrt{2}$
(d) $(\sqrt{2}-1): 1$
7. The figure given shows twoidentical semi-circles cut out from a piece of coloured paper.

Find the area of the remaining piece of paper (Use $\pi=\frac{22}{7}$)

(a) $296.1 \mathrm{~cm}^{2}$
(b) $265.4 \mathrm{~cm}^{2}$
(c) $\quad 221.5 \mathrm{~cm}^{2}$
(d) $\quad 201.7 \mathrm{~cm}^{2}$
8. In what ratio does the point $(-2,3)$ divide the line-segment joining the points $(-3,5)$ and $(4,-9)$?
(a) $2: 3$
(b) $1: 6$
(c) $6: 1$
(d) $2: 1$
9. A box contains a number of marbles with serial number 18 to 38 . A marble is picked at a random. Find the probability that it is a multiple of 3 .
(a) $\frac{3}{5}$
(b) $\frac{7}{20}$
(c) $\frac{3}{4}$
(d) $\frac{1}{3}$
10. The area of a right angled triangle is $40 \mathrm{sq} . \mathrm{cm}$. and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) Data insufficient
11. The sum of exponents of prime factors in the prime-factorisation of 196 is
(a) 3
(b) 4
(c) 5
(d) 2
12. A drain cover is made from a square metal plate of side 40 cm having 441 holes of diameter 1 cm each drilled in it. Find the area of the remaining square plate.
(a) $1250.5 \mathrm{~cm}^{2}$
(b) $1253.5 \mathrm{~cm}^{2}$
(c) $1240.2 \mathrm{~cm}^{2}$
(d) $1260.2 \mathrm{~cm}^{2}$
13. If $x=r \sin \mathrm{~A} \cos \mathrm{C}, y=r \sin \mathrm{~A} \sin \mathrm{C}, z=r \cos \mathrm{~A}$, then
(a) $r^{2}=x^{2}+y^{2}+z^{2}$
(b) $r^{2}=2 x y$
(c) $\quad r^{2}=x+y+z$
(d) $r^{2}=y^{2}+z^{2}+2 x y$
14. Which of the following statement is true?
(a) Every point on the number line represents a rational number.
(b) Irrational numbers cannot be represented by points on the number line.
(c) $\frac{22}{7}$ is a rational number.
(d) None of these.
15. Given $\triangle A B C \sim \triangle D E F$, if $A B=2 D E$ and area of $\triangle A B C$ is $56 \mathrm{~cm}^{2}$, find the area of $\triangle D E F$.
(a) $14 \mathrm{sq} . \mathrm{cm}$
(b) $5 \mathrm{sq} . \mathrm{cm}$
(c) $18 \mathrm{sq} . \mathrm{cm}$
(d) 56 sq.cm
16. For what values of k will the following pair of linear equations have infinitely many solutions?
$k x+3 y-(k-3)=0$
$12 x+k y-k=0$
(a) $k=4$
(b) $k=3$
(c) $\quad k=6$
(d) $\quad k=2$
17. Given that L.C.M. $(91,26)=182$, then H.C.F. $(91,26)$ is
(a) 13
(b) 26
(c) 17
(d) 9
18. One card is drawn from a well shuffled deck of 52 cards.
I. The probability that the card will be diamond, is $1 / 2$.
II. The probability of an ace of heart is $1 / 52$.
III. The probability of not a heart is $3 / 4$.
IV. The probability of king or queen is $1 / 26$.

Which of the statement(s) is/are true?
(a) I and II
(b) II and III
(c) III and IV
(d) None of these
19. If $p \sin \theta+q \cos \theta=a$ and $p \cos \theta-q \sin \theta=b$, then $\frac{p+a}{q+b}+\frac{q-b}{p-a}=$
(a) 1
(b) $a^{2}+b^{2}$
(c) 0
(d) 2
20. In what ratio is the line segment joining the points $(3,5) \&(-4,2)$ divided by y-axis?
(a) $3: 2$
(b) $3: 4$
(c) $2: 3$
(d) $4: 3$

