Seat No._____

Instructions:

Time: 1 Hour 30 minutes

mstru	2. L 3. C 4. T	, Ensure that all pages are printed. Jse Black ball pen only Change in option is not allowed There is no negative marking Jse of non -programmable scientif	ic calculator	is allowed
1.	Tens	sile strength of brittle material i	S	ductile material.
	A C	Lower than	B	Higher than
		Equal to	D	None of these
2.	-	eated loading and unloading lea	ads to B	Ectique
	A C	Creep Tension	Б D	Fatigue Compression
3.	Whi	ch of the following crystal stru	ctures has a	in atom at the center of unit cell?
5.	A	FCC	B	HCP
	C	BCC	D	TCP
4.	Resi	stance to indentation or scratch	is called as	s
	А	Toughness	В	Ductility
	С	Malleability	D	Hardness
5.	Abil	ity of a material to be drawn in	to thin shee	et / plate is called
	А	Toughness	В	Ductility
	С	Malleability	D	Hardness
6.		t is atomic packing factor of si		
	A C	4 2	B	3
			D	1
7.	Whic	ch quenching media does provide	maximum h	ardness on material after quenching?
	А	Brine	В	Air
	С	Oil	D	Water
8.	Whic	ch non-destructive test is used to f	ind out hair	crack on plastic material?
	А	Liquid penetrate test	В	Magnetic particle test
	С	Ultrasonic test	D	Eddy current test
9.	The	following type of safety valve is n	nost suitable	for locomotive boiler
	А	Dead weight safety valve	В	Spring loaded safety valve
	С	Lever loaded safety valve	D	Low water high pressure safety valve
10.	A for	ur stroke petrol engine sucks durin	ng the suctio	n stroke
	А	Only air	В	Only fuel

	С	Mixture of fuel and air	D	Any one of above
11.	A 10	0 c.c. IC engine means that its		
	А	Swept volume is 100 c.c.	В	Clearance volume is 100 c.c.
	С	Clearance + swept volume is 100 c.c.	D	Swept – clearance volume is 100 c.c.
12.		e resistors, each having value of 0 e parallel combination is	.069MΩ, are	e connected in parallel. The total resistance
	А	23Ω	В	23ΚΩ
	С	204Ω	D	0.2Μω
13.	In an	electrical network, junction of bra	anches at a c	common point is called
	А	Loop	В	Mesh
	С	Node	D	Joint branch
14.	Kirch	hoff laws fail in the case of		
	А	linear networks	В	nonlinear networks
	С	dual networks	D	distributed parameter networks
15.	Princ	iple of statically induced emf is u	sed in	
	А	Transformer	В	electric motor
	С	Generator	D	Battery
16.	Primi	ing is required in		
	А	Gear pump	В	Screw pump
	С	Reciprocating pump	D	Centrifugal pump
17.	The t	usual expansion device used in wi	ndow air cor	nditioner is
	А	Capillary tube	В	Automatic expansion valve
	С	Float valve	D	Hand expansion valve
18.	The r	atio of the ultimate stress to the d	esign stress i	is known as
	А	Elastic limit	В	Strain
	С	Factor of safety	D	Bulk modulus
19.	The u	unit of linear acceleration is		
	А	Kg-m	В	m/s
	С	m/s ²	D	rad/s ²

20. The mechanism forms a structure, when the number of degree of freedom (n) of a mechanism is equal to

	А	0	В	1
	C	2	D	4
21.		of a Dual of given problem is	D	
21.	A	Primal	В	Dual
	C	Primal dual	D	None of these
22.		sportation problem is basically a	D	None of these
22.	A	Maximization model	В	Minimization model
	C	Transshipment problem	D	Iconic model
23.		I in operations research stands for	_	come model
23.		-		Value assessment method
	A	Value added method	B	Value assessment method
24	C	Vogel Adam method	D	Vogel's approximation method
24.		Assignment Problem of operations		
	A	Simplex method	В	Hungarian method
	C	Graphical method	D	Vector method
25.		p replacement policy is most suita		
	А	Trucks	В	Infant machines
	С	Street light bulbs	D	New cars
26.	The o	objective of Operations Research i	S	
	А	To find new methods of solving Problems	В	To derive formulas
	С	To utilize the services of scientists	D	Optimal utilization of existing resources
27.	Press	sure is defined as		
	А	Area per unit force	В	Force per unit volume
	С	Volume per unit force	D	Force per unit area
28.	Weig	th of any substance is defined as		
	А	Mass x gravitational acceleration	В	Mass x pressure
	С	Mass x force	D	Mass x density
29.	Force	e on piston is calculated as		
	А	Piston area x piston volume	В	Pressure x piston area
	С	Pressure x piston diameter	D	Pressure x temperature in cylinder

