Marking scheme Compartment – 2019

CHEMISTRY (043)/ CLASS XII

56/1/3

SECTION A 1 Buta-1,3-diene, styrene or structures of monomers 2 Glucose + galactose OR 3 CH_3 - CH_2 - CH_3 4 No unpaired electron. OR 4 $[Fe(C_2O_4)_3]^{3^{-}}$; C_2O_4 is a didentate / chelating ligand so it is more stable 5 Phenol / C_6H_5OH SECTION B 6 a) P_4Q_3 b) Schottky defect, Due to comparable size of ions 7 For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$	1 1 1 1 1 1 1 1 1 1 1 1 1
Glucose + galactose OR CH ₃ -CH ₂ -CH ₃ No unpaired electron. OR [Fe(C ₂ O ₄) ₃] ³ ; C ₂ O ₄ ²⁻ is a didentate / chelating ligand so it is more stable Phenol / C ₆ H ₅ OH SECTION B a) P ₄ O ₃ b) Schottky defect, Due to comparable size of ions For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 pm \times 1.414$ $= 353.5 pm$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OR 3 CH ₃ -CH ₂ -CH ₃ 4 No unpaired electron. OR 4 [Fe(C ₂ O ₄) ₃] ³⁻ ; C ₂ O ₄ ²⁻ is a didentate / chelating ligand so it is more stable 5 Phenol / C ₆ H ₅ OH SECTION B 6 a) P ₄ Q ₃ b) Schottky defect, Due to comparable size of ions 7 For fcc, r = $\frac{a}{2\sqrt{2}}$ a= $2r \times \sqrt{2}$ = 2×125 pm $\times 1.414$ = 353.5 pm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c c} 3 & CH_3\text{-}CH_2\text{-}CH_3\\ 4 & No \ unpaired \ electron. \\ \hline & OR\\ 4 & [Fe(C_2O_4)_3]^{3^{-}} \ ; C_2O_4^{-2^{-}} \ is \ a \ didentate \ / \ chelating \ ligand \ so \ it \ is \ more \ stable\\ 5 & Phenol \ / \ C_6H_5OH \\ \hline & SECTION \ B\\ 6 & a) \ P_4Q_3 \\ b) \ Schottky \ defect, \ Due \ to \ comparable \ size \ of \ ions\\ 7 & For \ fcc, \\ r = \frac{a}{2\sqrt{2}} \\ a = 2r \times \sqrt{2} \\ = 2 \times 125 pm \times 1.414 \\ = 353.5 \ pm \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c c} 4 & \text{No unpaired electron.} \\ \hline & OR \\ \hline 4 & [Fe(C_2O_4)_3]^{3^-} \; ; C_2O_4^{-2^-} \; \text{is a didentate / chelating ligand so it is more stable} \\ \hline 5 & Phenol / C_6H_5OH \\ \hline & SECTION B \\ \hline 6 & a) P_4Q_3 \\ & b) \; \text{Schottky defect, Due to comparable size of ions} \\ \hline 7 & For fcc, \\ r = \frac{a}{2\sqrt{2}} \\ & = 2r \times \sqrt{2} \\ & = 2 \times 125 \text{pm} \times 1.414 \\ & = 353.5 \; \text{pm} \\ \hline \end{array} $	1 1 1 1/2, 1/2
$ \begin{array}{c c} & & & & & & & & & & & \\ \hline 4 & & & & & & & & & & \\ \hline 5 & & & & & & & & \\ \hline 5 & & & & & & & \\ \hline 5 & & & & & & & \\ \hline 6 & & & & & & \\ \hline 6 & & & & & & \\ \hline 6 & & & & & \\ \hline 6 & & & & & \\ \hline 7 & & & & & \\ \hline 1 & & & & & \\ \hline 2 & \times & 125pm \times 1.414 \\ & & & & & \\ \hline 2 & 353.5 \ pm \end{array} $	1/2,1/2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2,1/2
$ \begin{array}{c c} 5 & Phenol / C_6H_5OH \\ \hline & SECTION B \\ \hline 6 & a) P_4Q_3 \\ b) Schottky defect, Due to comparable size of ions \\ \hline 7 & For fcc, \\ r = \frac{a}{2\sqrt{2}} \\ a = 2r \times \sqrt{2} \\ & = 2 \times 125pm \times 1.414 \\ & = 353.5 \ pm \\ \hline \end{array} $	1/2,1/2
SECTION B 6 a) P_4Q_3 b) Schottky defect, Due to comparable size of ions 7 For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 pm \times 1.414$ $= 353.5 pm$	£ 3
6 a) P_4Q_3 b) Schottky defect, Due to comparable size of ions 7 For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 pm \times 1.414$ $= 353.5 pm$, o. 1
b) Schottky defect, Due to comparable size of ions For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 \text{pm} \times 1.414$ $= 353.5 \text{ pm}$	
For fcc, $r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 \text{pm} \times 1.414$ $= 353.5 \text{ pm}$	1 1/ 1/
$r = \frac{a}{2\sqrt{2}}$ $a = 2r \times \sqrt{2}$ $= 2 \times 125 \text{pm} \times 1.414$ $= 353.5 \text{ pm}$	1/2,1/2
= 2 × 125pm × 1.414 = 353.5 pm	1/2
= 353.5 pm	1/2
	1
$d = \frac{zM}{a^3 N_A}$	1/2
$a^3 = 4 \times 99 \text{ g mol}^{-1}$	1/2
3.04 g cm ⁻³ X 6.022 X 10 ²³ mol ⁻¹	
5.04 g Cili A 6.022 A 10 Hibi	1
3 - 21 C × 10 ⁻²³ cm ³ /Deduct helf magnitude if as most vinit is not given	\
$a^3 = 21.6 \times 10^{-23} \text{ cm}^3$ (Deduct half marks if correct unit is not given by	en)
a) Because Mn is in lower oxidation state of +2 in MnO whereas +7 in Mn $_2$ O $_7$.	
b) Because of almost similar atomic radii.	
y F Xe	1
a) ••••••••••••••••••••••••••••••••••••	
b) HF is formed , CaF ₂ + H ₂ SO ₄ \rightarrow 2HF + CaSO ₄ (Full marks to be awarded if only bale equation is given)	anced ½,½
10. CH ₃ -C=CH ₂	1,1
CH ₃ ; 2Methylpropene	
OR	

