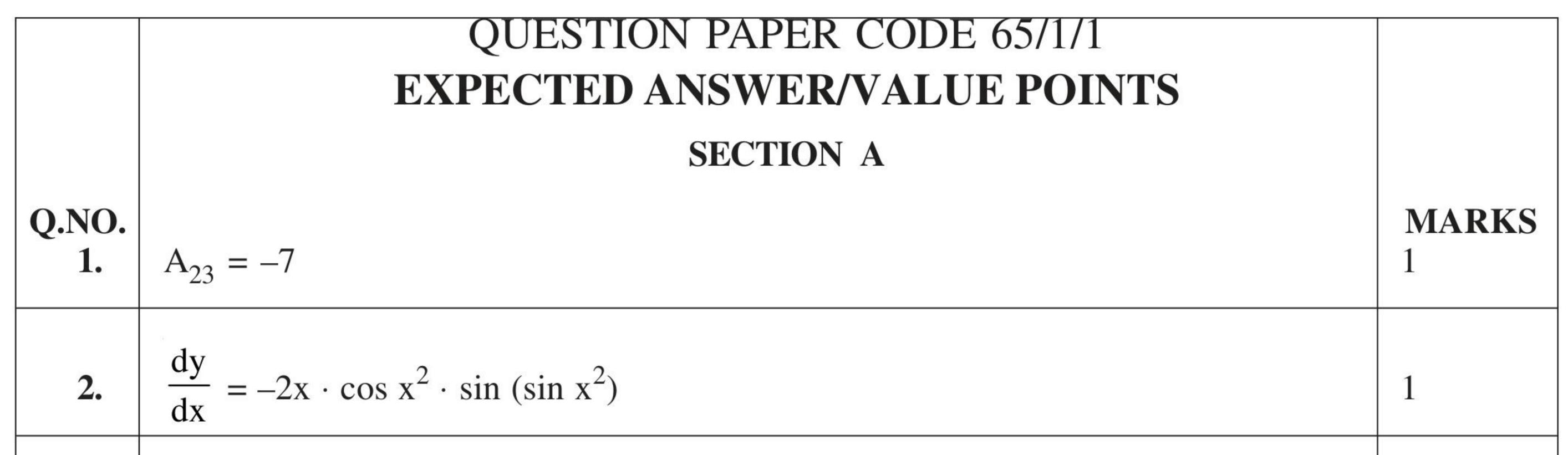
CBSE Class 12 Mathematics Compartment Answer Key 2019 (July 2, Set 1 - 65/1/1)

65/1/1



3.
 Order = 2, Degree = 1

$$\frac{1}{2} + \frac{1}{2}$$

 4.
 Required length = $\sqrt{3^2 + (-4)^2} = 5$
 $\frac{1}{2} + \frac{1}{2}$

 OR
 $\hat{n} = \frac{1}{3}(2\hat{i} - \hat{j} + 2\hat{k})$
 $\frac{1}{2}$

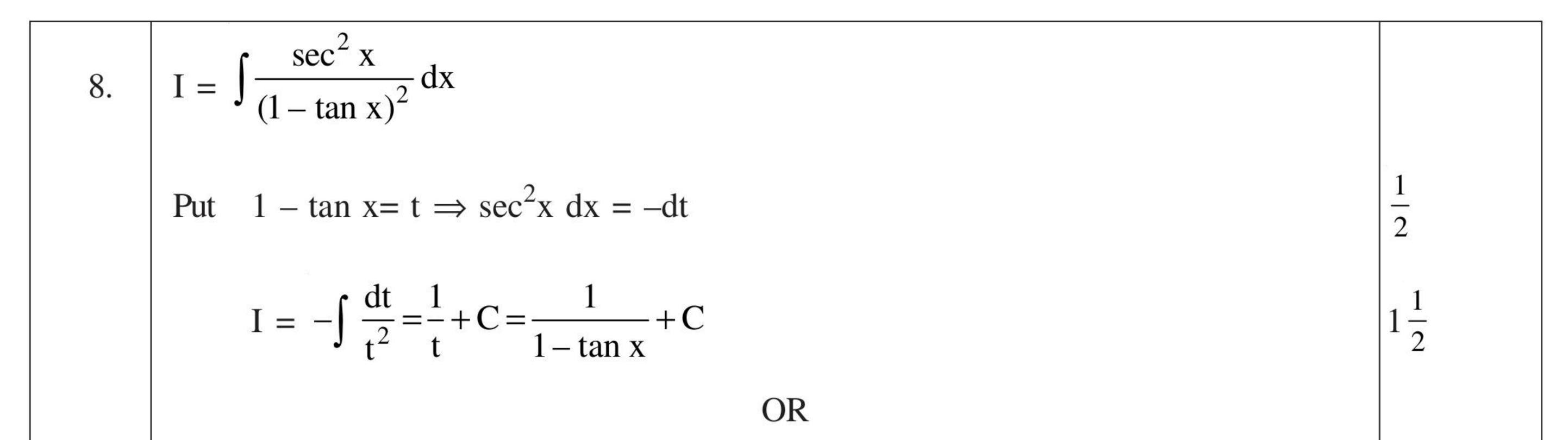
 Equation of plane is $\vec{r} \cdot \hat{n} = d$ i.e. $\vec{r} \cdot \frac{1}{3}(2\hat{i} - \hat{j} + 2\hat{k}) = 5$
 $\frac{1}{2}$

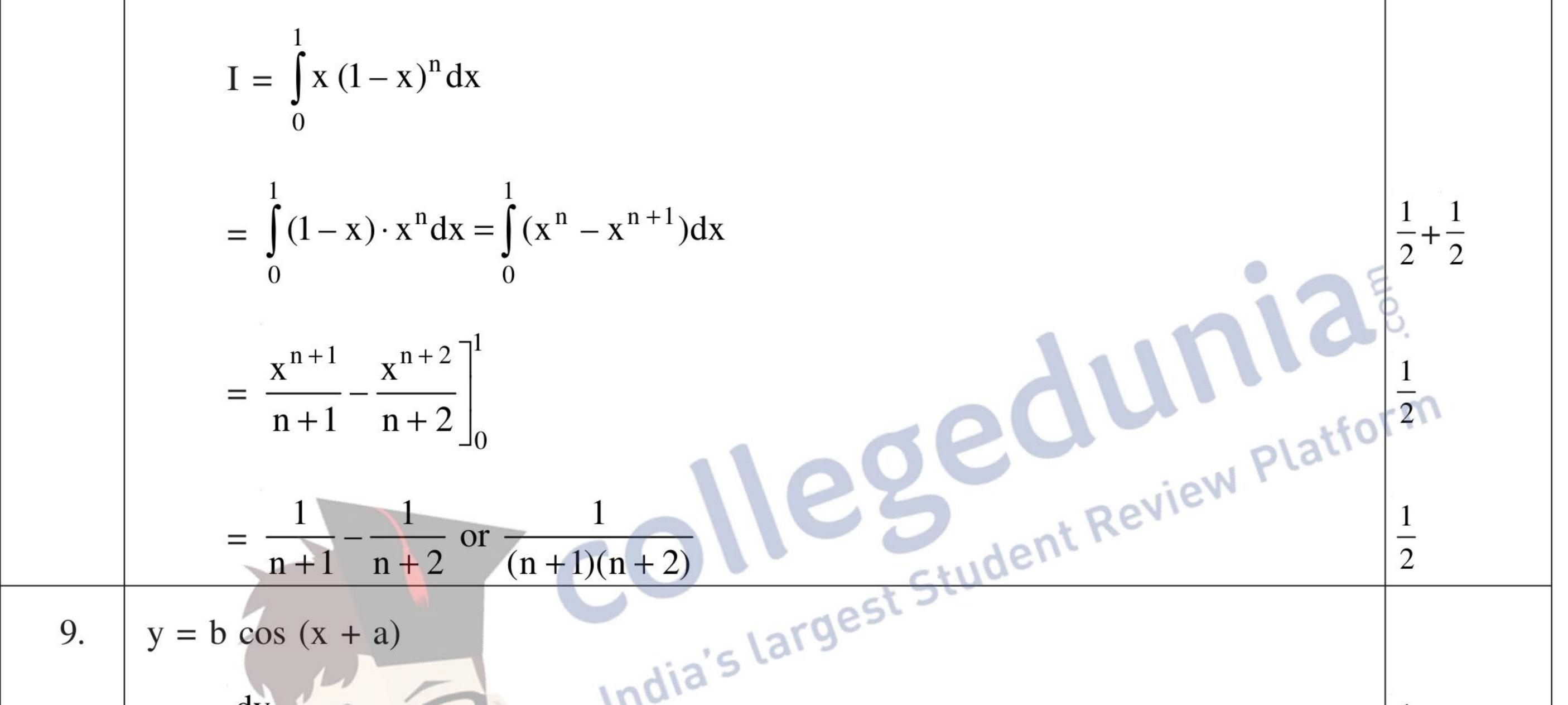
 or $\vec{r} \cdot (2\hat{i} - \hat{j} + 2\hat{k}) = 15$
 $\frac{1}{2}$

