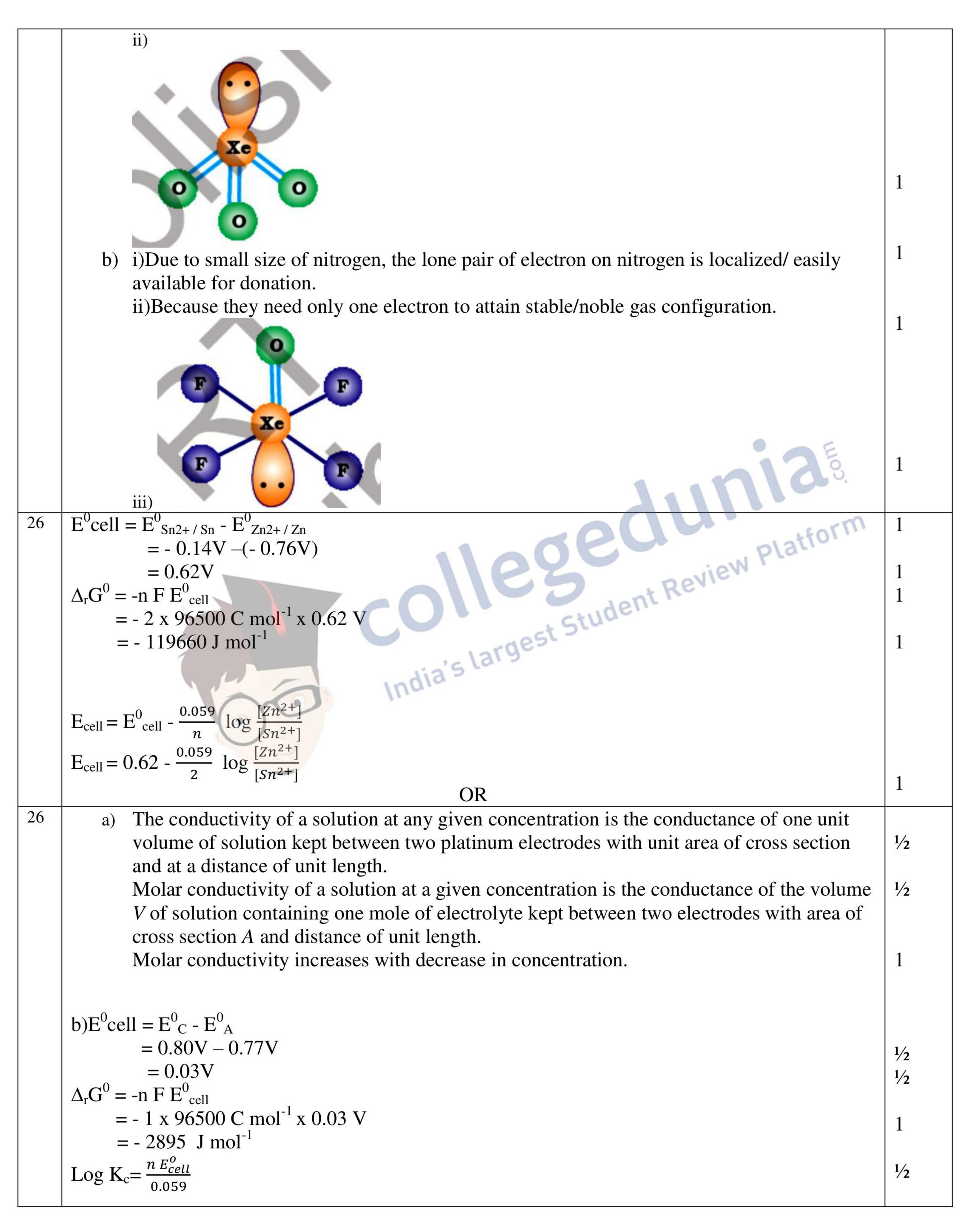
CHEMISTRY MARKING SCHEME SET -56/3 Compt. July, 2015

Qu es.	Value points	Marks
1	Formation of stable complex by polydentate ligand.	1
2	Propanal	1
3	p-Nitroaniline < Aniline < p-Toluidine	1
4	Frenkel defect	1
5	Emulsions are liquid – liquid colloidal systems. For example – milk, cream (or any other one correct example)	1/2 + 1/2
6	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1
6	Iodine is liberated from potassium iodide: $10I^{-} + 2MnO_{4}^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$ ii)	1
	Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S \longrightarrow 2H^+ + S^{2-}$ $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1

