JEE-Main-29-07-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: The value of $\sum_{r=1}^{20} (r^2 + 1) \cdot r!$ is:

Options:

- (a) $22! 2 \cdot (20)!$
- (b) (22)!-2(21)!
- (c) (22)!
- (d) 2(21)!

Answer: (b)

Solution:

$$\sum_{r=1}^{20} (r^2 + 1)r! = \sum_{r=1}^{20} ((r+1)(r+2) - 3(r+1) + 2)r!$$

$$= \sum_{r=1}^{20} ((r+2)! - 3(r+1)! + 2r!)$$

$$= \sum_{r=1}^{20} ((r+2)! - (r+1)!) - 2\sum_{r=1}^{20} ((r+1)! - r!)$$

$$= (22! - 2!) - 2(21! - 1!)$$

$$= 22! - 2 \times 2! - 2 + 2$$

$$= (22)! - 2(21)!$$

Question: If $|\vec{a}| |\vec{b}| |\vec{c}| = 14$ and $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168$ and $\vec{a}, \vec{b}, \vec{c}$ are coplanar, concurrent and make equal angles with each other, then $|\vec{a}| + |\vec{b}| + |\vec{c}|$ is equal to:

Options:

- (a) 14
- (b) 16
- (c) 10
- (d) 12

Answer: (b)

Solution:

 \vec{a} , \vec{b} , \vec{c} are coplanar and make equal angle with each other (say θ)

So, $\theta = 60^{\circ}$

 $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = |\vec{a} \times \vec{b}| |\vec{b} \times \vec{c}|$ (a $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{c}$ will be parallel)

$$= |\vec{a}| |\vec{b}|^2 |\vec{c}| \sin^2 \theta = 14 \sin^2 \theta |\vec{b}|$$
So, $14 \times \frac{3}{4} (|\vec{a}| + |\vec{b}| + |\vec{c}|) = 168$

$$\Rightarrow |\vec{a}| + |\vec{b}| + |\vec{c}| = 16$$

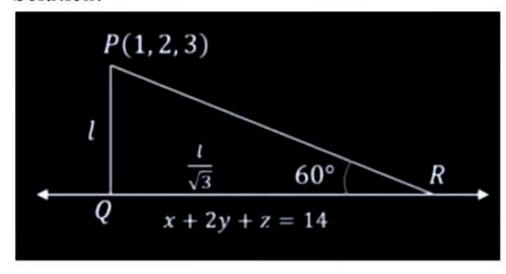
Question: A perpendicular drawn from (1, 2, 3) to the plane x + 2y + z = 14 and intersect plane at Q. R be a point on plane such that PR makes an angle 60° with the plane, then area of ΔPQR is:

Options:

- (a) $\sqrt{3}$ sq. units
- (b) 3 sq. units
- (c) $\frac{\sqrt{3}}{2}$ sq. units
- (d) 4 sq. units

Answer: (a)

Solution:



$$\therefore QR = PQ \cdot \cot 60^{\circ} = \frac{l}{\sqrt{3}}$$

Also,
$$l = \left| \frac{1+4+3-14}{\sqrt{1+4+1}} \right| = \sqrt{6}$$

Area of
$$\triangle PQR = \frac{1}{2}l \cdot \frac{l}{\sqrt{3}} = \frac{6}{2\sqrt{3}} = \sqrt{3}$$

Question: The number of solution of the equation $2\cos\left(\frac{x^2+x}{6}\right) = 4^x + 4^{-x}$ is/are:

Options:

- (a) 1
- (b) 0
- (c)3
- (d) Infinite

Answer: (a)

Solution:

$$2\cos\left(\frac{x^2+x}{6}\right) = 4^x + 4^{-x}$$

Equality holds when $4^x + 4^{-x} = 2$ and $\cos\left(\frac{x^2 + x}{6}\right) = 1$

$$4^x + 4^{-x} = 2$$
 gives $x = 0$ for which $\cos\left(\frac{x^2 + x}{6}\right) = 1$

So, there exist only one solution x = 0.

Question: Let \vec{a}, \vec{b} are two vectors and $\vec{a} \cdot \vec{b} = 3$, $|\vec{a} \times \vec{b}|^2 = 75$, and $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2$, then $|\vec{a}|^2$ is equal to _____.

Answer: 14.00

Solution:

$$\left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} \right|^2 + 2\vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = \left| \vec{a} \right|^2 + 2\left| \vec{b} \right|^2$$
$$\Rightarrow \left| \vec{b} \right|^2 = 2\left(\vec{a} \cdot \vec{b} \right) = 6$$

Also,

$$\Rightarrow \left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2$$

$$\Rightarrow 75 + 9 = 6 \left| \vec{a} \right|^2$$

$$\Rightarrow \left| \vec{a} \right|^2 = \frac{84}{6} = 14$$

Question: If sum and product of mean and variance in a binomial distribution are 82.5 and 1350 respectively, then n is equal to ___.

(where n is number of trial in binomial distribution).

Answer: 96.00

Solution:

: Mean and variance are the roots of

$$x^2 - 82.5x + 1350 = 0$$

So, mean
$$= np = 60$$

and variance = npq = 22.5

$$\Rightarrow q = \frac{22.5}{60} = \frac{3}{8}$$

So,
$$p = \frac{5}{8}$$
 and $n = \frac{60}{\frac{5}{8}} = 96$

Question: The number of numbers lying between 1024 and 23146 which are divisible by 55 and made from 2, 3, 4, 5, 6 without repetition, is ____.

Answer: 6.00

Solution:

We will solve this in two cases:

Case I:

When number has 4 digits (say \overline{abcd})

Here d is fixed as 5.

So, a,b,c can be

$$(6,4,3),(3,4,6),(2,3,6),(6,3,2),(3,2,4)$$
 or $(4,2,3)$ only

Number of numbers possible = 6

Case II:

When number has 5 digits.

No such number is possible because even last number formed is greater than 23146.

Total number of such number = 6