5.	$fof(x) = f(f(x)) = f((3 - x^3)^{1/3})$	$\frac{1}{2}$
	$= [3 - \{(3 - x^3)^{1/3}\}^3]^{1/3} = x$	$1\frac{1}{2}$
6.	$A^{-1} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	$\frac{1}{2}$
	$(AB)^{-1} = B^{-1}.A^{-1}$	
	$= \begin{bmatrix} 3 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 12 & 19 \\ -3 & -5 \end{bmatrix}$	$1\frac{1}{2}$

(1)

65/1/1





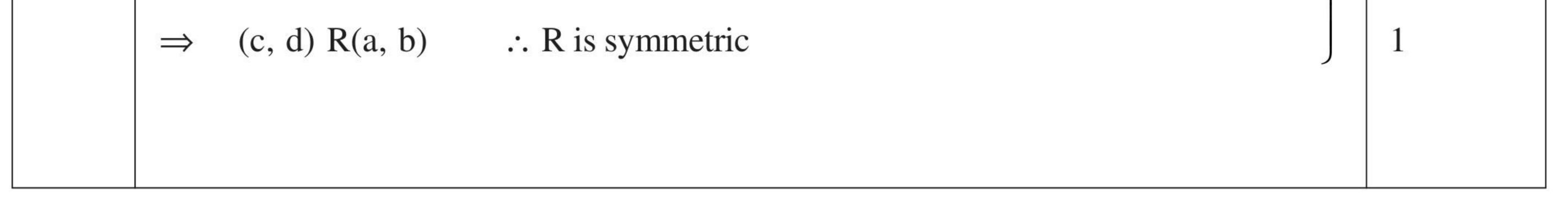
	\Rightarrow	$\frac{dy}{dx} = -b \sin(x + a)$ India 5	$\frac{1}{2}$	
		$\frac{d^2y}{dx^2} = -b \cos(x+b)$	1	
	\Rightarrow	$\frac{d^2 y}{dx^2} = -y$	$\frac{1}{2}$	
	or	$\frac{d^2y}{dx^2} + y = 0$	2	
10.	ā×b	$\hat{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 8 \end{vmatrix} = 7\hat{i} - 4\hat{j} - 4\hat{k}$	1	

(2)

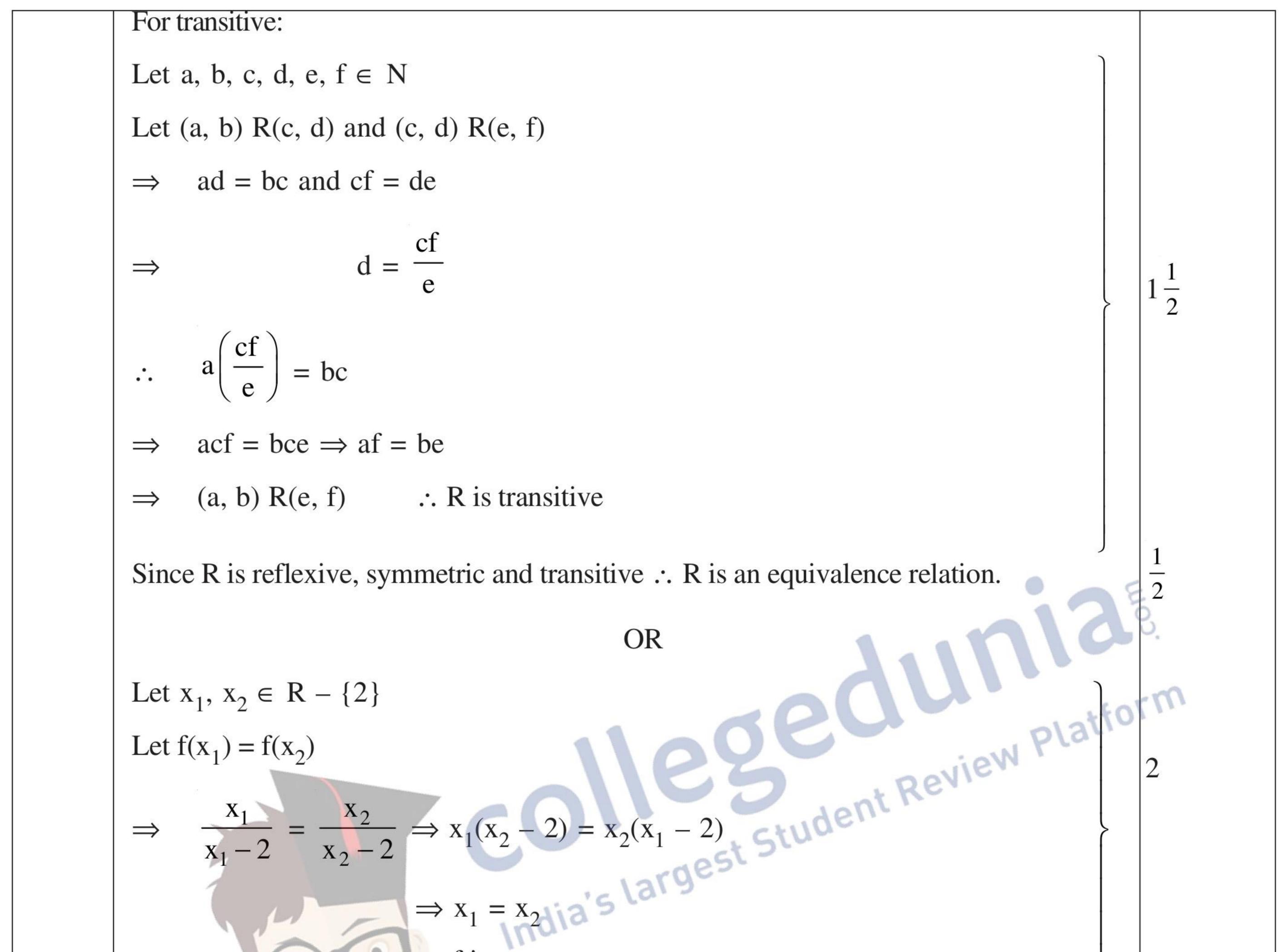
*These answers are meant to be used by evaluators

$$\begin{vmatrix} = \frac{1}{9}(7\hat{i} - 4\hat{j} - 4\hat{k}) & 1 \\ OR & 1 \\ (\vec{a} + \lambda\vec{b}) \perp \vec{c} \Rightarrow (\vec{a} + \lambda\vec{b}) \cdot \vec{c} = 0 & \frac{1}{2} \\ \Rightarrow [(2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}] \cdot (3\hat{i} + \hat{j}) = 0 & \frac{1}{2} \\ \Rightarrow 3(2 - \lambda) + 1.(2 + 2\lambda) = 0 \Rightarrow \lambda = 8 & 1 \\ 11. P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} \frac{P(B)}{P(B)} & 1 \\ = 0.3 & 1 \\ OR & 1 \\ Required probability = \frac{3}{5} \times \frac{3}{7} + \frac{2}{5} \times \frac{4}{7} = \frac{17}{35} & 1 \\ 12. Required probability = 1 - P(problem is not solved) & 1 \\ = 1 - P(A' \cap B' \cap C') & 1 \\ = 1 - P(A') \cdot P(B') \cdot P(C') & \frac{1}{2} \\ \end{vmatrix}$$

	$= 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{3}{4}$	$\frac{2}{\frac{1}{2}}$	
	SECTION C		
13.	For reflexive:		
	As $ab = ba$	1	
	$\Rightarrow (a, b) R(a, b) \therefore R \text{ is reflexive} \qquad \int$		
	For symmetric:		
	Let (a, b,) R (c, d)		
	\Rightarrow ad = bc		
	\Rightarrow cb = da		