SECTION-B

Section B consists of 20 quesions of 1 mark each. Any 16 quesions are to be attempted.
21. If $x=a(\operatorname{cosec} \theta+\cot \theta)$ and $y=\frac{\mathrm{b}(1-\cos \theta)}{\sin \theta}$, then $x y=$
(a) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
(b) $a^{2}-b^{2}$
(c) $a b$
(d) $\frac{a}{b}$
22. If the mid point of the line joining $(3,4)$ and $(k, 7)$ is (x, y) and $2 x+2 y+1=0$. Find the value of k.
(a) 10
(b) -15
(c) 15
(d) $\quad-10$
23. For which value of p, will the lines represented by the following pair of linear equations be parallel
$3 x-y-5=0$
$6 x-2 y-p=0$
(a) all real values except 10
(b) 10
(c) $5 / 2$
(d) $\quad 1 / 2$
24. If ABC and EBC are two equilateral triangles such that D is mid-point of BC , then the ratio of the areas of triangles ABC and BDE is
(a) $2: 1$
(b) $1: 2$
(c) $1: 4$
(d) $4: 1$
25. If $\left(\frac{a}{3}, 4\right)$ is the midpoint of the line segment joining $A(-6,5)$ and $B(-2,3)$, then what is the value of ' a '?
(a) -4
(b) - 12
(c) 12
(d) -6
26. A fair die is thrown once. The probability of getting a composite number less than 5 is
(a) $\frac{1}{3}$
(b) $\frac{1}{6}$
(c) $\frac{2}{3}$
(d) 0
27. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=10 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$. PQRS is a rectangle inside the isosceles triangle. Given $\mathrm{PQ}=\mathrm{SR}=y \mathrm{~cm}$ and $\mathrm{PS}=\mathrm{QR}=2 x \mathrm{~cm}$, then $x=$
(a) $6-\frac{3 y}{4}$
(b) $6+6 y$
(c) $6+\frac{4 y}{3}$
(d) $\frac{7 x+8 y}{4}$
28. If the zeroes of the polynomial $f(x)=k^{2} x^{2}-17 x+k+2,(k>0)$ are reciprocal of each other than value of k is
(a) 2
(b) -1
(c) $\quad-2$
(d) 1
29. A class of 20 boys and 15 girls is divided into n groups so that each group has x boys and y girls. Values of x, y and n respectively are
(a) 3, 4 and 8
(b) 4, 3 and 6
(c) 4, 3 and 7
(d) 7, 4 and 3
30. The figure shows two concentric circleswith centre O and radii 3.5 m and 7 m . If $\angle \mathrm{BOA}=40^{\circ}$, find the area of the shaded region.

(a) $\frac{77}{6} \mathrm{~cm}^{2}$
(b) $\frac{76}{5}$
(c) $\frac{73}{6}$
(d) None of these
31. The points $(a, b),\left(a^{1}, b^{1}\right)$ and $\left(a-a^{1}, b-b^{1}\right)$ are collinear if
(a) $a b=a^{1} b^{1}$
(b) $a b^{1}=a^{1} b$
(c) $\mathrm{a}=\mathrm{b}$
(d) $\quad a^{1}=b^{1}$
32. If $\cot \theta=\left(\frac{15}{8}\right)$, then evaluate $\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}$
(a) 1
(b) $\frac{225}{64}$
(c) $\frac{156}{7}$
(d) -1
33. If a letter is chosen at random from the letter of English alphabet, then the probability that it is a letter of the word 'DELHI' is
(a) $\frac{1}{5}$
(b) $\frac{1}{26}$
(c) $\frac{5}{26}$
(d) $\frac{21}{26}$
34. What is the largest number that divides 70 and 125 , leaving remainders 5 and 8 respectively?
(a) 13
(b) 9
(c) 3
(d) 585
35. Find area of minor segment made by a chord which subtends right-angle at the centre of a circle of radius 10 cm .
(a) $24.5 \mathrm{~cm}^{2}$
(b) $25.5 \mathrm{~cm}^{2}$
(c) $24.5 \mathrm{~cm}^{2}$
(d) $28.5 \mathrm{~cm}^{2}$
36. The diagonal BD of a parallelogram ABCD intersects the segment AE at the point F , where E is any point on the side BC . Then

(a) $\frac{\mathrm{EF}}{\mathrm{FA}}=\frac{\mathrm{FB}}{\mathrm{AB}}$
(b) $\mathrm{DF} \times \mathrm{EF}=\mathrm{FB} \times \mathrm{FA}$
(c) $\mathrm{DF} \times \mathrm{EF}=(\mathrm{FB})^{2}$
(d) None of these
37. If $P=(2,5), Q=(x,-7)$ and $P Q=13$, what is the value of ' x '?
(a) 5
(b) 3
(c) -3
(d) $\quad-5$
38. If $\left(\sec ^{2} \theta\right)(1+\sin \theta)(1-\sin \theta)=k$, then find the value of k.
(a) $\sin \theta$
(b) $\sec \theta$
(c) 1
(d) $\cot \theta$
39. What is the largest number that divides 245 and 1029 , leaving remainder 5 in each case?
(a) 15
(b) 16
(c) 9
(d) 5
40. If p, q are two consecutive natural numbers, then H.C.F. (p, q) is
(a) p
(b) q
(c) 1
(d) $p q$

SECTION-C

Case Study Based Questions:

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

Q 41. - Q 45 are based on case study-I

Case Study-I

Soniya and Anuj are students of class X and they given a polynomial such that "If one zero of the polynomial $3 x^{2}-8 x+2 k+5$ is four times the other $4 x^{2}-12 x+3 k+8$.