8	i) Mole fraction of a component =	1
	Number of moles of the component	
	Total number of moles of all the components	
	ii) Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the	
	solvent. Or	1
	Molality (m) = $\frac{\text{Moles of solute}}{\text{Moles of solute}}$	
	Mass of solvent in kg	1
9	Zero order : mol L ⁻¹ s ⁻¹ Second order : L mol ⁻¹ s ⁻¹	1
10	i) Due to high bond dissociation enthalpy of $N \equiv N$	1
	ii) Due to low bond dissociation enthalpy of F ₂ than Cl ₂ and strong bond formation between N and F	1
11	Disproportionation: The reaction in which an element undergoes self-oxidation and self-	1 1/2
	reduction simultaneously. For example –	1 1/2
	$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$	1 / 2
	(Or any other correct equation)	
12	i) Hexaamminecobalt(III) chloride	1
	ii) Tetrachlorido nickelate(II)	1
	iii) Potassium hexacyanoferrate(III)	.
13	i) 2-bromobutane	1
	ii) 2-bromobutane ii) 1, 3-dibromobenzene	1
	iii) 3-choloropropene	1
14	ÇH ₂ Cl CH ₂ ONa CH ₂ OH	1
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	HCHO	
	CH ₃ CH ₂ MgCl + CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	1
	ii)	
	$CH_3CH=CH_2+ H_2O \xrightarrow{H^+} CH_3-CH-CH_3$	
		1
155 (CHOSS) - 1	DH	
15	i) CH₃-CH₂OH → CH₃CH₂Cl	1
	1)	


	ii)	1
	OH OH	
	+ CH ₃ Cl Anhyd. AlCl ₃ CH ₃ +	
	CH_3	1
	CH₃Cl + CH₃CH₂-ONa → CH₃CH₂-O-CH₃	
16	i) Peptide linkage – in proteins, ∝-amino acids are connected to each other by peptide bond or peptide linkage (-CONH-bond).	1
	Primary structure - each polypeptide in a protein molecule having amino acids which are linked with each other in a specific sequence.	1
	iii) Denaturation - When a protein is subjected to physical change like change in temperature or chemical change like change in pH, protein loses its biological activity.	1
1 1	Copolymerisation is a polymerisation reaction in which a mixture of more than one monomeric	1
	species is allowed to polymerise and form a copolymer. CH = CH ₂ CH = CH ₂ CH ₂ - CH = CH - CH ₂ - CH - CH ₂ 1, 3-Butadiene Styrene Butadiene - styrene copolymer	1
	$ \begin{array}{c} \text{CN} \\ \text{n CH}_2\text{-CH-CH-CH}_2 + \text{nCH}_2\text{-CH} \\ \text{1,3-Butadiene} \end{array} $ $ \begin{array}{c} \text{CN} \\ \text{Copolymerisation} \\ \text{CH}_2\text{-CH-CH-CH}_2\text{-CH}_2-C$	1
18	(or any other correct example) $ r = \frac{\sqrt{2}a}{4} $	1
1	$r = \frac{1.414 \times 4.077 \times 10^{-8} cm}{1.414 \times 4.077 \times 10^{-8} cm}$	29
1	$r = 1.44 \times 10^{-8} \text{ cm}$	1 1
10	$ \pi_{\text{cane sugar}} = \pi_{\text{X}} $	
	Therefore, $c_{cane\ sugar} = c_X$ (where c is molar concentration)	
	$\frac{W_{cane\ sugar}}{M_{cane\ sugar}} = \frac{W_X}{M_X}$	1
- 3	$\frac{5 g}{342 g mol^{-1}} = \frac{0.877}{M_X}$	1
	$M_{\rm X} = \frac{0.877 \times 342}{5} \rm gmol^{-1}$	
	$M_{X} = 59.9 \text{ or } 60 \text{ gmol}^{-1}$	1
20	$[R]_0$	1

