(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

(MPH/PHD/URS-EE-2019) CHEMISTRY

sr. No. 10003

Code	

SET-"X" Max. Marks: 100 **Total Questions: 100** Time: 1¼ Hours Roll No. ______ (in figure)______ (in words) Name : ______ Father's Name : _____ Mother's Name: _____ Date of Examination: _____ (Signature of the Invigilator) (Signature of the candidate)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her in addition to lodging of an FIR with the police. Further the answer-sheet such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
- There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, crasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-Sheet.
- BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Sample copy for wasnite

Question No.	Questions
1.	For a potentiometric titration in the curve of emf (E) v/s volume (V) of the titrant added, the equivalence point is indicated by
	(1) $ dE/dV = 0$, $ d^2E/dV^2 = 0$ (2) $ dE/dV = 0$, $ d^2E/dV^2 > 0$
	(3) $ dE/dV > 0$, $ d^2E/dV^2 = 0$ (4) $ dE/dV > 0$, $ d^2E/dV^2 > 0$
2.	If the concentration (c) is increased to 4 times its original value (c), the change in molar conductivity for strong electrolytes is (where b is kohlrausch's constant).
	(1) 0 (2) b√c
	(3) $2b\sqrt{c}$ (4) $4b\sqrt{c}$
3.	The energy levels of the harmonic oscillator (neglecting zero point energy) are $\varepsilon_v = nhv$ for $n = 0, 1, 2 \dots$ Assuming $hv = k_B T/3$; the partition function is
	(1) e (2) $e^{1/3} (e^{1/3} - 1)$
	(3) 1/3e (4) 3e/(3e ³ – 1)
4.	The ground state of hydrogen atom is -13.598 eV. The exception values of kinetic energy $<$ T $>$ and potential energy, $<$ V $>$, in units of eV, are
	(1) $=13.598, =-27.196$ (2) $=-27.196, =13.598$
	(3) $=-6.799$, $=-6.799$ (4) $=6.799$, $=-20.397$
5.	The correct expression for the product $((M_n).(M_w))$ [where M_n and M_w are the number average and weight average molar masses, respectively, of a polymer] is
	(1) $N^{-1} \sum_{i} N_{i} M_{i}$ (2) $N^{-1} \sum_{i} N_{i} M_{i}^{2}$
	(3) $N/\sum_{i}N_{i}M_{i}$ (4) $N/\sum_{i}N_{i}M_{i}^{2}$

Question No.						Qu	estion	3		
6.	Match the following columns:									
)(5)()				Col	umn-1				Col	lumn–2
	A.	Ene	ergy o	f the	ground	l state of	He+		1.	-6.04 ev
	B.	Pot	ential	ener	gy of I	st orbit o	f H– a	tom	2.	– 27.2 ev
	C.	Kin	etic e	nerg	y of II e	excited st	ate of	He+	3.	$8.68 * 10^{-18} J$
	D.	Ion	isatio	n pot	ential o	of He+			4.	-54.4 ev
*8	Cod	les.								
		A	\mathbf{B}	C	D					e e
	(1)	1	2	3	4					
	(2)	4	3	2	1					
	(3)	4	2	1	3					
	(4)	2	3	1	4					
7.	The	prot	ecting	pow	er of ly	ophilic c	olloida	l sol is	expres	ssed in terms of
	(1)	Crit	tical m	iscel	le conc	entration	(2)	Oxid	lation :	number
	(3)	Coa	gulati	on va	lue		(4)	Gold	l numb	er
8.	Wh	ich or	ne of t	he fo	llowing	is an exa	mple	for hon	nogeno	us catalysis ?
0	 (1) Hydrogenation of oil (2) Manufacture of ammonia by Haber's process (3) Manufacture of sulphuric acid by Contact process 					A grand tradition of the American 🕶 to a Turto Forest American				
						2				
l										
	(4)	Hyd	rolysi	s of s	ucrose	in preser	ice of c	lilute l	ydrocl	hloric acid
9.	The	Hydrolysis of sucrose in presence of dilute hydrochloric acid. The energy of a hydrogen atom in a state is ($-hcR_H/25$), where $R_H = Rydberg$ Constant). The degeneracy of the state will be								
	(1)	25¹				(2)	25 ²			
	(3)	25³				(<u>4</u>)	254			

