

ME - 16

Mechanical Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination :	OMR Answer Sheet N	0, :
Signature of the Candidate	Signatu	re of the Invigilator

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3 Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall
- 8 Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9 No part of the Booklet should be detached under any circumstances.
- 10 The seal of the Booklet should be opened only after signal/bell is given.

ME-16-A

MECHANICAL ENGINEERING (ME)

1. A system of homogeneous linear equations AX = 0 has a nontrivial solution if

 $(A) \quad \exists A \exists = -1 \qquad (B) \quad \exists A \exists \neq 0 \qquad (C) \quad \exists A \exists = +1 \qquad (D) \qquad \exists A \exists = 0$

2.						matrix A, then $2 + 3i$	0.00	d eigen value is 1/2	
3.	If $f(x)$ then C		-2) sati	sfy Lagrang	e Mea	n Value theor	em at c	in the interval [1.3].	
	(A)	3	(B)	1	(C)	2	(D)	0	
4.	If .τ =	$r\cos\theta$, $y=r$	sinθ, z	= z, then the	value	$\operatorname{col}\left(\frac{\partial l(x,x,z)}{\partial (x,\theta,z)}\right)=$			
	(A)	r [‡]	(B)	I r	(C)	$r \tan \theta$	(D)	E	
5.	If v =	$cx - c^3$ is the	general	solution of	the diff	erential equati	on		
	(A)	y'' - xy' - y	= ()		(B)	$\begin{aligned} (y + - y + y) &= 0 \end{aligned}$	y = (1		
	(C)	y = xy - y	=0		(D)	y'=t			
6.	The co	mplementary	functio	on of $y' - 2y$	+ x =	a e cosa is			
		$c_1\cos x + c_2\sin x$							
		$(c_1^{-} \chi + c_2^{-})e^{x}$			(D)	$(e^{i\gamma_{i}+\epsilon^{-1}}))\epsilon$			
7.	If X is	a Poisson di	stribute	d variable ar	$p(\lambda)$	$(=0) = \frac{1}{e^{\epsilon}}$, the	en the p	probability distribution	į
	function	V00-40-40							
	(A)	$\frac{e^{-2}}{x!}$	(B)	$\frac{e^{-3}}{v!}$	(C)	2'	(D)	$\frac{1}{x!}$	
8.		mean and va oility distribut		of a binomi	al disti	ribution are 4	and 3	respectively, then the	
	(A)	$C^{8}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)$	18 Y		(B)	$C_{\lambda}^{16} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{x}$)16-x		
	(C)	$C_{3}^{8}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)$	S = 1		(D)	$C_{3}^{46} \left(\frac{1}{4}\right)^{3} \left(\frac{3}{4}\right)^{4}$	(In)		
9.	One re	oot of the equi	ation f	$(x) = 2x^3 - 5$	x + 2 =	0 lies in the ir	nerval		
	(A)	(0.1)	(B) ((1.2)	(C)	(-1,0)	(D)	(-2, 0)	
Set -	A				2			MI	:

10.	The method of suc					1870 no 1971 term	
	1 > (x) (A)	(B)		(C)	$ \phi(x) > 0$	(D) $ \omega(x) \le 2$	
11.	Equilibrium of a ri resultant force syst	-	dy under a sys	tem o	f forces signif	ies the condition in w	nich the
	(A) Positive			(B)	Negative		
	(C) Zero				10 Sec. 25	e or Negative or Zero	
12.	The coefficient of maximum when th			arge si	tationary body	and a small moving	body is
	(A) static		,	(B)	about to com-	e to halt	
	(C) about to mov	e		(\square)	in uniform na	otion	
13.						olling without slippin out its instantaneous c	
	$(A) = 4 \text{ kg.m}^2$	(B)	3 kg.m ²	(C)	2 kg m²	(D) 1 kg m ²	
14.	acceleration after 2	second	ls is			1 by $V = 2t^3 - 3t^2$ mag	sec. Its
	(A) 8 m/s ²	(B)	15 m/s ²	(C)	21 m√s²	(D) 12 m/s ²	
15.	A gear wheel of p					acceleration of 6 rada	s². The
	(A) 6.0 rad/s ²	(B)	3.0 m/s ²	(C)	5.0 m/s ²	(D) 60 m/s ²	
16.	passing over a sm	ooth pi mass N	ulley. Mass m A is moving c	l lies	on smooth ho	d by a tight inextensible rizontal plane and materation of the system	ss M is
	(A) g			(C)	2g/3	(D) = 3g/2	
17.	with another body	of mass a sing em afte	s 10 kg movin le entity with or the collision	g in th same ?	e same directi velocity after	frictionless surface. It on at 5.5 m/s. Both the collision. What is to	e bodies
18.	The state of stress	at a poi	nt in an elastic	body	is a		
	(A) Scalar (B) Vector	•					
	(C) Tensor(D) Any of the al	oove de	pending on the	e shap	e of the body		
Set -				3	, and		ME
CALL.	**			•			