65/1/1



$$\Rightarrow x_{1} = x_{2}$$

$$\Rightarrow f \text{ is one-one.}$$
Now, $gof(x) = g(f(x)), \quad x \in \mathbb{R} - \{2\}$

$$= g\left(\frac{x}{x-2}\right)$$

$$= \frac{2\left(\frac{x}{x-2}\right)}{\frac{x}{x-2}-1} = x$$
14. Put $x = \cos 2\theta \Rightarrow \theta = \frac{1}{2}\cos^{-1}x$
1

LHS =
$$\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}\right)$$
 $\frac{1}{2}$

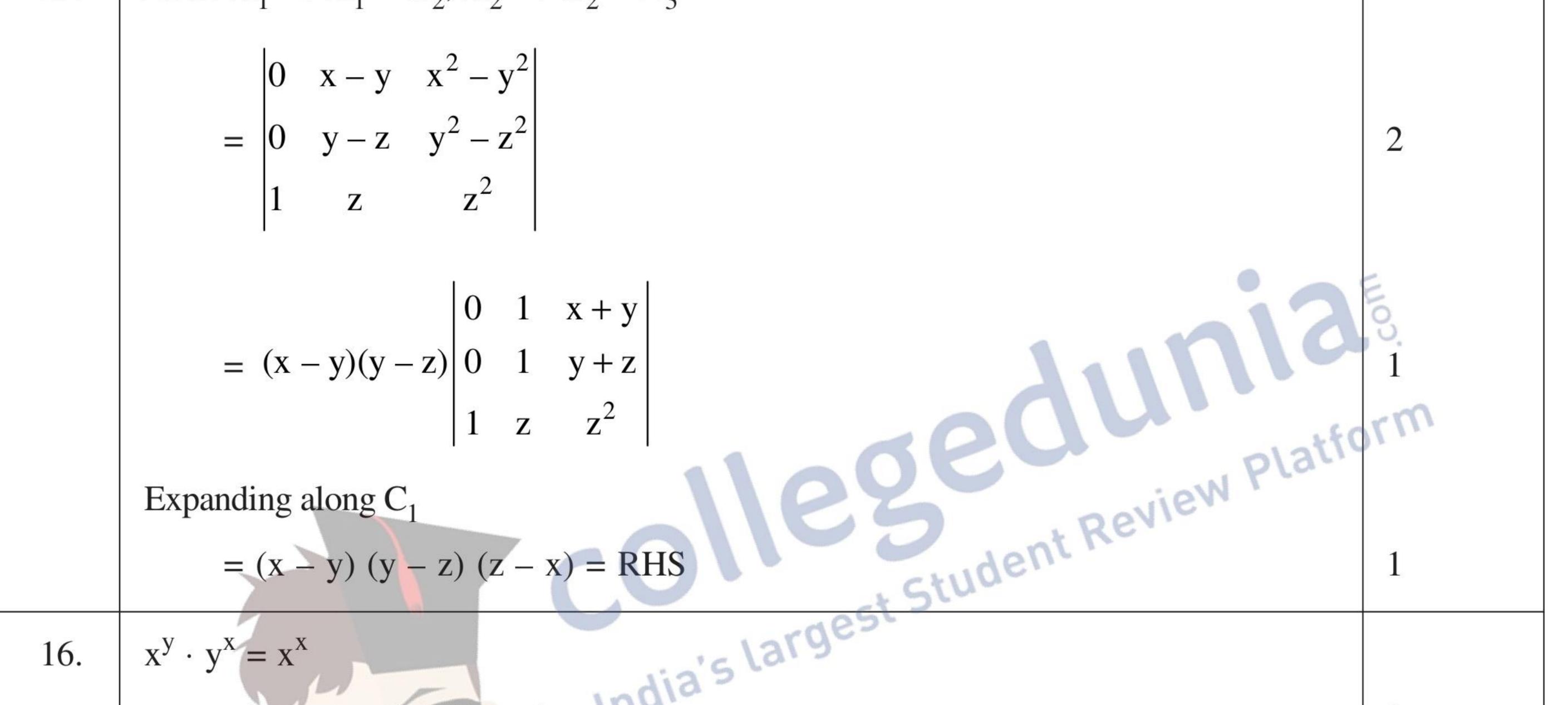
(4)

*These answers are meant to be used by evaluators

$$= \tan^{-1} \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right)$$

$$= \tan^{-1} \left(\frac{1 + \tan \theta}{1 - \tan \theta} \right) = \tan^{-1} \left(\tan \left(\frac{\pi}{4} + \theta \right) \right)$$

$$= \frac{\pi}{4} + \theta = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x = \text{RHS}$$
1
15. LHS: $R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3$

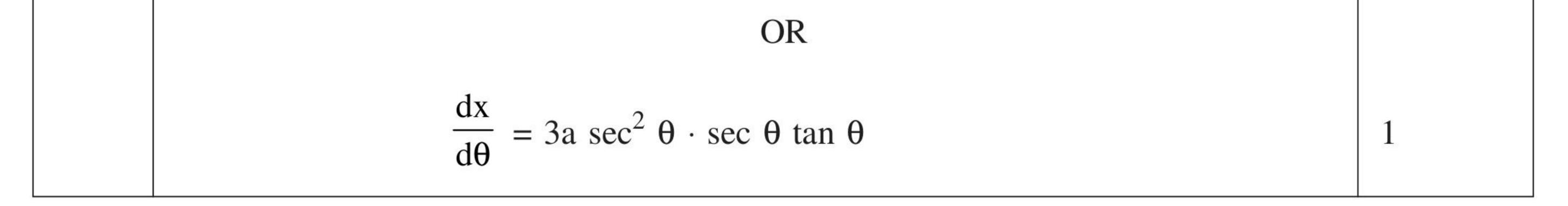


$$\Rightarrow$$
 y log x + x log y = x log x

differentiate both sides w.r.t. x,

$$\left(y \cdot \frac{1}{x} + \log x \cdot \frac{dy}{dx}\right) + \left(x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + \log y \cdot 1\right) = x \cdot \frac{1}{x} + \log x \cdot 1$$

$$\Rightarrow \frac{y}{x} + \log\left(\frac{y}{x}\right) - 1 = -\left(\log x + \frac{x}{y}\right) \cdot \frac{dy}{dx}$$
$$\Rightarrow \frac{dy}{dx} = \frac{1 - \frac{y}{x} - \log\left(\frac{y}{x}\right)}{\log x + \frac{x}{y}} \text{ or } \frac{y}{x} \left[\frac{x + x\log x - y - x\log x}{y\log x + x}\right]$$