1
1/2,
1/2
one unit volume of ½,½
1.
docrooco
decreases. 1
nCO₃ while 1
t point of the
point of the 1
- sorm
blation and a second se
ge of carbon and 1+1
m blast furnace
(Any two) $\begin{vmatrix} 1 \end{vmatrix}$ e of the metal.
2 or the metal. 1,1
r up so [Ni(CO) ₄] is
rons, so $[Ni(CO)_4]^{2-}$ is
1
1
/ An experimentally ands.
or groups 1
1
her correct equation
33.1.232.24441011
•
or ne le

1.6	72+ . 2 7/-)	
16	$Zn^{2+} + 2e \rightarrow Zn(s)$	1
	$E_{Zn2+/Zn} = E^{o}_{Zn2+/Zn} - \frac{0.059}{2} log \frac{1}{[Zn2+]}$	1
	$E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} log \frac{1}{[0.01]}$	
		1
	$= -0.76 - \frac{0.059}{2} \log 10^2$	
	= -0.76 - 0.059 V	
	E _{Zn2+/Zn} = -0.819 V (Deduct half marks if correct unit is not given)	1
17	a) Because acid formed in the reaction provides H ⁺ which acts as a catalyst in hydrolysis.	1
	b) The solution becomes colourless because the molecules of methylene blue/ dye get adsorbed	1
	on the surface of charcoal.	
	c) Milk / Vanishing cream (or any other suitable example)	1
	OR	
17	a) Colloids which act as electrolytes at low concentration and show colloidal behaviour at high	1
	concentration.	
	b) The movement of colloidal particles towards a particular electrode under the influence of an	1
	electric field.	1
18	c) The potential difference between fixed layer and the diffused layer of opposite charges. k^2 Ea r 1 1	1/2
10	$\log \frac{\kappa 2}{k1} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$	/2
	4 10-2 EOLM	
	$\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 J K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] \text{K}^{-1}$	1
	2 × 10 2.505 × 0.511) It inot	
	$\log 3 = \frac{Ea}{10.15 \text{ January}} \left[\frac{320 - 300}{200 \text{ M}^{220}} \right]$	
	19.15 J mol -1 300 ×320	
	$0.4771 = \frac{Ea}{10.17 \cdot 10^{-1}} \left[\frac{20}{0.000000000000000000000000000000000$	
	$0.4771 - \frac{1}{19.15 \ J \ mol^{-1}} \ \frac{1}{300 \times 320}$	1/2
	Ea= 43855 J mol ⁻¹ or 43.855 kJ mol ⁻¹ (Deduct half marks if correct unit is not given)	1
	Ea= 43855 J mol ⁻¹ or 43.855 kJ mol ⁻¹ (Deduct half marks if correct unit is not given)	1
19.	a) Antiseptics – chemicals applied on living tissues to prevent the growth of	1/2 + 1/2
13.	microorganisms while disinfectants are applied on non-living tissues. Example: Antispetic-	1/2 + 1/2
	Dettol, Disinfectants- 1% phenol (or any other suitable example)	, , , , , ,
	b) It is needed by diabetic persons as it is excreated from the body in urine unchanged. /	1
	Reduces calories intake	
	OR	
19	i) Chemical compounds used for the treatment of stress and mental diseases.	1
	ii) Chemical compounds which stop overproduction of acid in stomach.	1
	iii) Chemical compounds which reduce or abolish pain without disturbing nervous system.	1
20.	a) Tetrafluoroethylene , CF ₂ =CF ₂	1/2 , 1/2
	b)	
	HOH ₂ C - CH ₂ OH HOOC COOH	1/ 1/
	Ethylene glycol Terephthalic acid	1/2,1/2
	(Ethane-1, 2 - diol) (Benzene-1,4 - di	
	carboxylic acid)	

	CN	1/2 , 1/2
	CH ₂ =CH-CH=CH ₂ CH ₂ =CH	AFFEX
	1,3-Butadiene Acrylonitrile c)	
21	a) i) CHO	
	$(CHOH)_4$ $\xrightarrow{HI, \Delta}$ $CH_3-CH_2-CH_2-CH_2-CH_3$	1
	CH ₂ OH	
	or n-Hexane is formed	
	ii)	
	CHO Conc. HNO3 Conc. HNO3	
	$(CHOH)_4 \longrightarrow (CHOH)_4$	1
	CH ₂ OH COOH	
	or Saccharic acid is formed b) Starch is a polymer of α -glucose while cellulose is a polymer of β -glucose.	1
22	Postaren is a polymer of a glacose write centrose is a polymer of p glacose.	
	$H-N-C-CH_3$ $H-N-C-CH_3$	1+1
		1+1
	a) A- Br 1 6 C i eW Platfol i	
	a) A= , B= , B= bi	1
23	R' S'R'	1
	$RCHO + RMgX \xrightarrow{H_2O} R-CH-OMgX \xrightarrow{H_2O} R-CH-OH$	
	a) (where R, R'= CH ₃)	
	OH ²	1
	CULCOCI Anhyd. AlCl ₃ COCH ₃	T 8
	b) c) Because phenoxide ion is more stable than ethoxide ion	1
24	a) i) Propene	1
	$_{\mathrm{NH_{2}}}^{\mathrm{+}}$ $_{\mathrm{NH_{3}}}^{\mathrm{+}}$	
		1
	SO_3H or SO_3	
	NC NC	
	b)Phenyl isocyanides /	1
	SECTION D	
25	A= S_8 / Sulphur $S_8 + 8 O_2 \rightarrow 8SO_2$ / $S + O_2 \rightarrow SO_2$	1 ½
	$B = SO_2$	1

(milky) Decolourises KMnO ₄ $2KMnO_4 + 5 SO_2 + 2H_2O \rightarrow 2 H_2SO_4 + 2MnSO_4 + K_2SO_4 / 2 MnO_4 + 5 SO_2 + 2H_2O \rightarrow 4 H^+ + 2Mn^{2+} + 5 SO_4^{2-}$ Reduces Fe ³⁺ to Fe ²⁺ $2Fe^{3+} + SO_2 + 2 H_2O \rightarrow 2 Fe^{2+} + SO_4^{2-} + 4H^+$ OR a) $H_2Te > H_2Se > H_2S > H_2O$ b) PCl ₄ , as phosphorous has 10 e which cannot be accommodated in sp ³ orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl ₃ hydrolyses in presence of moisture to give fumes of HCl / PCl ₃ + $3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions Reaction with 2,4-DNP	1 1 1 1 1 1 1 1 1 1
$2KMnO_4 + 5 SO_2 + 2H_2O \rightarrow 2 H_2SO_4 + 2MnSO_4 + K_2SO_4 / 2 MnO_4^- + 5 SO_2 + 2H_2O \rightarrow 4 H^+ + 2Mn^{2+} + 5 SO_4^{2-}$ $Reduces Fe^{3+} to Fe^{2+}$ $2Fe^{3+} + SO_2 + 2 H_2O \rightarrow 2 Fe^{2+} + SO_4^{2-} + 4H^+$ OR $a) H_2Te > H_2Se > H_2S > H_2O$ $b) PCl_4^- , as phosphorous has 10 e which cannot be accommodated in sp3 orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl a) Compound = Benzaldehyde or C_6H_5CHO Reactions$	1
Reduces Fe^{3+} to Fe^{2+} $2Fe^{3+} + SO_2 + 2 H_2O \Rightarrow 2 Fe^{2+} + SO_4^{2-} + 4H^+$ OR a) $H_2Te > H_2Se > H_2S > H_2O$ b) PCl_4 , as phosphorous has 10 e which cannot be accommodated in sp^3 orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCI / PCl_3 + 3H_2O \Rightarrow H_3PO_3 + 3HCI$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1 1 ½,½ 1 1
$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$ OR a) $H_2Te > H_2Se > H_2S > H_2O$ b) PCl_4^- , as phosphorous has 10 e which cannot be accommodated in sp ³ orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of HCl / $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1
a) $H_2Te > H_2Se > H_2S > H_2O$ b) PCl_4^- , as phosphorous has 10 e which cannot be accommodated in sp ³ orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of HCl / $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1 ½,½ 1 1 1 1 1 ½
b) PCl_4^- , as phosphorous has 10 e which cannot be accommodated in sp^3 orbitals. c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1 1 1 1 1 ½
c) Rhombic sulphur d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	½ , ½ 1 1 1
d) H_3PO_4 e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ a) Compound = Benzaldehyde or C_6H_5CHO Reactions	1 1/2
Reactions	1/2
	1/2
Reaction with 2,4-DNP $C = 0 + H_2 + NNH - NO_2$ H NO_2 NO_3 NO_4 $NO_$	1/2
$\begin{array}{c c} & & & & \\ & &$	1/2
C=NNH No ₂ Review	
With Tollens reagent $ \begin{array}{c} H \\ \text{arges} \end{array} $	1/2
2 \longrightarrow CHO + Conc. NaOH \longrightarrow \longleftrightarrow CH ₂ OH + \longleftrightarrow COONa	1
b) i)Add neutral FeCl₃ to both the compounds, phenol will give violet colour]	1
ii) Add NaHCO $_3$ to both the compounds, benzoic acid acid will give brisk effervescence of CO $_2$	1
OR	
a) A= CH ₃ COOH	1
	<u>1</u> 1
	1
b) HCOOH < CICH ₂ COOH < CCl ₃ COOH < CF ₃ COOH	1
$a)\Delta T_f = T_f^o - T_f = 273.15 - 271 \text{ K} = 2.15 \text{ K}$	
$\Delta T_f = K_f m$	1/2
b — a B C D b	(Where R= -C ₆ H ₅) fannizzaro 2 CHO + Conc. NaOH \longrightarrow CH ₂ OH + COONa 1) i)Add neutral FeCl ₃ to both the compounds, phenol will give violet colour] iii) Add NaHCO ₃ to both the compounds, benzoic acid acid will give brisk effervescence of CO ₂ OR 1) A= CH ₃ COOH 1= CH ₃ COOH 2= CH ₃ CONH ₂ 2= CH ₃ NH ₂ 1) HCOOH < CICH ₂ COOH < CCI ₃ COOH < CF ₃ COOH 1) $\Delta T_f = T_f^{\circ} - T_f = 273.15 - 271 \text{ K} = 2.15 \text{ K}$

	$K_f = \frac{2.15K \times 342 \ g \ mol^{-1} \times 95 \ g}{1}$	1/2
	$K_f = \frac{13.97 \text{ K kg mol}^{-1}}{5g \times 1000 \text{ g Kg}^{-1}}$	1/
	= 13.97 K kg moi	1/2
	For 5% glucose in water,	
	$\Delta T_f = K_f m$	
	$\Delta T_f = K_f \times \frac{w_b \times 1000}{M_{\odot}}$	
	$M_B \times w_A$	
	$_$ 13.97 K Kg mol $^{-1} \times 5g \times 1000$ g K $^{-1}$	
	$= \frac{3}{180 \ g \ mol^{-1} \times 95 \ g}$	1
	= 4.08K	1/2
	$T_f = T_f^{o} - \Delta T_f = 273.15 - 4.08 \text{ K} = 269.07 \text{ K}$	/2
	b) It is due to the fact that KCl dissociates to give K ⁺ and Cl ⁻ ions whereas urea does not dissociate into ions	1
	c) Liquids having similar nature and polarities / which obey Raoults' law	1
5	OR	
27		
	$\Delta T_f = K_f m$	
	$\Delta T_c = K_c \times \frac{w_b \times 1000}{}$	1
	$M_B \times w_A$ $M_B \times w_A$ $M_b \times w_b \times 1000$	
	$NA = V \times w_b \times 1000$	
	$M_b = K_f \times \frac{w_b \times 1000}{\Delta T_f \times w_A}$	1
	$= 5.12 \times \frac{1 \times 1000}{1 \times 1000}$	-
	$-3.12 0.40 \times 50$	
	dia's lais	
	$= 256 \mathrm{g mol^{-1}}$	1
	b) Higher the value of K_H , lower will be the solubility of a gas in the liquid.	1
	c) Low level of oxygen in the blood and tissues of people at high altitudes leads to	1
	the condition of anoxia.	