17.	 (A) Stiffness is directly proportional to flexibility. (B) Stiffness is inversely proportional to flexibility. (C) Stiffness is equal to flexibility (D) Stiffness and flexibility are not related. 									
20.	In a shaft under pure torsion the shear stress is given as 100 MPa. The principle stresses are (A) $+100$, -100 (B) $+50$, -50 (C) 0, 100 (D) $+200$, -200									
21.	Pick the incorrect statement from the following four statements: (A) On the plane which carries maximum normal stress, the shear stress is zero. (B) Principle planes are mutually orthogonal. (C) On the plane, which carries maximum shear stress, the normal stress is zero. (D) The principle stress axes and principle strain axes coincide for an isotropic material.									
22.	A cantilever beam is subjected to a couple at its free end. Labeling BM for Bending Moment and SF for shear force. (A) In any part of the beam BM is Constant and SF is Zero. (B) In any part of beam SF is Constant and BM is Zero. (C) SF varies linearly and BM has parabolic variation. (D) BM varies linearly and SF has parabolic variation.									
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subjected to transverse load parallel to Y-axis. The width of the beam measured parallel to Z-axis is double the thickness measured parallel to Y-axis. The neutral axis of the beam is parallel to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y axis.									
24.	A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft such that the outer diameter D_0 remains some as that of the solid shaft and inner diameter D_1 is one fourth of the outer diameter (ie. D_1 =0.25 D_0). Rest of the variables remains unaltered. The stiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$									
25.	A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The number of degrees of freedom for the mechanism is (A) 0 (B) 1 (C) 2 (D) -1									
26.	In a special Grashoff's four bar mechanism the input and output links are equal and longer while the coupler and fixed links are equal and shorter. When both the input and output links are perpendicular to the fixed link the velocity ratio is									
	$(A) \le 0$ $(B) > 1$ $(C) = 1$ (D) Infinity									
Set -	A ME									

£1.	An open chain plantal mechanism has one turning pair and one shoring pair. A stender link rotates at N rpm with respect to the fixed link while the shder reciprocates along the axis of the slender link with a velocity of V m/sec. The Coriolis acceleration of the sliding link is									
	(A) 0	(B)	2NV	(C)	π NV/30	(D)	π NV/15			
28.	In a mechanical sy prime mover. Keep same mass as the o speed will be (A) Reduced to 2 (C) Remains san	ing eve original 25 %	erything same	the fly ble the (B)	wheel is repla	aced by ne coef 100 G	another one	having the		
29.										
30,	In a single cylinder becomes maximum (A) Minimum (C) Either Minim	and th	e magnitude (of the s (B)	econdary unb Maximum	alance	d force will b	96		
31.	Minimum number engaging with a get (A) 32	ar whee		ber of	teeth must be		en e	lute pinion		
32.	In an automobile v wheels are 60 rpm (A) 60 rpm (C) 62 rpm			ely. Tl (B)		е стом	n wheet will			
33.										
34.	An undamped simple position the net for (A) Zero (C) Opposite to the	ce on th	ne bob is	(B)	In the directi			at its mean		
35.	A spring mass dan damping ratio?				ē.T	n and	K = 4 N/m.	What is the		
	(A) I	(B)	0.25	(C)	2	(D)	0.5			
Set -	A			5				ME		

