(Answer ALL questions)

- 56. A force of 100 N makes an angle of s with the x-axis and has a y-component of 30N. The x-component of the force and the angle s is given as
 - 1. 75.4 N, 16.5°
 - 2. 85.4 N, 26.50
 - 3. 95.4 N, 17.5°
 - 4. 105.4 N, 27.5°
- 57. An object, originally at the point (2,5,1) cm, is given a displacement 8i-2j+k cm. The coordinates of its new position is
 - 1. (10,2,3) cm
 - 2. (2,3,10) cm
 - 3. (10,3,2) cm
 - 4. (2,2,3) cm
- 58. A truck starts from rest and moves with a constant acceleration of 5m/s². The distance travelled by it after 4 s has elapsed is
 - 1. 40 m
 - 2. 30 m
 - 3. 20 m
 - 4. 10 m
- 59. Sinusoidal water waves are generated in a large ripple tank. The waves travel at 20 cm/s and their adjacent crests are 5 cm apart. The time required for each new whole cycle to be generated is
 - 1. 4.0 s
 - 2. 2.0 s
 - 3. 0.25 s
 - 4. 0.125 s
- 60. A fire whistle emits a tone of 170 Hz. Take the speed of sound in air to be 340 m/s. The wavelength of this sound is about
 - 1. 1.0 m
 - 2. 2.0 m
 - 3. 3.0 m
 - 4. 4.0 m

- 61. A source emits sound with a frequency of 1 KHz. It is moving at 20 m/s toward a stationary reflecting wall. If the speed of sound is 340 m/s an observer at rest directly behind the source hears a beat frequency of
 - 1. 11 Hz
 - 2. 86 Hz
 - 3. 97 Hz
 - 4. 118 Hz
- 62. It is more difficult to measure the coefficient of expansion of a liquid than that of a solid because
 - A liquid expands too much when heated
 - 2. the containing vessel also expands
 - 3. the containing vessel also shrinks
 - 4. A liquid tends to evaporate
- 63. A 70 dB intensity level sound about as a loud as a 60 dB level.
 - 1. two times
 - 2. four times
 - 3. seven times
 - 4. ten times
- 64. For antireflection coatings on eyeglasses, if the design wavelength is 500 nm (in air), the appropriate thickness of the film would be about
 - 1. 200 nm
 - 2. 100 nm
 - 3. 50 nm
 - 4. 25 nm
- 65. As light goes from one medium to another, it is bent away from the normal. Then
 - The second medium has a higher index of refraction than the first
 - 2. Dispersion must occur
 - The speed of the light has decreased
 - 4. The speed of the light has increased
- 66. The frequency of a radio wave with a wavelength of 10 m is equal to
 - 1. $6 \times 10^{14} \, \text{Hz}$
 - 2. $3 \times 10^7 \,\mathrm{Hz}$
 - 3. $6 \times 10^5 \,\mathrm{Hz}$
 - $6 \times 10^2 \,\mathrm{Hz}$

- 67. No fringes are seen in a single-slit diffraction pattern if
 - 1. the slit width is less than a wavelength
 - 2. the screen is far away
 - 3. the slit width is greater than a wavelength
 - 4. the wavelength is less than the distance to the screen
- 68. Bernoulli's equation can be derived from the conservation of
 - 1. mass
 - 2. angular momentum
 - 3. energy
 - 4. pressure
- 69. The equation of continuity for fluid flow can be derived from the conservation of
 - 1. mass
 - 2. energy
 - 3. volume
 - 4. pressure
- 70. Detergent of a fluid.
 - 1. Increases the surface tension
 - 2. reduces the surface tension
 - 3. decreases the viscosity
 - 4. increases the viscosity
- 71. Liquid flow through a smooth pipe is laminar as long as the Reynolds number is
 - 1. greater than 2000
 - 2. less than 2000
 - 3. zero
 - between 5000 to 10000
- 72. Charge is distributed uniformly on the surface of a spherical balloon with a point charge inside. The electrical force on a point charge is greatest when
 - 1. It is near the inside surface of the balloon
 - 2. It is at the center of the balloon
 - 3. It is halfway between the balloon center and the inside surface
 - 4. it is anywhere inside