60 s¹ = \frac{2.303}{t} \log \frac{18\log \frac{ R 0}{ R 0}}{10}} t = \frac{2.303}{60 s^{-1}} \log 10 t = \frac{2.303}{60 s} s t = 0.0384 s 21 i) It is a process of removing the dissolved substance from a colloidal solution by means of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 22 i) It lowers the melting point of alumina / acts as a solvent. ii) Roasting Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₂ + CO → 2Fe ₃ O ₄ + CO (Limestone) CaO ₂ → CaO ₃ + CO (Limestone) CaO → Fe + CO ₂ (Sag) FeO + CO → Fe + CO ₂ (C+ CO ₂ → 2CO) Coke
t = 2.303/60 s t = 0.0384 s 1 21 i) It is a process of removing the dissolved substance from a colloidal solution by means of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 22 i) It lowers the melting point of alumina / acts as a solvent. Roasting Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 23 3Fe_2O_3 + CO → 2Fe_3O_4 + CO_4 (Iron ore) Fe_3O_4 + CO → 3FeO + CO_4 (Iron ore) Fe_3O_4 + CO → 3FeO + CO_4 (Islag) FeO + CO → Fe + CO_2 FeO → CO → Fe + CO_4
t = 2.303/60 s t = 0.0384 s 1 21 i) It is a process of removing the dissolved substance from a colloidal solution by means of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 22 i) It lowers the melting point of alumina / acts as a solvent. Roasting Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 23 35e_2O_3 + CO → 27e_3O_4 + CO_4 (Iron ore) Fe_3O_4 + CO → 37eO + CO_4 (Iron ore) Fe_3O_4 + CO → 37eO + CO_4 (Islag) FeO + CO → Fe + CO_2 FeO + CO → Fe + CO_2 FeO + CO → Fe + CO_2 FeO + CO → Fe + CO_4 FeO + CO → Fe
t= 60 s t= 0.0384 s 1 21 i) It is a process of removing the dissolved substance from a colloidal solution by means of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 1 22 i) It lowers the melting point of alumina / acts as a solvent. Roasting Calcination Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. Available Calcination OR Step 0, + CO → 2Fe 0, + CO (Itimestone) CaO + SiO₂ → CaSiO₃
of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 1 22 i) It lowers the melting point of alumina / acts as a solvent. ii) Roasting Calcination Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe₃O₃ + CO → 2Fe₃O₃ + CO₂ (Iron orre) Fe₃O₄ + CO → 3FeO + CO₂ (Limestone) CaO + SiO₃ → CaSiO₃ (Slag) FeO + CO → Fe + CO₂
of diffusion through a semi - permeable membrane. ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 1 22 i) It lowers the melting point of alumina / acts as a solvent. ii) Roasting Calcination Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe₃O₃ + CO → 2Fe₃O₃ + CO₂ (Iron orre) Fe₃O₄ + CO → 3FeO + CO₂ (Limestone) CaO + SiO₂ → CaSiO₃ (Slag) FeO + CO → Fe + CO₂
ii) The movement of colloidal particles under an applied electric potential towards oppositely charged electrode is called electrophoresis. Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 1 22 i) It lowers the melting point of alumina / acts as a solvent. ii) Roasting Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe₃O₃ + CO → 2Fe₃O₃ + CO₃ (Iron ore) Fe₃O₄ + CO → 3FeO + CO₃ (Ilimestone) CaO + SiO₃ → CaSiO₃ (Slag) FeO + CO → Fe + CO₂ FeO + CO → Fe + CO₂
iii) Colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion. 22 i) It lowers the melting point of alumina / acts as a solvent. Roasting
illuminates the path of beam in the colloidal dispersion. 1 22 i) It lowers the melting point of alumina / acts as a solvent. ii) Roasting Ore is heated in a regular supply of air Heating in a limited supply or absence of air. (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₃ + CO→2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO→3FeO + CO ₂ (CaCO ₃ → CaO + CO ₃ (Slag) FeO + CO → Fe + CO ₂ FeO + CO → Fe + CO ₂