ου,	A spring mass damper system has $M = 1$ kg, $C = 2$ twisecom and $K = 9$ from what is the magnification factor when the excitation frequency is 2 rad/sec? (A) 1 (B) Infinity (C) 2 (D) 0.5
37.	An automobile travels on a rough road whose profile can be approximated as a harmonic curve with amplitude of 0.1 m and wavelength 10 m/sec, when the vehicle travels along the road with a velocity of 10 m/sec. Modeling this as a support motion problem what is the excitation frequency?
	(A) π rad/sec (B) 2π rad/sec (C) 10π rad/sec (D) 20π rad/sec
38.	A slender shaft supported in short bearings has a critical speed N rpm. When the short bearings are replaced with long bearings the critical speed will be $(A) N \qquad \qquad (B) 2 \; N \qquad \qquad (C) 4 \; N \qquad \qquad (D) N/2$
39.	In the design of machine components if the factor of safety is increased it leads to the reduction in
	(A) Size (B) Cost (C) Induced Stress (D) All the above.
40,	A component made of brittle material subjected to pure shear fails (A) by yielding when $\tau_{max} = S_{yi}$ (B) by tracture when $\tau_{max} = S_{yi}/2$ (C) by fracture when $\tau_{max} = S_{mi}/2$ (D) by yielding when $\tau_{max} = S_{mi}/2$
41.	The relationship between notch sensitivity factor (q), theoretical stress concentration factor (k _i) and fatigue (or) form stress concentration (k _i) is given by
	(A) $q = \frac{k_i}{k_i}$ (B) $q = \frac{k_i - 1}{k_i - 1}$ (C) $q = \frac{k_i - 1}{k_i - 1}$ (D) $q = \frac{k_i + 1}{k_i + 1}$
42.	For the combination of radial load and thrust load the best bearing among the following is (A) Needle bearing (B) Spherical roller bearing (C) Cylindrical roller bearing (D) Journal bearing
43.	Effect of increasing stiffness of springs in a centrifugal clutch leads to (A) Increase in speed of engagement (B) Increase in friction torque at maximum speed (C) Decrease the effort for disengagement (D) All the above
44.	A brake is said to be self-energizing when (A) External force is not necessary to operate the brake (B) Huge external force is required to disengage the brake (C) The breaking force and the friction force induce moment in the same direction (D) The breaking force and the friction force induce moment in opposing directions
45.	A double fillet welded joint with parallel fillet weld of length L and leg a is subjected to a tensile force P. Assuming uniform stress distribution, the shear stress in the weld is (A) $(\sqrt{2} \text{ P})/\text{aL}$ (B) $P/\sqrt{2} \text{ aL}$ (C) P/aL (D) $2P/\text{aL}$
Set -	A ME

40.	ART	ary does not wer	t the glass. This is	auc w	me property or	ruie aquie, known as	
	(A)	Cohesion		(B)	Surface tensio	n	
	(C)	Adhesion		(D)	Viscosity		
47.	A flu	iid in equilibrium	r can't sustain				
	(A)	Shear stresses		(B)	Tensile stresse	28	
	(C)	Compressive str	resses	(D)	Bending stress	ses	
					100 ECONOCCE CO 1000		
48.	Choo	se the wrong sta	itement				
	(A)	Viscosity of the	fluid is that prope	erty w	hich determine	s the amount of its resistan	ce
		to a shearing for					
	(B)	Viscosity of liqu	uids decreases with	incre	ase in temperat	lure.	
			primarily to intera				
	(D)	Viscosity of the	liquid is apprecial	dy aff	ected by chang	e in p re ssure.	
49,	Whe	n a body floating	in a liquid, is disp	laced	slightly then it	oscillates about	
	(A)	Center of pressu	ure	(B+	Center of buo	yark y	
	(C)	Meta center		(I)	Gravitational	center	
50.	In a	free vortex motio	on, the radial comp	onent	of velocity ever	rywhere is	
	(A)	Zero (B) Maximum	(C)	Minimum	(D) Non-zero and finite	
51.	The	velocity profile fo	or turbulent flow 11	arough	ra closed condi	UIU IS	
	(A)	Linear (B) Parabolic	(C)	Hyperbolic	(D) Logarithmic	
52.		10.10.75	ation is caused by	the			
		Adverse pressui	The state of the s				
			essure gradient to				
			thickness reducing	105,000 000			
	(D)	Reduction of pr	ressure to vapour p	ressur	2.		
225	220		0.02				
53.		temperature in isc					
		Depends on Ma					
			t depends on Mach		er		
			d on Mach number				
	(D)	Can't say					
23		v					
54.			ig is not a dimensi			COST COMPANY DE LA COSTA DEL COSTA DE LA COSTA DEL COSTA DE LA COSTA DEL COSTA DEL COSTA DE LA COSTA DEL COSTA DE LA COSTA DELA COSTA DE LA COSTA DE LA COSTA DE LA COSTA DE LA COSTA DE L	
		Euler number			Fanning fricts		
	(C)	Specific gravity		(D)	None of the al	bove	
55.	1 5	ace of matel of	enseitie areasite 7	flour	in management	f smooth armin 12.6 Wh	1025
23,		ion of it will und		TIOHS	in mercury 0	f specific gravity 13.6. Wh	Icil
			B) About 0.6	(C)	About 0.5	(D) About 0.65	
ALTERNA TO	_	the second section of			CASE NO SCHOOL STATE AT		2000
Set -	A			7		Ŋ	dΕ.

- 50. According to kinetic theory of gases, the absolute zero temperature can be attained when
 - (A) Volume of gas is zero
- (B) Kinetic energy of molecules is zero
- (C) Specific heat of gas is zero
- (D) Mass is zero
- 57. Which of the following is correct ?
 - (A) Only gases have two values of specific heat.
 - (B) Both gases and liquids have two values of specific heat.
 - (C) Specific heat value is constant irrespective of state of substance.
 - (D) Only liquids have two values of specific heat.
- A heat exchange process in which product of pressure and volume remains constant is known as
 - (A) Adiabatic process

(B) Throttling process

(C) Isentropic process

- (D) Hyperbolic process
- 59. The absolute temperature of an ideal diatomic gas is quadrupled. What happens to the average speed of molecules?

(A) Quadruples

(B) Doubles

(C) Triples

- (D) Increases by a factor of 1.41
- 60. A 1 kg block of ice at 0 °C is placed into a perfectly insulated, sealed container that has 2 kg of water also at 0 °C. The water and ice completely till the container, but the container is flexible. After some time one can except that
 - (A) The water will freeze so that the mass of the ice will increase.
 - (B) The ice will melt so that the mass of the ice will decrease.
 - (C) Both the amount of water and the amount of we will remain constant.
 - (D) Both the amount of water and the amount of ice will decrease
- 61. Which of the following is correct?
 - (A) Both Stirling and Ericson cycle are reversible.
 - (B) Both Stirling and Ericson cycle are irreversible.
 - (C) Neither Stirling and Ericson cycle are reversible.
 - (D) Stirling cycle is reversible and Ericson cycle is irreversible.
- 62. Read the following Statements:
 - (i) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle combustion is at constant volume.
 - (ii) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle maximum temperature is higher.
 - (iii) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle heat rejection is lower.
 - (A) Only (i) is correct
- (B) Both (i) and (iii) are correct
- (C) Only (iii) is correct
- (D) Both (ii) and (iii) are correct.