(2)

Question No.		Quest	tions			
10.	The value of the co	mmutator [x, p²x]	is			
	(1) 2i	(2)	2 i h p _x			
	(3) $2ixp_x$	(4)	h i p _x /π			
11.	The room tempera Cu(II) complex is expression	ture magnetic m greater than 1.73	oment (µ _{eff} in BM) for a monomeric 3. This may be explained using the			
	(1) $\mu_{\rm eff} = \mu_{\rm s} (1 - \alpha)$	JΔ)				
	(2) $\mu_{eff} = [n (n + 2)]$]%				
	(1) $\mu_{eff} = \mu_{s} (1 - \alpha)^{2}$ (2) $\mu_{eff} = [n (n + 2)]$ (3) $\mu_{eff} = [4s (s + 1)]$) + L (L + 1)]*	. 1			
	(4) $\mu_{eff} = g [J (J +$					
12.	The numbers of P-S	and P-P bonds in	the compound P ₄ S ₃ are, respectively,			
	(1) 3 and 6	(2)	4 and 3			
	(3) 6 and 3	(4)	6 and 2			
13.	In the absence of bo the iron-oxgen spec		heme group on exposure to O ₂ gives			
	(1) Fe(III) -O- Fe	(III) (2)	Fe(III) -O-O-			
	(3) Fe(III) -O-O-	Fe(III) (4)	Fe(IV) -O-			
14.	The complex [Cr(bipyridyl) ₃] ²⁺ , shows a red phosphorescence due to transition					
	$(1) {}^{4}\mathrm{T}_{1g} \leftarrow {}^{4}\mathrm{A}_{2g}$	(2)	${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$			
	(3) ⁴ T _{2g} ← ⁴ A _{2g}	(4)	${}^{4}A_{2g} \leftarrow {}^{2}E_{g}$			

(3)

PHD/URS-EE-2019-Chemistry-Code-C

Question No.		G	uest	stions			
15.	Con	sider the following reactions	in N	N_2O_4			
20.	i.	NOCl + Sn	ii.	A NO			
	iii.	NOCℓ + BrF,	iv.	$NOC\ell + SbC\ell_5$			
9		ctions which will give [NO]*					
		i and ii	(2)	11			
		i and iv	(4)	ii and iv			
16.	The	number of 3c–2e bonds pre	sent	$t in A\ell(BH_4)_3 is$			
	(1)	four	(2)				
	(3)	six	(4)) zero			
17.	The	he role of copper salt as co-catalyst in Wacker process is					
	(1)	Oxidation of Pd(0) by Cu(I	I)	(2) Oxidation of Pd(0) by Cu(I)			
	(3)	Oxidation of Pd(II) by Cu(()	(4) Oxidation of Pd(II) by Cu(II)			
18.	For	the oxidation state/s of sulp	hur	r atoms in S ₂ O, consider the following;			
	i)	-2 and $+4$	ii)	0 and + 2			
	iii)	+4 and 0	iv)) +2 and +2			
	The	e correct answer is/are					
	(1)	i and ii	(2)) i and iii			
	(3)	ii and iv	(4)) iii and iv			
19.	The	e geometries of $[C\ell F_4]^+$ and	[[F ₄]] respectively are			
	(1)	Tetrahedral and tetrahed	ral				
	(2)	Tetrahedral and trigonal bipyramidal					
	(3)	Tetrahedral and Square p	lana	ar			
	(4)	Tetrahedral and Octahed	ral				

Question No.	Questions						
20.	Among the complexes (i) $K_4[(Cr(CN)_6], (ii) K_4[(Fe(CN)_6], (iii) K_3[(Co(CN)_6], and (iv) K_4[(Mn(CN)_6], Jahn Teller distortion is expected in$						
	(1) i, ii and iii (2) ii, iii and iv						
	(3) i and iv (4) ii and iii						
21.	Which one of the following high spin complexes has the largest CSFE Crystal field stabilization energy						
	(1) $[Cr(H_2O)_6]^{2+}$ (2) $[Mn(H_2O)_6]^{2+}$						
	(3) $[Fe(H_2O)_6]^{2+}$ (4) $[Co(H_2O)_6]^{2+}$						
22.	The number of 3c, 2e BHB and B-B bonds present in B ₄ H ₁₀ respectively are						
	(1) 2, 4 (2) 3, 2						
	(3) 4, 1 (4) 4, 0						
23.	The most unstable species among the following is						
	(1) Ti(C ₂ H ₅) ₄ (2) Ti(CH ₂ Ph) ₄						
	(3) Pb(CH ₃) ₄ (4) Pb(C ₂ H ₅) ₄						
24.	The acid catalyzed hydrolysis of trans-[Co(en) ₂ AX) ⁿ⁺ can give cis-product also due to the formation of						
	(1) Square pyramidal intermediate						
	(2) Trigonal bipyramidal intermediate						
	(3) Pentagonal bipyramidal intermediate						
	(4) Face capped octahedral intermediate						

(5)

Question No.	Questions
25.	Total number of lines expected in ³¹ P NMR spectrum of HPF ₂ is (I = 1/2 for both ¹⁹ F and ³¹ P)
	(1) Six (2) Four
	(3) Five (4) Three
26.	The number of faces, vertices and edges in IF, polyhedron are, respectively
1	(1) 15, 7 and 15 (2) 10, 7 and 15
	(3) 10, 8 and 12 (4) 12, 6 and 9
27.	The light pink colour of $[C_0(H_2O)_6]^{2+}$ and the deep blue colour of $[C_0C\ell_4]^{-2}$ are due to
	(1) MLCT transition in the first and d-d transition in the second
	(2) LMCT transitions in both
	(3) d-d transitions in both
	(4) d-d transition in the first and MLCT transition in the second
28.	In $[Mo_2(S_2)_6]^{2-}$ cluster the number of bridging S atoms and coordination number of Mo respectively, are
	(1) 2 and 8 (2) 2 and 6
	(3) 1 and 8 (4) 1 and 6
29.	The number of possible isomers of [Ru(PPh ₃) ₂ (acac) ₂] (acac = acetylacetonate) is
	(1) 2 (2) 5
	(3) 4 (4) 3

(6)

Question No.	30		Ancerous	
8,	Which	Which ones among CO ₃ ²⁻ , XeO ₃ , SO ₃ , PO ₃ ³⁻ and NO ₃ -structure?	eO3, SO3, P	O3- and NO3- have planar
	Ξ	CO32-, PO32- and XeO3	(2) CO ₃ ²	(2) CO ₃ ² , XeO ₃ and NO ₃ -
	(8)	SO ₃ , PO ₃ and NO ₃	(4) CO3-	(4) CO ₃ *, SO ₃ and NO ₃ *
31.	What is: (1) The	t is meant by a reaction going in 94% enantiomeric excess? The product contains 94% of one enantiomer and 6% enantiomer	oing in 94% o	t is meant by a reaction going in 94% enantiomeric excess? The product contains 94% of one enantiomer and 6% of other enantiomer
		The product contains an enantiomer which is 94% pure The product contains 94% of one enantiomer and 6% of	enantiomer w	The product contains an enantiomer which is 94% pure The product contains 94% of one enantiomer and 6% of the products
	€	The product contains 9 enantiomer	7% of one e	product contains 97% of one enantiomer and 3% of other
32.	Which		ctional grou	of the following functional group is <u>not</u> reduced by sodium ride (NaBH ₄)
	Ξ)c=0	გ ე≃0 გ	,
	ව	#=0	€ γ=0	НО
33.	The	The given reaction is the example of:	aple of:	
		$M + = \rightarrow \bigcirc$ 2+4 eveloaddition		
	8	2 + 2 cycloaddition	354	٠
		2+2+2 cycloaddition		
		2S + 2S cycloaddition		
34.	A ph	A photo chemical reaction is:		
	3	catalysed by light	8	Initiated by light
	ල	accompanied with the	(4)	used to convert heat
		emission of light		energy into light

and the same of th

Question No.			Que	stions			
35.	Whi	ch of the following solvent	g ig 1	nacceptable on large scale?			
00.	(1)	Dimethoxy ethane	(2)				
	(3)	Diethyl ether	(4)				
36.		the reaction given below t		reaction condition are not suitable?			
30.	ror	O Contraction given below, v	willer	1 Leaction Contract			
		ĬĬ					
		$\bigcap \longrightarrow \bigcap$					
	(1)	LiAlH,/et,O	(2)	H ₂ N NH ₂ / NaOH			
	(3)	Zn (Hg) / HCl	(4)	HSCH ₂ CH ₂ CH ₂ SH / H ⁺ , H ₂ / Ni			
37.	Whi	ch of the following statem	ents i	s <u>not</u> correct ?			
	(1)	The molecule to be synthe	esised	is a target molecule			
	(2)		real	chemical compound resulting from			
	(0)	disconnection		· 			
	(3)	structural isomers	loes i	not produce one of several possible			
	(4)	Synthon is an idealised fra from a disconnection.	agme	nt (usually cation or anion) resulting			
38.			up in	a row would fit in a one nanomaterial			
	spac (1)	Seventy	(2)	One			
	(3)	Seventy	(4)	None			
39.	3343656	role of catalyst in chemical					
00.	(1)	Lowers the activation ener					
	(2)	Alters the amount of prod	0.0				
	(3)	Increases AH of Forward r		on ·			
	(4) Decreases of ΔH of Forward reaction						
40.	Seco	ondary pollutant is	,				
"/"	(1)	SO ₂	(2)	CO .			
	(3)	PAN	(4)	Aerosol			

Question No.			Quest	tions
41.	The	normality of 2.3 M H ₂ SO ₄	soluti	on is
	(1)	2.3 N	(2)	4.6 N
	(3)	6.9 N	(4)	7.9 N
42.	Cry	stal cannot posses		
	(1)	1 fold axis of symmetry		80 TE
	(2)	3 fold axis of symmetry		
	(3)	5 fold axis of symmetry		
	(4)	6 fold axis of symmetry		¥! a∗ ·
43.	Nu	mber of sigma bonds in P40) ₁₀ is	
	(1)	6	(2)	7
	(3)	17	(4)	16
44.	10 Sept. 19 April 10 Sept. 10	ol of an ideal gas at 27°C : d entropy change (R = 2 ca	Nilla III an an an	anded reversibly from 2 lit. To 20 lit. K)
	(1)	92.1	(2)	0
	(3)	4	(4)	9.2
45.	An	adiabatic process is	-	•
	(1)	isoenthalpic	(2)	isoentropic
	(3)	isochoric	(4)	isobaric
				*** **********************************
PHD/URS	-EE-20	019-Chemistry-Code-C	(9)	

Question No.	Questions					
46.	At a certain temperature, the following observations were made for the reaction					
	A> Products					
	Time [A]					
	(From the start)					
	2 minutes 5*10 ⁻³					
	5 minutes 4*10 ⁻³					
	8 minutes 3*10 ⁻³					
	11 minutes 2*10 ⁻³					
	The order of the reaction is					
	(1) 1 (2) 2					
	(3) 3 (4) Zero					
47.	How many stereoisomers does have 2, 3-dichloropentane?					
10 42 + CM0000	(1) 2 (2) 4					
	(3) 3 (4) 5					
48.	Which statement about benzene is incorrect?					
N 80	(1) The C ₆ ring is planar					
	(2) The C-Cπ-bonding is delocalised.					
	(3) The reactivity of the benzene reflects the presence of carbon-carbo double bond.					
	(4) Each C atom is sp ² hybridized.					
ſ						

(10)

PHD/URS-EE-2019-Chemistry-Code-C

Question No.	Questions
49.	Which of the following is not a Huckel (4n + 2) aromatic system?
	(1) [18]-Annulene ($C_{18}H_{18}$) (2) Cyclooctatetraene (C_8H_8)
	(3) Benzene (C_6H_6) (4) Cyclopentadienyl anion (C_5H_5)
	Cℓ
59	The IUPAC name of Br is:
	(1) 1-bromo-3-chlorocyclohexene
	(2) 2-bromo-6-chlorocyclohex-1-ene
	(3) 6-bromo-2-chlorocyclohexene
	(4) 3-bromo-1-chlorocyclohexene
51.	The complex $[Fe(Phen)_2(NCS)_2](Phen - 1, 10$ -phnanthroline) shows spin crossover behaviour. CFSE and μ_{eff} at 250 and 150 K, respectively will be:
	(1) $0.4 \Delta_0$, 4.90 BM and $2.4 \Delta_0$, 0.00 BM
	(2) $2.4 \Delta_0$, 2.90 BM and $0.4 \Delta_0$, 1.77 BM
	(3) $2.4 \Delta_0$, 0.00 BM and 0.4 Δ_0 , 4.90 BM
	(4) 1-2 Δ ₀ , 4.90 BM and 2.4 Δ ₀ , 0.00 BM
52.	[Ni ^{II} L_6] ^{n+or n-} show absorption bands at 8500, 15400 and 26000 cm ⁻¹ whereas [Ni ^{II} L_6] ^{n+or n-} at 10750, 17500 and 28200 cm ⁻¹ , L and L' are respectively
	(1) OH- and N_3
	(2) Cl- and I-
	(3) NCS- and RCOO-
	(4) H ₂ O and NH ₃

Question No.								
53.	The rate of exchange of OH ₂ present in the coordination sphere by ¹⁸ OH ₂							
აა.	01							
	i. $[Cu(H_2O)_6]^{2+}$; ii) $[Mn(H_2O)_6]^{2+}$; iii) $[Fe(H_2O)_6]^{2+}$; iv) $[Ni(H_2O)_6]^{2+}$, follows the order							
	(1) $i) > iv) > iii) > ii) (2) ii) > iii) > iv)$							
	(3) $ii) > iii) > iv) > i) (4) iii) > iv) > ii)$							
54.	On addition of an inert gas at constant volume to the reaction							
id	$N_2 + 3H_2 \Longrightarrow 2NH_3$ at equilibrium							
	(1) The reaction remains unaffected							
	(2) Forward reaction is favoured							
	(3) The reaction halts							
	(4) Backward reaction is favoured							
55.	The transition zone for Raman spectra is							
1	(1) Between vibrational and rotational levels							
	(2) Between electronic levels							
	(3) Between magnetic levels of nuclei							
	(4) Between magnetic levels of unpaired electrons							
56.	Polarisation of the electron cloud by the cation forms							
	(1) Ionic bond (2) Covalent bond							
	(3) Coordinate bond (4) Metallic bond							

(12)

Question No.	Questions							
57.	Activation energy of a chemical reaction can be determined by							
	(1) determining the rate constant at standard temperature							
	(2) determining the rate constants at two temperatures							
	(3) determining probability of collision							
	(4) using catalyst							
58.	Due to Frenkel defect, the density of the ionic solids							
	(1) increases (2) decreases							
	(3) does not change (4) none of the above							
59.	What is the simplest formula of a solid whose cubic unit cell has the atom A at each corner, the atom B at each face centre and a C atom at the body centre							
	(1) AB ₂ C (2) A ₂ BC							
	(3) AB ₃ C (4) ABC ₃							
60	Which of the following thermodynamic function is called as the arrow of "time"							
	(1) Enthalpy							
	(2) Gibbs free energy							
	(3) Entropy							
	(4) Helmholtz free energy							
· L								

Question No.	Questions							
61	Which of the following is a correct name for the following compound?							
	$\frac{C\ell}{H,C}C = C < \frac{CH_2CH_3}{I}$							
l	(1) cis-2-chloro-3-iodo-2-pentene							
1	(2) trans-2-chloro-3-ido-2-pentene							
	(3) trans-3-iodo-4chloro-3-pentene							
3	(4) cis-3-iodo-4-chloro-3-pentene							
62.	Keto-enol tautomerism is observed in:							
	o o							
	(1) $C_6H_5-C-CH_2-C-CH_3$ (2) $C_6H_5-C-C_6H_5$							
	0							
	(3) CH,CH ₂ C-OH (4) C ₆ H ₅ -C-H							
63.	Which of the following gases is mainly responsible for acid rain?							
	(1) NO ₂ and CO ₂ (2) CO ₂ and SO ₂							
	(3) SO ₂ and NO ₂ (4) None of these							
64.	Which of the following compound displays two singlets at $\delta_{2.3}$ and 7.1 ppm.							
	(1) 1, 2-dimethylbenzene (2) 1, 3-dimethyl benzene							
	(3) 1, 4-dimethyl benzene (4) methyl benzene							
65.	A single strong and sharp absorption near 1650 cm ⁻¹ in IR spectra indicates the presence of							
w:	(1) Acid chlorides (2) Amides							
	(3) Anhydrides (4) Aldehydes							
66.	The proteins in which prosthetic group is carbohydrate are known							
35 36	(1) Lipo-protein (2) Mucoprotein							
	(3) Chromoprotein (4) Nucleoprotein							
PHD/URS	PHD/URS-EE-2019-Chemistry-Code-C (14)							

Question No.	Questions					
67.	Match the List I and List II and select the correct answer using coorgiven below:					
		List I	List	t II		
	1	Nerol	A	Lemon grass oil		
	2	Citral	В	Geraniol		
	3	Pinol	C	Amyrin		
	4	Lupeol	D	α-pinene		
3	Cor	rect answer is:				
	(1)	1-C, 2-B, 3-A, 4-D	(2)	1-B, 2-A, 3-D, 4-C		
	(3)	1-D, 2-C, 3-A, 4-D	(4)	1-A, 2-D, 3-B, 4-D		
68.	Hyd	irolysis product of sucrose	is:			
9	(1)	Fructose	(2)	Glucose + Galactose		
	(3)	Glucose	(4)	Glucose + Fructose		
69.		mass spectrum of primar an Intense peak at m/z = 4	700 - 100 - 100 200	des shows a moderate molecular ion e to :		
	(1)	Loss of an alkyl radical	(2)	Loss of HCN		
	(3)	Loss of CO	(4)	Loss of methyl radical		
70.	Which one of the following is bacteriostatic drug?					
	(1)	Chloramphenicol	(2)	Penicillin		
	(3)	Streptomycin	(4)	Phenacetin		
71.	Heating 1, 4-dicarbonyl compounds in the presence of phosphoru pentoxide (P ₂ O ₅) gives:					
	(1)	Pyrrole	(2)	Furan ·		
	(3)	Thiophene	(4)	Quinoline		
72.	The	e Acetylation of thiophene	occurs	at:		
	(1)	C ₃ -position	(2)	C ₄ -position		
	(3)	C ₂ -position	(4)	both at C2 and C4-positions		
PHD/URS	S-EE-2	019-Chemistry-Code-C (15)	,		

Question No.	Questions					
73.	Pyridine is basic in nature having					
	(1)	pKa = 5.21	(2)	pKa = -0.27 pKa = -0.35		
	(3)	pKa = 5.81	(4)	pKa = -0.35		
74.	Least stable carbocation among the following is					
	(1)	(CH ₃) ₃ C ⁺	(2)	(CH ₃) ₂ CH ⁺		
•	(3)	CH ₃ CH ₂ +	(4)	CH ₃ ⁺		
75.	Due	to the presence of an unpa	aired	electron, free radicals are		
	(1)	Anions	(2)	Cations		
	(3)	Chemically reactive	(4)	Chemically inreactive		
76.	Benzoyl peroxide undergoes hamolytic cleavage to produce					
	(1)	Phenyl radical	(2)	Methyl radical		
Ì	(3)	Phenyl chloride	(4)	Methyl chloride		
77.	SN¹ mechanism for the hydrolysis of an alkyl halide involves the formation of intermediate					
ŀ	(1)	Free radical	(2)	Carbanion		
	(3)	Carbocation	(4)	None of these		
78.	Which of the following is NOT polar protic solvent?					
á	(1)	H ₂ O	(2)	C ₂ H ₅ OH		
190	(3)	Fumaric acid	(4)	Acetone		
79.	Ane	ew carbon-carbon bond form	natio	n is possible in		
	(1)	Clemmensen reduction	(2)	Wurtz reduction		
	(3)	Friedel-Craft alkylation	(4)	Oppenauer oxidation		

Question No.	Questions							
80.	Give the name of reaction given below:							
	$ \begin{array}{c} O \\ C-H \\ CH,-C \\ CH,-C \\ O \end{array} $ $ CH,COONa $ $ CH=CH-C-OH $							
	(1) Perkin reaction (2) Pechmann condensation							
	(3) Benzoin condensation (4) Claisen-Schmidt reaction							
81.	The molecule $(OC)_5M = CPh(OCH_3)$ obeys 18 electron rule. The two 'M' satisfying the condition are							
	(1) Cr, Re ⁺ (2) Mo, V							
	(3) V, Re ⁺ (4) Cr, V							
82.	The number of lines exhibited by a high resolution EPR spectrum of the species $[Cu(ethylenediamine)_2]^{2+}$ is [Nuclear spin (I) of copper is 3/2 and of N = 1]							
	(1) 12 (2) 15 (3) 20 (4) 36							
83.	Complexes of general formula, fac-[Mo(CO) ₃ (phosphine) ₃] have the C–O stretching bands as given below:							
	Phosphine: PF_3 (i); $PC\ell_3$ (ii); $P(C\ell)Ph_2$ (iii); PMe_3 (iv)							
	v(CO): in cm ⁻¹ : 2090 (a); 2040 (b); 1977 (c); 1945 (d)							
(35 4)	The correct combination of the phosphine and the stretching frequency is,							
	(1) (i-a) (ii-b) (iii-c) (iv-d) (2) (i-b) (ii-a) (iii-d) (iv-c)							
	(3) (i-d) (ii-c) (iii-b) (iv-a) (4) (i-c) (ii-d) (iii-a) (iv-b)							

(17)

Question No.	Questions						
84.	Which one of the following will NOT undergo oxidative addition by methy iodide?						
	(1) $[Rh(CO_2)I_2]$ (2) $[\eta^5-CpRh(CO)_2]$ (3) $[Ir(PPh_3)_2(CO)C\ell]$ (4) $[\eta^5-Cp_2Ti(Me)C\ell]$						
85.	C ₆₀ has						
00.	(1) 14 pentagon rings and 18 Hexagon rings						
	(2) 12 pentagon rings and 20 Hexagon rings						
	(3) 12 pentagon rings and 18 Hexagon rings						
	(4) 14 pentagon rings and 20 Hexagon rings						
86.	In 'carbon-dating' application of radioisotopes, 14C emits						
80.	(1) Positron (2) γ particle						
	(3) β particle (4) α particle						
87.	The product of the reaction of propene, CO and H ₂ in the presence of						
07.	Co ₂ (CO) ₈ as catalyst is						
	(1) butanoic acid (2) butanal						
	(3) 2-butanone (4) methylpropanoate						
88.	Reductive elimination step in hydrogenation of alkenes by Wilkinso catalyst results in (neglecting solvent in coordination sphere of Rh)						
	(1) T-shaped [Rh(PPh ₃) ₂ CI] (2) Trigonal-planar [Rh(PPh ₃) ₂ Cl]						
	(3) T-shaped [Rh(H)(PPh ₃) ₂] (4) Trigonal-planar [Rh(H)(PPh ₃) ₂]						
89.	The correct statement with respect to the bonding of the ligands, Mc ₃ N and Mc ₃ P with the metal ions Be ²⁺ and Pd ²⁺ is,						
	(1) the ligands bind equally strong with both the metal ions as they are dicationic						
	(2) the ligands bind equally strong with both the metal ions as both the ligands are pyramidal						
	(3) the binding is stronger for Me ₃ N with Be ²⁺ and Me ₃ P with Pd ²⁺						
	(4) the binding is stronger for Me ₃ N with Pd ²⁺ and Me ₃ P with Be ²⁺						

Question No.	Questions							
90,	In the iodometric titration of sodium thiosulfate ($Na_2S_2O_3$) with acidic dichromate solution, 25 mL of 0.1 M dichromate requires 50 mL of 'x' M thiosulfate. The value of 'x' is							
	(1) 0.6 (2) 0.3 (3) 0.1 (4) 0.4							
91.	The number of the lines in the ESR spectrum of CD ₃ is (the spin of D is 1)							
	(1) 1 (2) 3 (3) 4 (4) 7							
92.	Colligative properties are used for the determination of							
	(1) molar mass (2) equivalent weight							
	(3) arrangement of molecules (4) melting and boiling point							
93.	Which of the following does not contain a C ₃ axis?							
1	(1) $POC\ell_3$ (2) NH_4^+							
	(3) H_3O^+ (4) $C\ell F_3$							
94.	Franck Condon principle is related to							
	(1) time required for electronic transition to occur							
	(2) absorption of light							
	(3) time of electronic transition and change in internuclear distance							
	(4) symmetry of molecules							
95.	Which pairing of molecule and point group is correct?							
	(1) $\mathrm{BC}\ell_3$, C_{3v} (2) $\mathrm{SiC}\ell_4$, D_{4h}							
	(3) H_2S , C_{2v} (4) SF_4 , C_{4v}							
96.	The symmetric stretching mode of the SiF ₄ molecule:							
	(1) IR active							
	(2) IR inactive							
	(3) generates a change in molecular dipole moment							
2	(4) gives rise to a strong absorption in IR spectrum							

Question No.	Questions						
97.	Match the following columns:						
		LIST-1 LIST-2					
	1.	Sol				A.	Liquid dispersed in solid
	2.	Gel				B.	gas dispersed in liquid
	3.	Emuls	ion			C.	Solid dispersed in liquid
	4.	Foam				D.	liquid dispersed in liquid
	Cod	les					
	(1)	1-A	2-B	3-C	4-D		
	(2)	1-B	2-C	3-D	4–A		
	(3)	1-C	2-A	3–D	4-B		
	(4)	1-B	2–D	3–A	4-C		
98.	A h	eat eng	ine oper	rates b	etwee	n th	e boiling point of water and a room
		temperature of 25°C. The efficiency of the engine is largest, if water is					
		wed to l					· · · · · · · · · · · · · · · · · · ·
	(1)	1 atm.				(2)	10 atms
	(3)	25 atm	8		4	(4)	1.01 * 106 Nm ⁻²
99.	Monomer of Orlon is						
	(1)	$CH_2 = C$	CH-OCI	H_3		(2)	$CF_2 = CF_2$
	(3)	$CH_2 = 0$	CH – Cì	٧		(4)	$CH_2 = CH - C\ell$
100.	Chl	oropren	e is obta	ined b	y the a	ıddi	tion of HCl to
	(1)	ethyler	ıe			(2)	acetylene
	(3)	vinylac	etylene			(4)	phenylacetylene
	_						

(20)

