Sample Paper

Time : 90 Minutes

General Instructions

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
- 3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
- 4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
- 5. *There is no negative marking.*

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

- If x + y = 1, then $x^3 + y^3 + 3xy = \dots$ 1. (a) 0 (b) 1 2 None of these (c) (d) 2. Find a point on the x-axis which is equidistant from the points (5, 4) and (-2, 3). (b) (0, 3) (-2, 2)(3, 0)(a) (2, 0)(c) (d) 3. Two numbers differ by 3 and their product is 54. Find the numbers. (a) 9 and 6 (b) -9 and -6(c) Both (a) and (b) (d) 9 and -4A railway half -ticket costs half the full fare but the reservation charges are the same on a half ticket as on full ticket. One 4. reserved first class ticket from station A to station B costs ₹ 2125. Also, one reserved first class ticket and one reserved half first class ticket from A to B costs ₹ 3200. Find the full fare from station A to B and also the reservation charges for a ticket. (a) ₹1100, ₹15 (b) ₹2100, ₹25 (c) ₹ 1000, ₹ 25 (d) ₹2000,₹40 $\frac{\tan\theta - \cot\theta}{\sin\theta\cos\theta}$ is equal to 5. (b) $\cot^2 \theta - \tan^2 \theta$ (c) (a) $\sec^2 \theta + \csc^2 \theta$ $\cos^2\theta - \sin^2\theta$ (d) $tan^2\theta - cot^2\theta$ 6. I. The L.C.M. of *x* and 18 is 36. II. The H.C.F. of *x* and 18 is 2. What is the number *x* ? (a) 1 (b) 2 (c) (d) 4 3
- 7. In the figure, ABC is a triangle in which AD bisects $\angle A$, AC = BC, $\angle B$ = 72° and CD = 1cm. Length of BD (in cm) is

Max Marks: 40

SP.	20						Wathematics			
	(a) 1	(b)	$\frac{1}{2}$	(c)	$\frac{\sqrt{5}-1}{2}$	(d)	$\frac{\sqrt{3}+1}{2}$			
8.	C is the mid-point of PQ, if P is $(4, x)$, C is $(y, -1)$ and Q is $(-2, 4)$, then x and y respectively are									
	(a) -6 and 1	(b)	-6 and 2	(c)	6 and – 1	(d)	6 and – 2			
9.	If in a lottery, there are 5	prizes	and 20 blanks,	then the	probability of ge	tting a pri	ze is			
	(a) $\frac{2}{5}$	(b)	$\frac{4}{5}$	(c)	$\frac{1}{5}$	(d)	1			
10.	If $a = 2^3 \times 3$, $b = 2 \times 3 \times 3$	5, c =	$3^n \times 5$ and							
	L.C.M. $(a, b, c) = 2^3 \times 3^2 \times 5$, then $n =$									
	(a) 1	(b)	2	(c)	3	(d)	4			
11.	The area of a circular ring	, form	ed by two conc	entric cir	cles whose radii	are 5.7 cm	n and 4.3 cm respectively is			
	(Take $\pi = 3.1416$)									
	(a) 43.98 sq.cm	(b)	53.67 sq. cm	(c)	47.24 sq.cm	(d)	38.54 sq.cm			
12.	The areas of two similar t	riangl	es are 81 cm ² a	nd 49 cm	² respectively, th	en the rat	io of their corresponding medians is			
	(a) 7:9	(b)	9:81	(c)	9:7	(d)	81:7			
13.	If $\frac{\cos\theta}{1-\sin\theta} + \frac{\cos\theta}{1+\sin\theta} = 4$,									
	(a) $\cos\theta = \frac{\sqrt{3}}{2}$		2				$\tan \theta = \frac{1}{\sqrt{3}}$			
14.	The ratio in which the poi									
	(a) $2:3, y=3$				3:2, y=3					
15.	In a number of two digits, is	unit's	digit is twice th	e tens dig	git. If 36 be added	to the nur	nber, the digits are reversed. The number			
	(a) 36	(b)	63	(c)	48	(d)	84			
16.	Two coins are tossed simu	ıltane	ously. The prob	ability of	f getting at most of	one head	is			
17.	(a) $\frac{1}{4}$ $\triangle ABC$ is an equilateral triangle		$\frac{1}{2}$ with each side				1 value of <i>AD</i> is			
	(a) $\sqrt{3}$	-	$\sqrt{3} p$	(c)	2 <i>p</i>	(d)	4 <i>p</i>			
18.	Lowest value of $x^2 + 4x + 4x$		$\sqrt{3}P$	(•)	- P	(0)	Υ.			
10.			2	(a)	2	(4)	1			
10	$\begin{array}{c} (a) 0 \\ \end{array}$		-2	(c)	2	(d)	4			
19.	Ratio in which the line $3x$	-		_						
	(a) 3:5	(b)	4:6	(c)	4:9	(d)	None of these			

SP-26

Sample Paper-4

21. If the value of a quadratic polynomial p(x) is 0 only at x = -1 and p(-2) = 2, then the value of p(2) is

- (a) 18 (b) 9 (c) 6 (d)
- 22. Which of the following is not correct?
 - (a) If the diagonals of a quadrilateral divide each other proportionally, then it is a trapezium.
 - (b) The line segments joining the mid-points of the adjacent sides of a quadrilateral form a parallelogram.
 - (c) If corresponding sides of two similar triangles are in the ratio 4 : 5, then corresponding medians of the triangles must be in the ratio 4 : 5.
 - (d) None of the above
- **23.** If 5 θ and 4 θ are acute angles satisfying

 $\sin 5\theta = \cos 4\theta$, then $2\sin 3\theta - \sqrt{3} \tan 3\theta$ is equal to

(a)
$$\sin 2\theta$$
 (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0

24. Determine the value of k for which the following system of equations becomes consistent : 7x - y = 5, 21x - 3y = k.

	(a) $k = 15$		(c)	k = 4	(d)	$k = \frac{11}{2}$
25.	If α and β are the zeroes of $\beta(\alpha) = 2^{2}$	1 /				
		t $\alpha - \beta = 1$, the value of K is-		4	(1)	1
	(a) 12	(b) 6	(c)	4	(d)	I
26.	$\frac{2\tan 30^{\circ}}{1+\tan^2 30^{\circ}}$ is equal to					_
	(a) sin 30°	(b) cos 60°	(c)	$\frac{1}{2}$	(d)	$\frac{\sqrt{3}}{2}$
27.	Find the largest number of	four digits exactly divisible l	oy 12, 15	, 18 and 27.		
	(a) 9720	(b) 9728	(c)	9270	(d)	7290
28.	The point on the X-axis wh	hich is equidistant from the po	pints $A(-2)$	(2, 3) and $B(5, 4)$ is	5	

(a) (0, 2) (b) (2, 0) (c) (3, 0) (d) (-2, 0)

SP-27

3

SP-	28						Mathematics
29.	The length of the side of a s	quare	whose diagonal is 16 cm,	is			
	(a) $8\sqrt{2}$ cm	(b)	$2\sqrt{8}$ cm	(c)	$4\sqrt{2}$ cm	(d)	$2\sqrt{2}$ cm
30.	If $3x + 4y : x + 2y = 9 : 4$, ther	3x + 5y : 3x - y is equal	al to			
	(a) 4:1		1:4	(c)	7:1	(d)	1:7
31.	An urn contains 6 blue an then ' a ' is equal to	d 'a'	green balls. If the probal	oility of d	rawing a green ba	ll is doub	ble that of drawing a blue ball,
	(a) 6	(b)	18	(c)	24	(d)	12
32.	If $x = 0.\overline{7}$, then $2x$ is						
	(a) 1. 4	(b)	1.5	(c)	1.54	(d)	1.45
33.	The point which divides the	e line	joining the points $A(1, 2)$	and $B(-1)$, 1) internally in t	he ratio 1	: 2 is
	(a) $\left(\frac{-1}{3}, \frac{5}{3}\right)$	(b)	$\left(\frac{1}{3},\frac{5}{3}\right)$	(c)	(-1, 5)	(d)	(1, 5)
34.	x and y are 2 different digitized value of $x + y$ is	its. If	the sum of the two digit	numbers	formed by using	both the	digits is a perfect square, then
	(a) 10	(b)	11	(c)	12	(d)	13
35.	The areas of two similar the	riangl	es <i>ABC</i> and <i>PQR</i> are in t	the ratio 9	9 : 16. If <i>BC</i> = 4.5	cm, then	the length of QR is
	(a) 4 cm	(b)	4.5 cm	(c)	3 cm	(d)	6 cm
36.	If cosec $A + \cot A = \frac{11}{2}$, t	hen ta	an A				
	(a) $\frac{21}{22}$	(b)	$\frac{15}{16}$	(c)	$\frac{44}{117}$	(d)	$\frac{11}{117}$
37.	The centroid of the triangl	le who	ose vertices are $(3, -7)$, (-8, 6) and	d (5, 10) is		
	(a) (0,9)	(b)	(0, 3)	(c)	(1, 3)	(d)	(3, 5)
38.	A single letter is selected a	at ran	dom from the word "PRO	OBABIL	ITY". The probabi	ility that t	the selected letter is a vowel is
	(a) $\frac{2}{11}$	(b)	$\frac{3}{11}$	(c)	$\frac{4}{11}$	(d)	0
39.	On dividing a natural num number lies between 500 a				-	-	21, the remainder is 11. If the
	(a) 4	(b)	6	(c)	9	(d)	13
40.	If $\triangle ABC \sim \triangle APQ$ and ar (ΔAPQ	$(\Delta ABC) = 4 \text{ ar } (\Delta ABC), \text{ then the set of } (\Delta ABC)$	e ratio of	<i>BC</i> to <i>PQ</i> is		
	(a) 2:1	(b)	1:2	(c)	1:4	(d)	4:1

Sample Paper-4

SECTION-C

Case Study Based Questions:

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

Q 41. - Q 45 are based on case study-I

Case Study-I

Students of class X make a design such that, the area of an equilateral triangle ABC is 17320.5 cm2. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle.

(Use $\pi = 3.14$ and $\sqrt{3} = 1.73205$)

Answer the following questions.

41. Find the length of side of DABC.

	(a) 200 cm	(b)	105.5 cm	(c)	210.3 cm	(d)	200.5 cm			
42.	Find the radius circle.									
	(a) 200 cm	(b)	20 cm	(c)	10 cm	(d)	100 cm			
43.	Find the area of each sector.									
	(a) 5233.3 cm^2	(b)	5223.3 cm ²	(c)	4233.3 cm ²	(d)	522.2 cm^2			
44.	Find the area of the shaded region.									
	(a) 17320.5 cm^2	(b)	1620.5 cm^2	(c)	15700 cm^2	(d)	31400 cm ²			
45.	Find the perimeter of DABC.									
	(a) 60 cm	(b)	400 cm	(c)	600 cm	(d)	300 cm			
~										

Q 46 - Q 50 are based on case study-II

Case Study-II

On school sport day, a sport teacher make a racing track whose left and right ends are semicircular shown in figure.

SP-29

Mathematics

SP-30

The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide then answer the following questions.

46.	Find the radius of inner semicircular end.								
	(a) 30 m	(b)	60 m	(c)	10 m	(d)	40 m		
47.	Find the radius of outer semicircular end								
	(a) 30 m	(b)	50 m	(c)	40 m	(d)	70 m		
48.	The distance around the track along its inner edge is:								
	(a) 423.57 m	(b)	400.57 m	(c)	400.32 m	(d)	400 m		
49.	The distance around the track along its outer edge is:								
	(a) 462.43 m	(b)	461.43 m	(c)	463 m	(d)	463.43 m		
50.	Find the area of the track.								
	(a) 4320 m^2	(b)	4230 m^2	(c)	2340 m ²	(d)	4120 m^2		