Set - A 8 ME

- 05. Read the following statements.
 - (i) Thermal conductivity of air with rise in temperature increases.
 - (ii) Thermal conductivity of non-metallic amorphous solids with decrease in temperature decreases.
 - (iii) Thermal conductivity of solid metals with rise in temperature normally increases.
 - (A) All (i), (ii) and (iii) are correct
- (B) Only (i) and (iii) are correct
- (C) Only (ii) and (iii) are correct
- (D) Only (i) and (ii) are correct
- 64. The concept of overall heat transfer coefficient is used in heat transfer problem of
 - (A) Conduction and convection
- (B) Conduction and radiation
- (C) Convection and radiation
- (D) Conduction, convection and radiation
- 65. Which of the following statement is correct pertaining to thermal diffusivity.
 - (A) It is a function of temperature
 - (B) It is inversely proportional to thermal conductivity
 - (C) It is property of material
 - (D) It is a dimensionless parameter
- 66. In free convection heat transfer transition from lammar to turbulent flow is governed by the critical value of the
 - (A) Prandtl number, Grashoff's number
 - (B) Reynold's number, Grashoff's number
 - (C) Reynold's number. Prandtl number
 - (D) Reynold's number
- 67. The by-pass factor for a cooling coil
 - (A) May increase or decrease with increase in velocity of air passing through it depending upon the condition of air entering.
 - (B) Decreases with increase in velocity of air passing through it.
 - (C) Increases with increase in velocity of air passing through it.
 - (D) Remains unchanged with increase in velocity of air passing through it.
- 68. Which of the following statement is correct?
 - (A) The minimum temperature to which water can be cooled in a cooling tower is wet bulb temperature
 - (B) The minimum temperature to which water can be cooled in a cooling tower is dew point temperature of air.
 - (C) The minimum temperature to which water can be cooled in a cooling tower is ambient temperature of air.
 - (D) The minimum temperature to which water can be cooled in a cooling tower is dry bulb temperature of air.

Set - A 9 ME

09. Stamon number is defined as

- (A) The ratio of Prandtl number and the product of Nusselt number and Reynold's number.
- (B) The ratio of Prandtl number and the product of Nusselt number and Raleigh's number.
- (C) The ratio of Reynold's number and the product of Nusselt number and Prandtl number.
- (D) The ratio of Nusselt number and the product of Reynold's number and Prandtl number.
- The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius
 - (A) Decreases

(B) Increases

(C) Constant

(D) May increase or decrease

- 71. Which of the following statements is correct?
 - (A) High value of Prandtl number indicates Rapid heat transfer by forced convection to natural convection.
 - (B) High value of Prandtl number indicates Rapid diffusion of momentum by viscous action compared to diffusion of energy
 - (C) High value of Prandtl number indicates relative heat transfer by conduction to convection.
 - (D) High value of Prandtl number indicates relative heat transfer by radiation to convection.
- 72. Which of the following is not true pertaining to four stroke internal combustion engine.
 - (A) Because of one power stroke in two revolutions, lesser cooling and lubrication requirement, thus lesser rate of wear and tear compared to two stroke cycle engine
 - (B) High initial cost compared to two stroke cycle engine
 - (C) Volumetric efficiency lesser compared to two stroke cycle engine, due to less time available for induction.
 - (D) Part load efficiency is better than two stroke cycle engine.
- 73. Mechanical efficiency of the internal combustion engine is defined as
 - (A) Ratio of indicated work to the energy supplied by the fuel.
 - (B) Ratio of shaft work obtained to the energy supplied by the fuel.
 - (C) Ratio of power obtained at the shaft to the indicated power.
 - (D) Ratio of power obtained at the shaft to the actual volume inhaled during suction stroke.
- 74. Read the following Statements:
 - (i) Regenerative cycle thermal efficiency is always greater than simple Rankine cycle.
 - (ii) The maximum percentage gain in Regenerative feed heating cycle thermal efficiency, increases with more number of feed heaters.
 - (iii) In a regenerative feed heating cycle, the optimum value of fraction of steam extracted for feed heating decreases with increase in Rankine cycle efficiency.
 - (A) Only (i) and (ii) are correct
- (B) Only (i) and (iii) are correct
- (C) All above statements are correct. (D) Only (ii) and (iii) are correct.

12.	The work output of theoretical Otto cycle
	(A) Increases with increase in adiabatic index
	(B) Decreases with increase in pressure ratio
	(C) Decreases with increase in compression ratio
	(D) None of the above
76.	The overall efficiency of a reaction turbine is the ratio of
	(A) Work done on the wheel to the energy (or head of water) actually supplied to the turbine
	(B) Actual work available at the turbine to the energy imparted to the wheel
	(C) Power produced by the turbine to the energy imparted to the wheel
	(D) Power produced by the turbine to the energy actually supplied by the turbine
77.	Any change in load is adjusted by the adjusting the following parameter on turbine
	(A) Blade velocity (B) Flow
	(C) Net head (D) Relative velocity at the inlet
78.	The specific speed of a turbine is the speed of an imaginary turbine, identical with the
	given turbine, which
	(A) Develops unit power under unit head (B) Delivers unit discharge under unit head
	(C) Delivers unit discharge under unit speed
	(D) Develops unit power under unit speed
79.	Choose the wrong statement
15.5.5	(A) Energy is said to be degraded each time it flows through a finite temperature
	difference.
	(B) To increase work capacity of energy transferred by heat transfer from high
	temperature to low temperature, temperature difference should be increased.
	(C) The actual work which a system does is always less than the reversible work.
	(D) None of the above.
80.	Freezing temperature of water decreases with
	(A) None of the following (B) Increases or decreases with pressure
	(C) Decrease in pressure (D) Increase in pressure

81. Alloy steel which is work hardenable and which is used to make the blades of buildozers, bucket wheel excavators and other earth moving equipment contain iron, carbon and (A) Chromium (B) Silicon (C) Manganese (D) Magnesium

82. During tensile testing of a specimen using universal testing machine, the parameters actually measured include

(A) True stress and true strain

(B) Poisson's ratio and Young's modulus

(C) Engineering stress and engineering strain

(D) Load and elongation

Set - A 11 ME.

ð3.	meating the hypo-eutectoid steels to 50 °C above the upper critical temperature line, soaking at the temperature and then cooling slowly to room temperature to form a pearlite and ferrite structure, is known as							
	(A) Hardening (B) Normalizing	(C)	Tempering	(D) Annealing				
84.	In case of power screws, what is the cor (A) Cast iron screw and mild steel nut (B) Carbon steel screw and phosphor (C) Cast iron screw and cast iron nut (D) Aluminium screw and alloy steel	bronze		s used for the screw and nut				
85.	Vibration damping in machinery is be which one of the following material?	st ach	ileved by mea	ns of base structure made of				
	(A) Low carbon steel		Nodular iron					
	(C) Grey east iron	(1)	White east ire	M				
86.	Gray cast iron blocks $200 \times 100 \times 1$ allowance for pattern making is 1 % casting will be			-				
	(A) 0.97 (B) 0.99	(C)	1.01	(D) 1.03				
87.	Bottom gating system is some times pre (A) It enables rapid filling of mould ex (B) It is easier to provide in the mould (C) It provides cleaner metal (D) It reduces splashing and turbulence Misrun is a casting defect which occurs (A) A very high pouring temperature of (B) Insufficient fluidity of the molten (C) Absorption of gases by the liquid (D) Improper alignment of the mould	avity l due to of the metal metal	metal	nu se				
89.	Which of the following are produced by							
	(A) Hollow castings with thick walls							
90.	 (C) Thin castings Which one of the following processes of through a number of radial gates (A) Centrifuging (C) True centrifugal casting 	consis (B)	Thick custing ts of central sp Semi-centrifu Precision cast	rue to seed metal into cavities				
91.	In rolling a strip between two rolls, the	positi	on of the neutr	al point in arc of contact does				
	not depends on							
	(A) Amount of reduction		Diameter of r					
	(C) Coefficient of rolls		Materials of r					
Set -		12		MF				