Page 3 of 11

30.	Twis	ting couple in a shaft introduces ir	ı it	
	А	Bending moment	В	Deflection
	С	Shear strain	D	Shear stress
31.	Mohi	r's circle can be used to determine	following st	tress on inclined surface
	А	Principal stress	В	Normal stress
	С	Tangential stress	D	Maximum shear stress
32.	Shear force diagram for a cantilever beam carrying a uniformly distributed load over its length is a			a uniformly distributed load over its
	А	Triangle	В	Rectangle
	С	Hyperbola	D	Parabola
33.	A ba	r when subjected to an axial pull P	,	
	A	Decrease in length and width and increase in thickness	В	Decrease in length and increase in width and thickness
	C	Increase in length and decrease in Width and thickness	D	Increase in length, width and thickness
34.	In the	e elastic region of material deform	ation stress i	s
	А	Not proportional to strain	В	Proportional to strain
	С	Unrelated to strain	D	None of these
35.	When	n the tool moves parallel to the lat	he axis, the r	novement is termed as
	А	Cross feed	В	Angular feed
	С	Rotational feed	D	Longitudinal feed
36.	A dy	namometer is a device used for the	e measureme	ent of
	А	Chip thickness ratio	В	Forces during metal cutting
	С	Wear of the cutting tool	D	Deflection of the cutting tool
37.	Long	and flat surfaces can be manufact	ured on	
	А	shaper	В	Planar
	С	Slotter	D	None of these
38.		t is the shape of cross section, whe long its axis?	en a cylinder	whose diameter is equal to its length, is
	А	Ellipse	В	Triangle
	С	Pentagon	D	Square
39.	Multi	ipoint cutting tools are used on		_ machine.

Page 4 of 11

	А	Lathe	В	Shaper
	С	Milling	D	None of the above
40.		nich view, true length of a line is s rtical plane.	een, when it	is parallel to horizontal plane and inclined
	А	Front view	В	Top view
	С	Side view	D	Both A and B
41.	Whic	h abrasives are used to make grind	ding wheel?	
	А	Graphite powder	В	SiC
	С	Granite	D	All of the above
42.	Diele	ctric fluid is used in	·	
	А	Electro chemical machining	В	Ultra sonic machining
	С	Electro discharge machining	D	Laser machining
43.	Whic	h of the following is not a require	ment of a go	ood pattern in casting process?
	А	It should be light in weight to handle easily	В	It should be smooth to make casting surface smooth
	С	It should have low strength to break it	D	none of the above
44.	Perm	eability can be defined as the prop	perty of mole	ling sand
	А	to allow gases to escape easily from the mold	В	to hold sand grains together
	С	to withstand the heat of melt without showing any sign of softening	D	none of the above
45.	Whic	h of the following production pro	cesses is leas	st flexible?
	А	Mass production	В	Batch production
	С	Job production	D	None of the above
46.	Temp	pering heat treatment is used for _		
	А	Hardening the component	В	Releasing internal stresses
	С	Producing martensite	D	Making brittle component
47.	Whic	h quantity can be measured by bo	urdon tube?	
	٨	Illumination	D	Valacity

A Illumination B Velocity

Page 5 of 11

	С	Resistance	D	Pressure
48.	The b	patteries are connected in series to	increase	·
	А	The voltage capacity	В	The current capacity
	С	Both A and B	D	None of the above
49.	The f	frequency of emf generated by a g	enerator dep	ends upon its
	А	Speed	В	Number of poles
	С	Both A and B	D	None of the above
50.	Carb	on brushes are used in electric mo	tors to	
	А	prevent sparking during commutation	В	provide a path for flow of current
	C	to deposit carbon on commutator	D	None of the above
51.		.C, for sensing the temperature in ected with	any processi	ing line, a temperature sensor can be
	А	Digital input card	В	Digital output card
	С	Analog input card	D	Analog output card
52.	A 16	bit address bus can generate		_ addresses.
	А	32737	В	65536
	С	25525	D	None of the above
53.	The l	eft side of any binary number is c	alled	
	А	Most significant bit	В	Least significant bit
	С	Medium significant bit	D	Low significant bit
54.	The s	software used to drive microproce	ssor-based s	ystems is called
	А	Assembly language	В	Firmware
	С	Machine language code	D	None of the above
55.	2-R r	robotic manipulator is a		robot.
	А	Planar	В	Spatial
	С	Both A and B	D	None of these
56.	SCA	RA robot has compliance for		
	А	Welding operation	В	Machining operation
	С	Spray painting operation	D	Assembly operation
57	Carte	sign robot configuration is used for	or	