ii) It lowers the melting point of alumina / acts as a solvent. Roasting
Roasting Ore is heated in a regular supply of air (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₃ + CO → 2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO → 3FeO + CO ₂ (Limestone) CaO + SiO ₂ → CaSiO ₃ (Slag) FeO + CO → Fe + CO ₂
Ore is heated in a regular supply of air (Or with equation) iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₃ + CO → 2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO → 3FeO + CO ₂ (Limestone) CaO + SiO ₂ → CaSiO ₃ (Siag) FeO + CO → Fe + CO ₂
absence of air. (Or with equation) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₃ + CO → 2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO → 3FeO + CO ₂ (Limestone) CaO + SiO ₂ → CaSiO ₃ (Siag) FeO + CO → Fe + CO ₂
(Or with equation) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. 22 3Fe ₂ O ₃ + CO → 2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO → 3FeO + CO ₂ (CaCO ₃ → CaO + CO ₂ (Limestone) CaO + SiO ₂ → CaSiO ₃ (Slag) FeO + CO → Fe + CO ₂
iii) It is a process of separation of different components of a mixture which are differently adsorbed on a suitable adsorbent. OR 22 3Fe ₂ O ₃ + CO→2Fe ₃ O ₄ + CO ₂ (Iron ore) Fe ₃ O ₄ + CO→3FeO + CO ₂ (Limestone) CaO + SiO ₂ → CaSiO ₃ (Slag) FeO + CO → Fe + CO ₂
adsorbed on a suitable adsorbent. 22
22 $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$ (Iron ore) $Fe_3O_4 + CO \rightarrow 3FeO + CO_2$ $CaCO_3 \rightarrow CaO + CO_2$ (Limestone) $CaO + SiO_2 \rightarrow CaSiO_3$ (Slag) $FeO + CO \rightarrow Fe + CO_2$
$\begin{array}{ll} 3 \text{Fe}_2 \text{O}_3 + \text{CO} \rightarrow 2 \text{Fe}_3 \text{O}_4 + \text{CO}_2 \\ \text{(Iron ore)} \\ \text{Fe}_3 \text{O}_4 + \text{CO} \rightarrow 3 \text{FeO} + \text{CO}_2 \\ \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \\ \text{(Limestone)} \\ \text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \\ \text{(Slag)} \\ \text{FeO} + \text{CO} \rightarrow \text{Fe} + \text{CO}_2 \end{array}$
Fe ₃ O ₄ + CO \rightarrow 3FeO +CO ₂ CaCO ₃ \rightarrow CaO +CO ₂ (Limestone) CaO + SiO ₂ \rightarrow CaSiO ₃ (Slag) FeO + CO \rightarrow Fe + CO ₂
CaCO ₃ \rightarrow CaO +CO ₂ (Limestone) CaO + SiO ₂ \rightarrow CaSiO ₃ (Slag) FeO + CO \rightarrow Fe + CO ₂
(Limestone) $CaO + SiO_2 \rightarrow CaSiO_3$ (Slag) $(Slag)$ FeO + CO \rightarrow Fe + CO ₂
$CaO + SiO_2 \rightarrow CaSiO_3$ (Slag) $FeO + CO \rightarrow Fe + CO_2$
FeO + CO \rightarrow Fe + CO ₂
$C + CO_2 \rightarrow 2CO$
$C + Q \rightarrow CO_{2}$ FeO + C \rightarrow Fe + CO (any 6 correct equations)
(any o correct equations)
i) Aspartame, Saccharin (any one) ii) No
iii) Social concern, empathy, concern, social awareness (any 2)
24 a) i)
CHO
СНз
ii)
(CH ₃) ₂ C=CHCOCH ₃

	will not.	1
	ii)Add NaOH and I ₂ , acetophonone forms yellow ppt of iodoform on heating whereas	1
	benzaldehyde will not. iii)Add neutral FeCl ₃ , phenol gives violet colouration whereas benzoic acid does not.	. L
	OR (or any other correct test)	1
24	a) i) CH ₃ C=N-OH CH ₃	1
	CH ₃ C=N-NH -C-NH ₂	1
	b) i) CH₃CHO Zn-Hg conc HCl CH₃-CH₃ CH₃-CH₃	1
	2 CH ₃ -CHO CH ₃ -CH-CH ₂ -CHO iii) CH ₃ -CHO	1
25	 a) Due to relatively stable half – filled p-orbitals of group 15 elements b) i) CaF₂ + H2SO₄ → CaSO₄ + 2HF ii) SO₂(g) + Cl₂ (g) → SO₂Cl₂(l) iii) 2NH₄Cl + Ca(OH)₂ → 2NH₃ + 2H₂O + CaCl₂ 	2 1 1
95 (2000.)	OR OR	
25	a) i)	1

$Log K_c = \frac{1 \times 0.03}{1 \times 10^{-3}}$	1/2
0.059	
$Log K_c = 0.508$	

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani