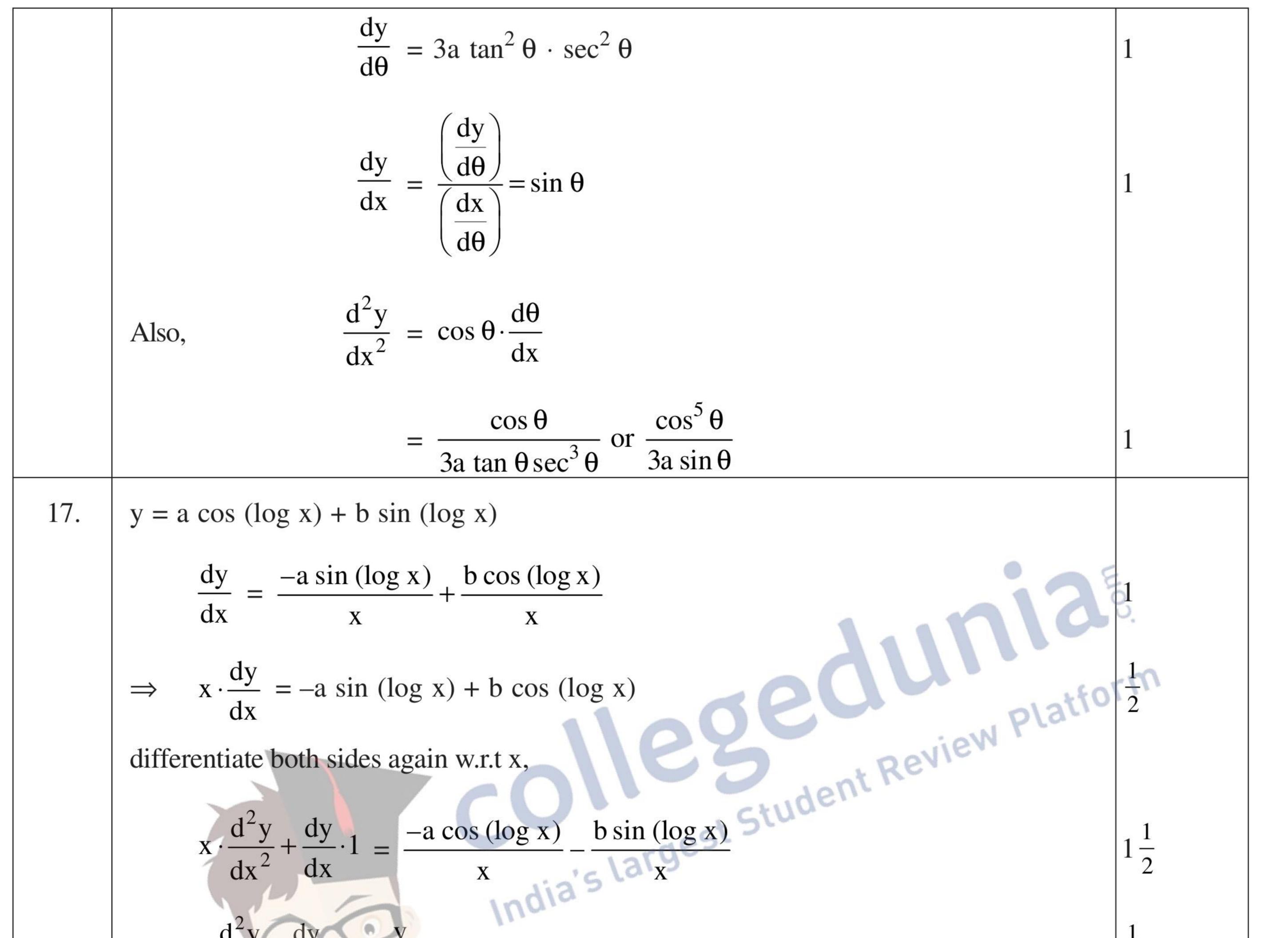


(5)

65/1/1

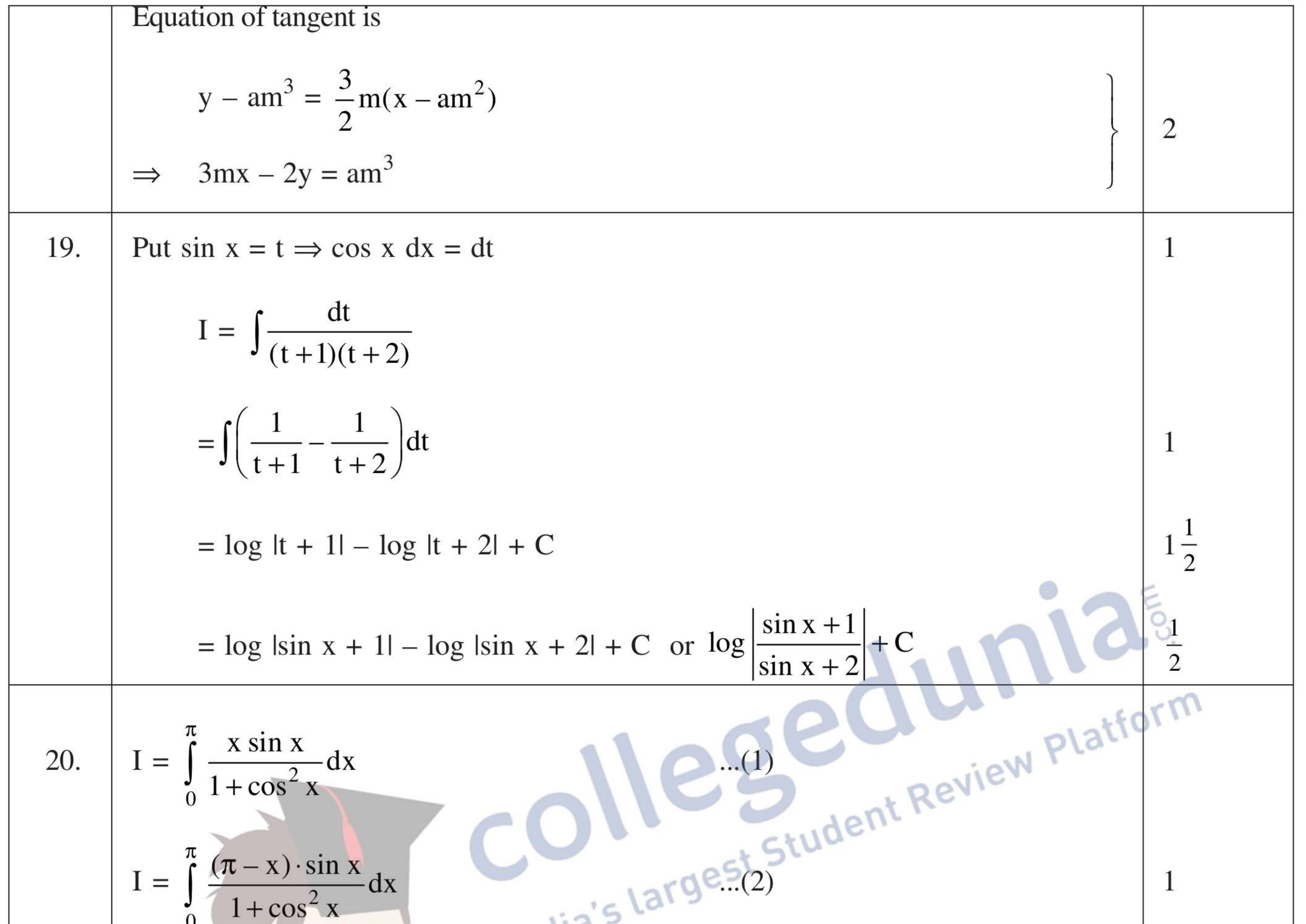
*These answers are meant to be used by evaluators

2



	$\Rightarrow x \frac{d^2y}{dx^2} + \frac{dy}{dx} = -\frac{y}{x}$	$\frac{1}{2}$	
	$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{d y}{dx} + y = 0$	$\frac{1}{2}$	
18.	Given $ay^2 = x^3$		
	differentiate both sides wrt x		
	$a \cdot 2y \frac{dy}{dx} = 3x^2 \Rightarrow \frac{dy}{dx} = \frac{3x^2}{2ay}$	1	
	$\therefore \text{Slope of tangent at } (am^2, am^3) = \frac{3(am^2)^2}{2a(am^3)} = \frac{3}{2}m$	1	

(6)



Adding (1) and (2)

$$2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx$$

$$I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx$$
Put cos x = t \Rightarrow - sin x dx = dt
 $\therefore I = \frac{\pi}{2} \int_{-1}^{1} \frac{dt}{1 + t^{2}}$

 $\frac{1}{2}$

(7)