Then, answer the following questions.
41. Find the sum of zeroes.
(a) 3
(b) 4
(c) $\frac{12}{3}$
(d) $\frac{12}{5}$
42. For quadratic polynomial $a x^{2}+b x+c, a \neq 0$, write the formula to find product of zeroes.
(a) $\frac{b}{a}$
(b) $-\frac{b}{a}$
(c) $-\frac{c}{a}$
(d) $\frac{c}{a}$
43. If α and β be the zeroes of given polynomial. Then, what is the relation between α and β ?
(a) $\alpha+\beta=4$
(b) $\alpha \beta=4$
(c) $\quad \beta=4 \alpha$
(d) $\alpha^{2}=16 \beta$
44. If α and β be the zeroes of the given polynomial, then find value of α.
(a) $\frac{1}{5}$
(b)
$\frac{7}{4}$
(c) $\frac{2}{5}$
(d) $\frac{3}{5}$
45. Find the value of k. If α and β be the zeroes of given polynomials.
(a) $\frac{56}{75}$
(b) $-\frac{56}{75}$
(c) $\frac{75}{56}$
(d) $\frac{65}{75}$

Q 46-Q 50 are based on case study-II

Case Study-II

A two digit number is obtained by either multiplying sum of the digits by 8 and adding 1 or by multiplying the difference of the digits by 13 and adding 2 .
If x be the digit in ten's place and y be the digit at unit place with $x>y$, then answer the following questions.
46. Find the equation corresponding to multiplying sum of the digits by 8 and adding 1 .
(a) $2 x-7 y=1$
(b) $2 x+7 y=4$
(c) $2 x-7 y=4$
(d) $2 x+7 y=1$
47. Find the equation corresponding to multiplying the difference of the digits by 13 and adding 2 .
(a) $14 y-3 x=2$ (b)
$3 x-14 y=4$
(c) $14 x-3 y=2$
(d) $3 y-14 x=6$
48. What is the value of x ?
(a) 2
(b) 3
(c) 4
(d) 5
49. What is the value of y ?
(a) 0
(b) 1
(c) 3
(d) 4
50. What is the number?
(a) 21
(b) 31
(c) 41
(d) 51

OMR ANSWER SHEET

Sample Paper No -
 \square

* Use Blue / Black Ball pen only.
* Please do not make any atray marks on the answer sheet.
* Rough work must not be done on the answer sheet.
* Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start time : \qquad End time Time taken

1. Name (in Block Letters)

2. Date of Exam

3. Candidate's Signature \square
SECTION-A

1.	(a)	(b)	(c)	(d)	9.	(a)	(b)	(c)	(d)	17.	(a)	(b)	(c)	(d)
2.	(a)	(b)	(c)	(d)	10.	(a)	(b)	(c)	(d)	18.	(a)	(b)	(c)	(d)
3.	(a)	(b)	(c)	(d)	11.	(a)	(b)	(c)	(d)	19.	(a)	(b)	(c)	(d)
4.	(a)	(b)	(c)	(d)	12.	(a)	(b)	(c)	(d)	20.	(a)	(b)	(c)	(d)
5.	(a)	(b)	(c)	(d)	13.	(a)	(b)	(c)	(d)					
6.	(a)	(b)	(c)	(d)	14.	(a)	(b)	(c)	(d)					
7.	(a)	(b)	(c)	(d)	15.	(a)	(b)	(c)	(d)					
8.	(a)	(b)	(c)	(d)	16.	(a)	(b)	(c)	(d)					

SECTION-B

SECTION-C

41.	(a)	(b)	(c)	(d)	45.	(a)	(b)	(c)	(d)	49.	(a)	(b)	(c)	(d)
42.	(a)	(b)	(c)	(d)	46.	(a)	(b)	(c)	(d)	50.	(a)	(b)	(c)	(d)
43.	(a)	(b)	(c)	(d)	47.	(a)	(b)	(c)	(d)					
44.	(a)	(b)	(c)	(d)	48.	(a)	(b)	(c)	(d)					

No. of Qns. Attempted		Correct		Incorrect		Marks

Page for Rough Work