57. Cartesian robot configuration is used for

Page 6 of 11

	А	Heavy load lifting operation	В	Accurate operation
	С	Both A and B	D	None of these
58.	Whic	h of the following can be used as	position sens	sor?
	А	Synchros	В	Encoder
	С	Potentiometer	D	All of these
59.		e center of Fourier transform of digital image frequency com vailable.		frequency components
	А	Low	В	Medium
	С	High	D	None of these
60.	Therr	nocouples are used to measure		·
	А	Pressure	В	Temperature
	С	Velocity	D	Current
61.	Open	-loop control system is		
	А	less accurate than closed-loop control system	В	more accurate than closed-loop control system
	С	equally accurate to closed-loop control system	D	cannot compare with each other
62.	Sever	al machine tools can be controlled	l by a centra	l computer in
	А	NC (Numerical Control) machine tool	В	CNC (Computer Numerical Control) machine tool
	C	DNC (Direct Numerical Control) machine tool	D	All of the above
63.	Robo	t force sensing is done by		
	А	Encoders	В	Strain gauge
	С	Synchros	D	Resolvers
64.	How	many gray levels are present in 8	bit system fo	or a digital image?
	А	256	В	128
	С	64	D	32
65.	Edge	enhancement in digital image is p	ossible with	the help of filters.
	А	Median	В	Average
	С	Low pass	D	High pass

66. Which of the following terms refers to the use of compressed gasses to drive (power) the automatic machine?

	А	piezo electric	В	Electric
	C	hydraulic	D	Pneumatic
67.	Rada	, infrared and ultrasound sensors	measure the	physical property.
	А	Pressure	В	Inclination
	С	Distance	D	Contact
68.	Acco	rding to Joule's law, the internal en	nergy of a pe	erfect gas is the function of absolute
	А	Temperature	В	Density
	С	Volume	D	Pressure
69.	How	is absolute pressure measured?		
	А	Gauge pressure x Atmospheric pressure	В	Gauge pressure / Atmospheric pressure
	C	Gauge pressure + Atmospheric pressure	D	Gauge pressure - Atmospheric pressure
70.	In an	isolated system, can be	transferred	between the system and its surrounding.
	А	only energy	В	only mass
	С	both energy and mass	D	neither energy nor mass
71.	Whic	h gears are used to connect two in	tersecting sh	aft axes?
	А	Crossed helical gear	В	Worm and worm wheel
	С	Bevel gears	D	All of the above
72.	Why	is an idler gear used in gear trains	?	
	А	To have required direction of rotation	В	To obtain minimum centre distance between driving and driven shaft
	С	To increase the speed	D	None of the above
73.	Whic	h type of bearings is known as ant	i friction bea	arings?
	А	Sliding contact bearings	В	Journal bearings
	С	Rolling contact bearings	D	All of the above
74.	Whic	h among the following is not a typ	e of Non-de	structive testing?
	А	compression test	В	visual observation
	С	ultrasonic testing	D	eddy current testing
75.	Whic	h type of mechanism is used in sh	aper machine	e?
	А	Four-bar chain mechanism	В	Lifting mechanism
	С	Quick return mechanism	D	Scaling mechanism

76.	Whic	h type of chips form while machin	ning of brittl	e materials?
	А	Discontinuous chips	В	Continuous chips
	C	Continuous chips with built-up edge	D	All of the above
77.	The c	putting tool removes the metal from	n workpiece	in the form of
	А	Solid blocks	В	Chips
	С	Both A and B	D	None of the above
78.	In wh	ich process the material is remove	ed due to the	e action of abrasive grains?
	А	Ultrasonic Machining (USM)	В	Electro-Chemical Machining (ECM)
	С	Laser Beam Machining (LBM)	D	Electrical Discharge Machining (EDM)
79.	The p	product of casting process is called	1	
	А	a mould	В	a cavity
	С	a pattern	D	a casting
80.	A Sin	e Bar is used to measure		
	А	Diameter	В	Thickness
	С	Width	D	Angle
81.	Whic	h function have Laplace Transform	m even it is i	not piecewise continuous in the range $t \ge 0$.
	А	$\frac{1}{\sqrt{t}}$	В	All of these
	С	$\frac{1}{\sqrt{t^3}}$	D	$\frac{1}{\sqrt{t^2}}$
82.	Comp	plemtry function of $(D^2 + 4)y = 1$	$\tan 200x$.	
	А	$(A\cosh 2x + B\sinh 2x)$	В	$(A\cos 2x + B\sin 2x)$
	С	$(A\cos 2x - B\sin 2x)$	D	$(A\cosh 2x - B\sinh 2x)$

83. In a Poisson distribution if 'n' is the number of trials and 'p' is the probability of success then the mean value is given by.

А	m= n.p	В	m= n.q
С	m= np (1-p)	D	m=p

84. It took 14 sec for a mercury thermometer to rise from $-19^{\circ}C$ to $100^{\circ}C$ when it was taken from a freezer and placed in boiling water. Somewhere along the way the mercury was rising at the rate of ______ *C/sec*.

Page 9 of 11

	А	5	H	3	8.5
	С	10	Ι	J	12
85.	The v	alue of c in Rolle's theorem for	the fun	ction f	$f(\mathbf{x}) = \frac{\Box(\Box + I)}{\Box}$ defined on [-1,0] is.
	А	0.5	I	3	$(1+\sqrt{(5)})/2$
	С	$(1 - \sqrt{(5)})/2$	Ι	C	-0.5
86.					
00.		Particular integral of $(D^2 + a^2)y$	= s1n a F		
	А	$\frac{x}{2a}\cos ax$	1	J	$-\frac{x}{2a}\cos ax$
	С	$-\frac{ax}{2}\cos ax$	Ι)	$\frac{ax}{2}\cos ax$
87.		n of binomial probability distributes of binomial distribution.	tion is a	857.6	and probability is 64% then number of
	А	1040	В		1340
	С	1240	D		1140
88.	f(Z	$) = \overline{Z}$ is differnabel.			
	А	Nowhere	В		Only at Z=0
	С	Every Where	D		Only at Z=1
89.	The r	residue of $f(Z) = \cot Z$ at each p	ole is.		
	А	0	В		1
	C	0.5	D		None
90.		to the termination of te	find th	e root	t of the equation $x^2-2=0$. If iterations are
	А	converge to -1	I	3	converge to $\sqrt{2}$
	С	converge to $-\sqrt{2}$	Ι)	not converge
91.	L(si	nh at) is			
	А	e^{at}	H	3	S
	~		-	_	$\frac{s}{s^2-a^2}$
	С	$\frac{a}{s^2-a^2}$	Ι)	Exists only if 't' is complex.
92.					
	The p	poles of $f(Z) = \frac{Z^2 + 1}{1 - Z^2}$ is			
	А	1		В	-1
02	A C	1 1,-1		B D	-1 0
93.	A C	1			
93.	A C	1 1,-1	В		
93. 94.	A C The v A C	1 1,-1 value of $\int_{-\infty}^{\infty} e^{-t} \sin(t) dt = ?$	D	D	0 0.25 0.12

А	dy 2	В	dy 2 2
	$\frac{dy}{dt} + x^2 y = \cos x$		$\frac{dy}{dx} + y^2 x = x^2$
	dx		dx

Page 10 of 11

MC

	С	$(x+y)\frac{dx}{dy} + y = 0$	D	$\frac{dy}{dx} + y(x+y) = x^2$	
95.	The convergence of which of the followings method is sensitive to starting value?				
	А	False position	В	Gauss seidal method	
	С	Newton-Raphson method	D) All of these	
96.	If $f(a) = 0$ and $f'(a) \neq 0$, then Z=a is called a				
	А	Simple zero	В	Simple curve	
	С	Zero of order n	D	None	
97.	The minimum value of sec x, x $\in \left[\frac{2\pi}{3}, \pi\right]$ is				
	А	1	В	-1	
	С	2	D	π	
98.	$L(\cosh at)$ is.				
	А	$\frac{s}{s^2-a^2}$	В	s + a	
		$s^2 - a^2$		$\frac{s+a}{s-a}$	
	С	Indeterminate	D	$\left(\sinh(at)\right)^2$	
99.	If $u(x, y, z) = \sqrt{x^3 + y^3 + z^3 + 3xyz}$, then degree of $u =$				
	А	3/2	В	2	
	С	1	D	1/2	
100.	Using trapezoidal rule, taking 10 equal interval $\int_{0}^{1} \sin x dx$ will be				
	А	1.902	В	1.941	
	C	1.888	D	1.984	
	-				

Page 11 of 11