65/1/1

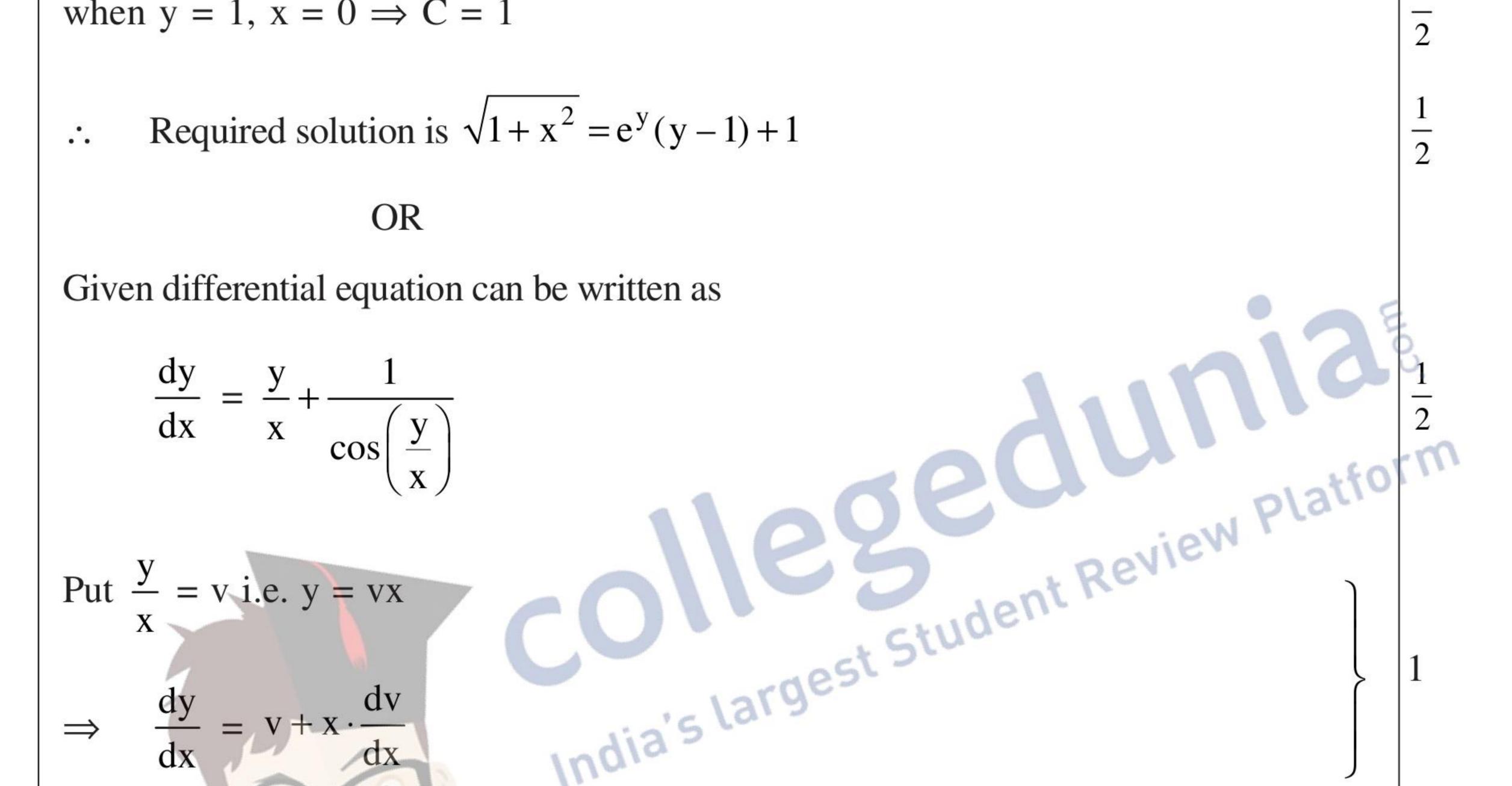
21. Given equation can be written as

$$x \, dx = y e^{y} \sqrt{1 + x^{2}} \, dy$$

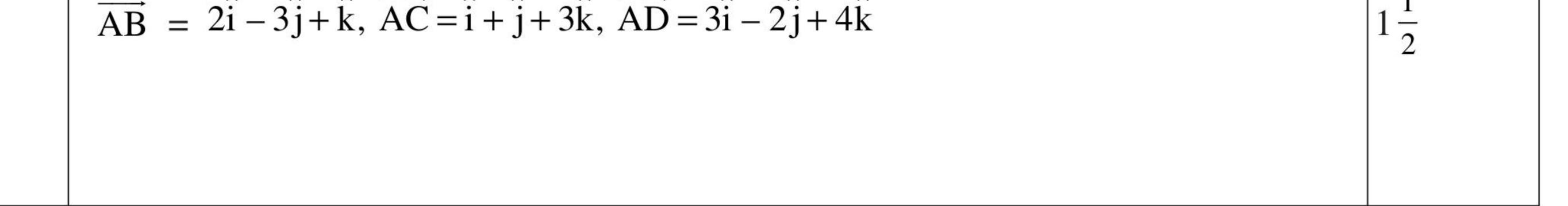
$$\Rightarrow \quad \int \frac{x}{\sqrt{1 + x^{2}}} \, dx = \int y \cdot e^{y} \, dy$$

$$\Rightarrow \quad \sqrt{1 + x^{2}} = e^{y} (y - 1) + C$$

$$1 + 1$$



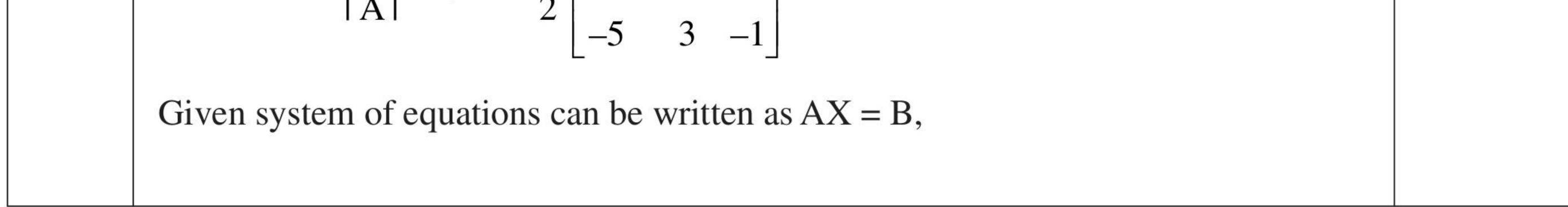
	$\Rightarrow \overline{dx} = v + x \cdot \overline{dx}$ Given equation becomes		
	$v + x \frac{dv}{dx} = v + \frac{1}{\cos v}$	$\left \frac{1}{2} \right $	
	$\Rightarrow \int \cos v dv = \int \frac{dx}{x}$	$\left \frac{1}{2} \right $	
	\Rightarrow sin v = log x + c	1	
	$\Rightarrow \sin\left(\frac{y}{x}\right) = \log x + c$	$\left \frac{1}{2} \right $	
22.	A(1, 2, -1), B(3, -1, 0), C(2, 3, 2), D(4, 0, 3)		
	$\overrightarrow{}$	1	



(8)

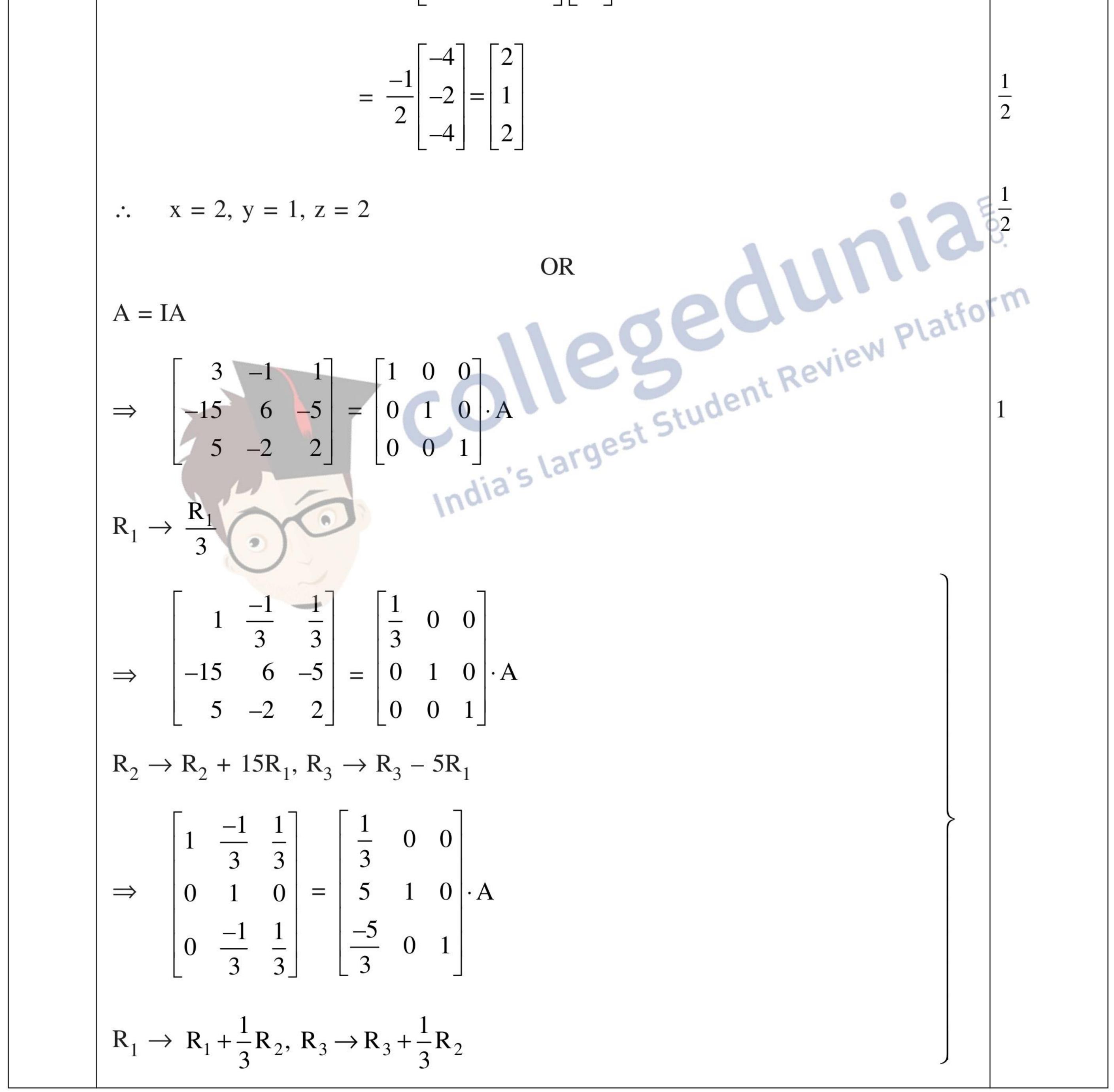
*These answers are meant to be used by evaluators

$$\begin{array}{c|c} Consider = [\overline{AB} \ \overline{AC} \ \overline{AD}] = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 1 & 3 \\ 3 & -2 & 4 \end{bmatrix} = 2(10) + 3(-5) + 1(-5) = 0 \\ 1 + 1 \\ \Rightarrow A, B, C and D are coplanar \\ \hline 1 \\ 23. \ Let equation of line is \ \overline{r} = (2\hat{i} + 3\hat{j} - \hat{k}) + \lambda(\hat{a}^{1} + \hat{b}\hat{j} + c\hat{k}) \\ here, 3a + 4b + 2c = 0 & ...(1) \\ 3a - 2b - 2c = 0 & ...(2) \\ Solving (1) and (2) \\ \hline \frac{a}{-8+4} = \frac{-b}{-6-6} = \frac{c}{-6-12} = \mu \\ \Rightarrow \frac{a}{2} = \frac{b}{-6} = \frac{c}{-6} = \frac{c}{-6-12} = \mu \\ \Rightarrow \frac{a}{2} = \frac{b}{-6} = \frac{c}{-6} = 2\mu \\ \hline ... Requiried equation of line is \\ \overline{r} = (2\hat{i} + 3\hat{j} - \hat{k}) + \lambda(2\hat{i} - 6\hat{j} + 9\hat{k}) \\ 1 \\ \hline SECTION DI \\ \hline SECTION DI \\ \hline \\ 24. \ |A| = -2 \neq 0 \Rightarrow AT exists \\ Now, A_{11} = 1 \cdot A_{12} = 8, A_{13} = -5 \\ A_{21} = 1, A_{22} = -6, A_{23} = 3 \\ A_{31} = -1, A_{32} = 2, A_{33} = -1 \\ adj A = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \\ A^{-1} = \frac{1}{14}, adj A = \frac{-1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$$



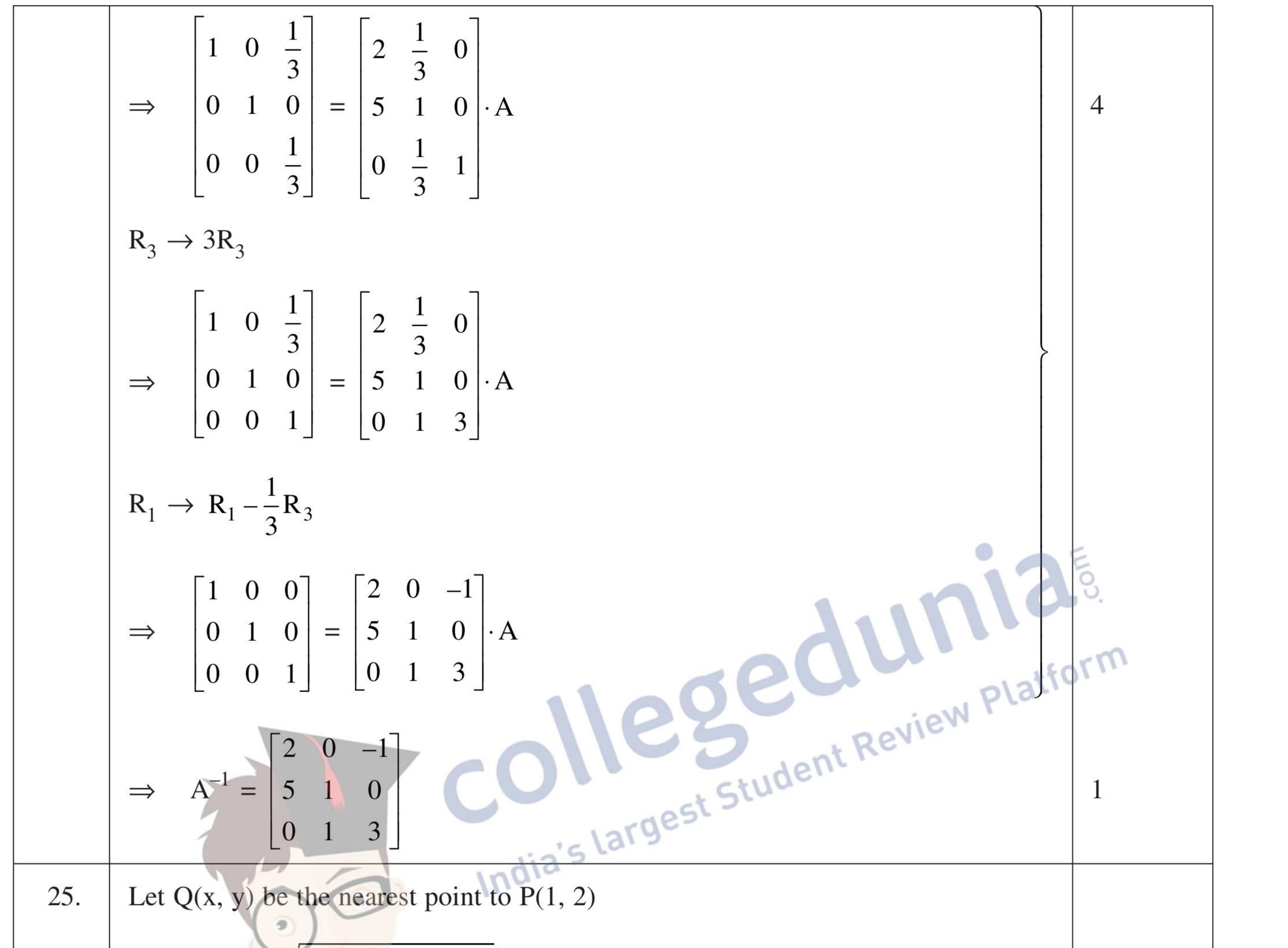
65/1/1

where
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 \\ 10 \\ 9 \end{bmatrix}$
Now $AX = B \Rightarrow X = A^{-1}B$
$$= \frac{-1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 10 \\ 9 \end{bmatrix}$$



(10)