- 73. What is the flux through one side of a cube that has a point charge $-2.0~\mu$ C at its center?
 - 1. $-3.8 \times 10^4 \text{ N.m}^2/\text{C}$
 - 2. $-3.8 \times 10^3 \text{ N.m}^2/\text{C}$
 - 3. -3.8 × 10² N.m²/C
 - 4. $-3.8 \times 10^{-6} \text{ N.m}^2/\text{C}$
- 74. When finding the potential energy due to four point charges, how many pairs of charges are there?
 - 1. Two pairs
 - 2. Four pairs
 - 3. Six pairs
 - 4. Eight pairs
- 75. A current of 0.5 A exists in a 60-ohm lamp. The applied potential difference is
 - 1. 15 V
 - 2. 30 V
 - 3. 60 V
 - 4. 120 V
- 76. A magnetic flied cannot
 - 1. exert a force on a charge
 - 2. accelerate a charge
 - 3. change the momentum of a charge
 - 4. change the kinetic energy of a charge
- 77. The emf developed in a coil X due to the current in a neighboring coil Y is proportional to the
 - 1. Thickness of the wire in X
 - 2. Rate of change of current in Y
 - 3. Magnetic field in X
 - 4. Rate of change of magnetic field in X
- 78. The energy of a magnetic dipole in an external magnetic field is least when
 - 1. the dipole moment is parallel to the field
 - 2. the dipole moment is perpendicular to the field
 - the dipole moment is anti-parallel to the filed
 - 4. the same energy is associated with all orientations

NG 17 (GROUP B)

- 79. A current of 10 A in a certain inductor results in a stored energy of 40 J. When the current is changed to 5 A in the opposite direction, the stored energy changes by
 - 1. 10 J
 - 2. 20 J
 - 3. 30 J
 - 4. 50 J
- 80. The area under the spectral radiancy curve has the significance of
 - 1. Energy
 - 2. Power/temperature
 - 3. Energy/temperature
 - 4. Power/area
- 81. How many of the 228 nucleons in the thorium nucleus are carried off by the alpha particles?
 - 1. Nalpha(1)
 - 2. Nalpha(2)
 - 3. Nalpha(3)
 - 4. Nalpha(4)
- 82. In Compton scattering from stationary particles the maximum change in wavelength can be made smaller by using
 - 1. higher frequency radiation
 - 2. more massive particles
 - 3. lower frequency radiation
 - 4. particles with greater charge
- 83. Of the following which is the best evidence for the wave nature of matter?
 - 1. the Compton effect
 - 2. the photoelectric effect
 - 3. the relationship between momentum and energy for an electron
 - 4. the reflection of electron by crystals
- 84. An electron in an L shell of an atom has the principal quantum number
 - 1. n=1
 - 2. n = 2
 - 3. n = 3
 - 4. n = infinity
- NG 17 (GROUP B)

- 85. The barrier to fusion comes about because protons
 - 1. repel each other electrically
 - attract each other via the strong nuclear force
 - attract neutrons via the strong nuclear force
 - 4. attract electrons electrically
- 86. Which of the following particles is stable?
 - 1. Proton
 - 2. Neutron
 - 3. Pion
 - 4. Muon
- 87. A muon cannot decay into two neutrinos. Of the following conservation laws, which would be violated if it did?
 - 1. energy
 - 2. Linear momentum
 - 3. Angular momentum
 - 4. acceleration
- 88. The nucleus of a copper atom contains how many protons?
 - 1. 1
 - 2. 6
 - 3. 16
 - 4. 29
- 89. For semiconductor material, its valence orbit is saturated when it contains
 - 1. 1 electron
 - 2. equal + and ions
 - 3. 4 electrons
 - 4. 8 electrons
- 90. When comparing the energy gap of germanium and silicon atoms, a silicon atom's energy gap is
 - 1. About the same
 - 2. lower
 - 3. higher
 - 4. unpredictable

- 91. The reverse current consists of minoritycarrier current and
 - 1. Avalanche current
 - 2. Forward current
 - 3. Zener current
 - 4. Surface leakage current
- 92. Which of the best description of a zener diode?
 - 1. It is a rectifier diode
 - 2. It is a constant voltage device
 - 3. It is a constant current device
 - 4. It works in the forward region
- 93. The base-emitter voltage of an ideal transistor is
 - 1. 0 V
 - 2. 0.3 V
 - 3. 0.7 V
 - 4. 1.2 V
- 94. To reduce the distortion of an amplified signal, you can increase the
 - 1. Collector resistance
 - 2. Emitter feedback resistance
 - 3. Generator resistance
 - 4. Load resistance
- 95. The emitter is at ac ground in a
 - CB stage
 - 2. CC stage
 - 3. CE stage
 - 4. EE stage
- 96. Electrical conductivity of intrinsic Si is of the order of
 - 1. 10-3(Ωm)-2
 - 2. 10-3 (Ωm)-1
 - 3. $10^3 (\Omega m)^{-1}$
 - 4. $10^3 (\Omega m)^{-2}$
- 97. At room temperature, a pure silicon crystal has hole concentration of the order of
 - 1. 1.5×10^{10} cm⁻⁶
 - 2. $1.5 \times 10^{10} \text{ cm}^3$
 - 3. $1.5 \times 10^{10} \text{ cm}^6$
 - 4. $1.5 \times 10^{10} \text{ cm}^{-3}$

- 98. Conduction in a metal is due to the drift of electrons
 - 1. Above the Fermi level
 - 2. Around the Fermi level
 - 3. Below the Fermi level
 - 4. Bottom of the valence band
- 99. In lithium the effective mass of the electron is equal to ————. (m is the mass of the electron)
 - 1. 1.28m
 - 2. 1.10m
 - 3. 0.99m
 - 4. 0.85m
- 100. For a bulk metal the density of states increases with energy as from bottom of the band.
 - 1. 1/E
 - 2. 1/E^{1/2}
 - 3. E1/2
 - 4. E
- 101. Fermi energy for a one-dimensional copper system, such as a wire is
 - 1. 0.82 eV
 - 2. 1.82 eV
 - 3. 2.82 eV
 - 4. 3.82 eV
- 102. The room temperature value of kT, (where k is the Boltzmann constant) is about
 - 1. 0.0013eV
 - 2. 0.0026eV
 - 3. 0.013eV
 - 4. 0.026eV
- 103. The Fermi temperature corresponding to Fermi energy = 7.0 eV for copper is about
 - 1. 71,900 K
 - 2. 81,900 K
 - 3. 1,900 K
 - 4. 8,100 K

NG 17 (GROUP B)

	can be described by the Lorentz	110. For higher resistivity and lower eddy current
104.		losses type applications, ———
	oscillator model.	magnetic materials are used.
	1. dielectric resonance	1. silicon iron
	2. ionic polarization	· 2. ferrite
	3. electronic polarization	3. metallic glasses
	4. dipolar polarization	4. supermalloy
105.	provides a way to calculate the	111. Type II superconductors have —
	electric displacement.	critical magnetic field.
	1. Local field	1. one
	2. Gauss's law for free charges	2. four
	3. Boltzmann distribution	3. three
	4. Induced dipole moment	4. two
100	Lorentz relation does not apply to	112. When a sample of mercury is cooled below
106.		, then it behaves as a
		superconductor.
	2. glasses	1. 4.2 K
	3. cubic crystals	2. 6.2 K
	4. noncrystalline materials	3. 8.2 K
107.	Total current threaded per unit current is	4. 10 K
	called as	113. The superconductor is a perfect ———.
	. 9 . 924	1. paramagnet
		2. diamagnet
	2. inductance	3. ferromagnet
	3. capacitance	4. ferrite
	4. magnetization	
108	. Antiferromagnetic materials are typically	114. Chiral angle determines the
		properties of the carbon nanotube.
	1. Organic materials	1. optical
	2. ferrites	2. electronic
	3. salts and oxides of transition metals	3. magnetic
	4. transition and rare earth metals	4. dielectric
109		115. The transportation of electrons inside a carbon nanotube is called
	interaction is approximately	1. random transport
	1. 0.7 eV	2. diffusive transport
	2. 0.3 eV	3. ballistic transport
	3. 0.02 eV	4. quantum transport
	4. 0.09 eV	4. quantum sunsp