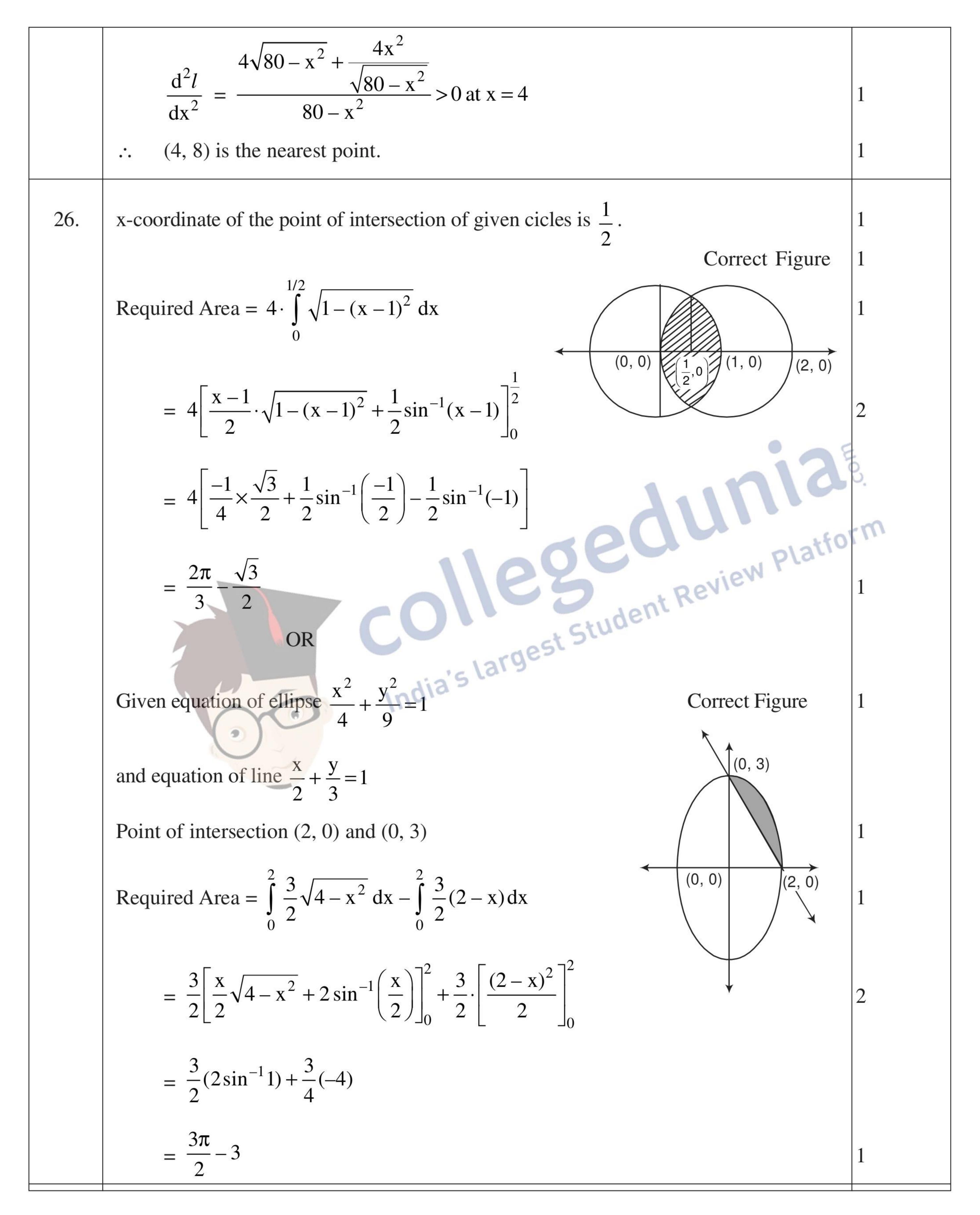
*These answers are meant to be used by evaluators



25. Let Q(x, y) be the nearest point to P(1, 2)
Minimize
$$s = \sqrt{(x-1)^2 + (y-2)^2}$$

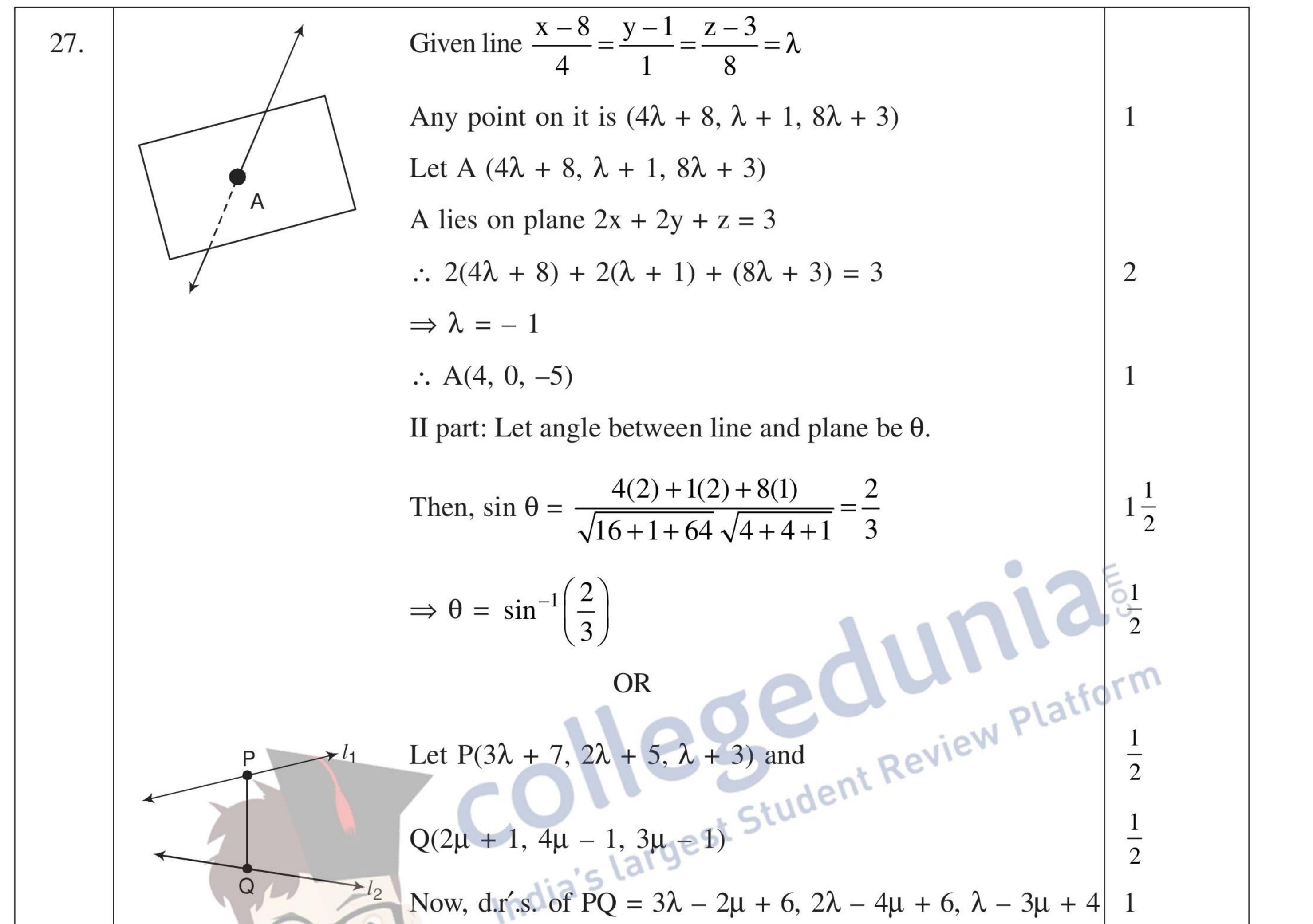
Let $l = s^2 = (x-1)^2 + (y-2)^2$
 $\Rightarrow l = x^2 + y^2 - 2x - 4y + 5$...(1)
Also, $x^2 + y^2 = 80$...(2)
from (1) and (2), $l = 85 - 2x - 4\sqrt{80 - x^2}$
 $\frac{dl}{dx} = -2 - 4 \cdot \frac{1}{2\sqrt{80 - x^2}}(-2x) = -2 + \frac{4x}{\sqrt{80 - x^2}}$
 $\frac{dl}{dx} = 0 \Rightarrow x = 4, -4$ (rejected)
1

65/1/1



(12)

*These answers are meant to be used by evaluators



Now, d.r'.s. of PQ =
$$3\lambda - 2\mu + 6$$
, $2\lambda - 4\mu + 6$, $\lambda - 3\mu + 4$
According to question,

$$\frac{3\lambda - 2\mu + 6}{2} = \frac{2\lambda - 4\mu + 6}{2} = \frac{\lambda - 3\mu + 4}{1}$$

$$\Rightarrow \lambda + 2\mu = 0 \text{ and } 2\mu = 2 \Rightarrow \mu = 1$$

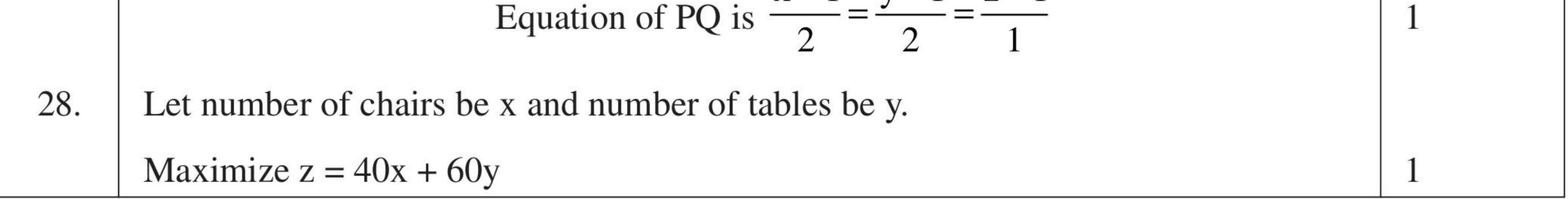
$$\Rightarrow \lambda = -2\mu$$

$$\therefore \mu = 1, \lambda = -2$$

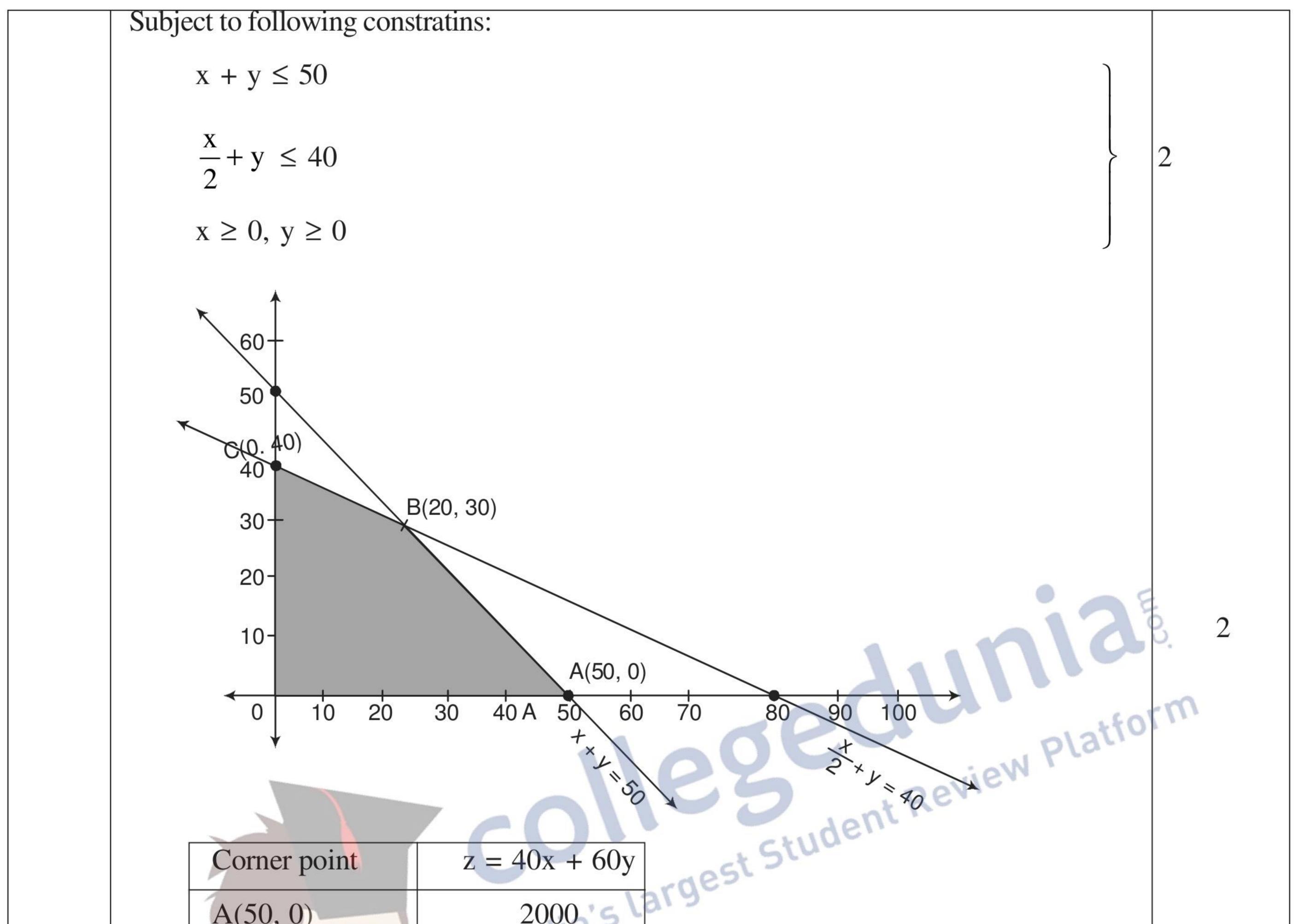
$$\therefore P(1, 1, 1) \text{ and } Q(3, 3, 2)$$

$$PQ = \sqrt{(3-1)^2 + (3-1)^2 + (2-1)^2} = \sqrt{4+4+1} = 3$$

$$x - 1 \quad y - 1 \quad z - 1$$



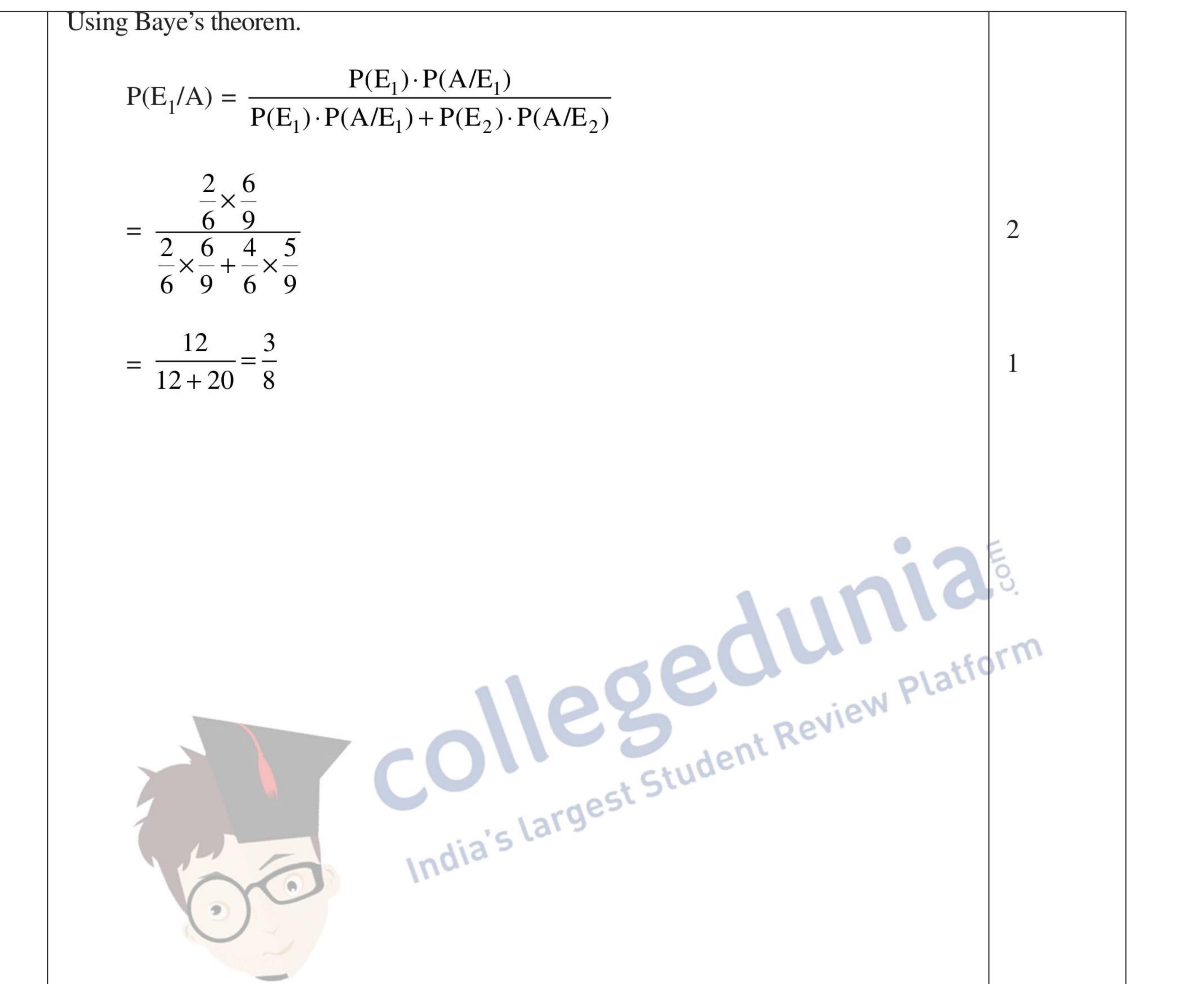
65/1/1



B(20, 30)2600C(0, 40)2400Number of chairs manufactured = 20Number of tables manufactured = 30Maximum profit = ₹ 2,60029.Let E1: Transferred ball is greenE2: Transferred ball is redA: Green ball is foundHere,
$$P(E_1) = \frac{2}{6}$$
, $P(E_2) = \frac{4}{6}$ P(A/E_1) = \frac{6}{9}, $P(A/E_2) = \frac{5}{9}$

(14)

*These answers are meant to be used by evaluators



65/1/1

65/1/1