94.		en die jorgu barreling effe							SSCU WITHOUT
		1.986							
93.		operation in- vn as	which (oil is pen	nieated into	the pore	s of powd	er metallur	gy product is
	(A)	0.97	(B)	0.99	(C)	1.01	(D)	1.03	
			r		1 2 V		-	W.	1.
94.	Whi	ch one of the	followi	ng manuti	acturing pro	ocesses rec	quires the	provision o	guiters
	(A)	closed die fo investment (orging		(D)	centring	at casting		
	(C)	nivestment	asting		(12)	impact e	AHUSIOH		
95.	The	collapsible to	oth pas	te tubes ar	re manufact	ured by			
		direct extrus				piercing			
	(C)	impact extru	ision			indirect s	Mrusion		
		3.1.							
96.	In w	hich one of th	e follo	wing weld	ling techniq	ues 18 Vac	uum envir	onnient is r	equired?
	(A)	Ultrasonic v Plasma are v	velding		(B)	Laser be	am weldin	g	
	(C)	Plasma are v	velding		(1))	Electron	beam wel	ding	
97.	High	alloy steel co		mle ara nr	aliastad had	Service of Le	n - Ese r di		
9/.		heat affected			(B)		100mg 100mg 100mg 100mg 100mg	100 C C C C C C C C C C C C C C C C C C	
		total time of				welding		прими	
	1-1	rotta filite of		0	1.	., ., ., .,			
98.	Whie	ch one among	the fol	lowing w	elding proc	esses uses	non-cons	umable elec	trode !
	(A)	Gas metal a Gas tungste	rc weld	ing 🔪	(B)	Submerg	ed arc we	lding	
	(C)	Gas tungste	n arc w	elding	(D)	Fluxzon	ted are we	lding	
0.0							anno persono con		
99.		type of coated							
	(E)	Cellulose	(D)	Actore	(C)	Kume	(1))	Oxide	
100	The	strength of a	brazed	iount					
100.	(A)	10 12 to 1			n between t	he ioining	surfaces		
		increases wi							
		decreases up					-		it increases
		increases up							
5502819	1022	50: 977	40	VI NE 15 E				1212 9	20101 00
101.									. If the chip
		ness is 0.75 r 1.33 m/sec							
	(.4)	L.SS HUSEC	(D)	_ mysec	(17)	2.0 HVSC	(D)	5 HV Sec	
102	The	percentage of	total ei	nergy diss	inated due	lo friction	at the too	chin interf	ace 15
	(A)	5 1 1 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(B)		(C)			70	1144
	12.50 (5.5%)	24 89		N 175	0.000	E003	1,000	7 (2)233	
103.	The	indexing of th	ne turre	in a sing	le spindle la	the is dor	ne using		
	(A)	Geneva med	chanism	6	(B)	Ratchet a	and Pawl r	nechanism	
	(C)	Rack and pi	nion m	echanism	(D)	Whit wo	rth mecha	nism	
Set -	A				13				ME

104.	origina	l. The Taylor	's tool	life index is	-			: to one touring	n the
	$(A)^{-1}$.	2	(B)	1/3	(C)	ľμ	(D)	1/7	
105.		of freedom.		the value of 'r		2004-01-01-01-01-01-01-01-01-01-01-01-01-01-	restrict	the work piece	in 'n'
106.	of the h	iole is indica	ted by					position of tole	rance
107.		etter G gle measuren				Number 7 lowing pair car		Number 8 ed in conjunction	with
						bevel protract sine bar and b		137 35 3550	
108.	the bor then the limit of	e are 25.00 e upper limit the bore in r	mm ar is 25 mm is	nd 25.021 res 033 mm. Wh	pectry en the	ely. When the bore is design	bore is sated as	(maximum) lims designated as 2 25H6, then the	25HN.
	(A) 2	2.001	(B)	25,005	(()	25,009	(I):	25 1113	
109.	(A) C	ometric toler: oncentricity erpendicular			(B)	latum for its sp Run out Flatness	eciticat	ion is	
110.	with pi	tch of 2 mm.	The ba	asic length un	it for t			es drives a lead 100 microns	screw
111.	(A) S (B) S (C) In	imultaneous imultaneous	contro contro ontrol	pes on CNC 1 Lot x, y, z axes lof x, y axes of x, y, z axes of x, y axes	25	nes requires			
112.	(A) a (B) a (C) fo	set of grid po set of grid co our bounding	oints o ontrol j curve	face we requi n the surface points s defining sur s and a set of g	face	ontrol points			
113.	(A) a (B) o (C) p	ne-off produ roduction wi	ction i ction o th simi	suitable for n large volum f several varie dar features m ucts in large v	eties iade in				
Set -	A				14				ME

114.	if the demand for an item is doubled a quantity	ша ш	e ordering cost naived, the economic order				
	(A) remains unchanged	(B)	increased by factor of 2				
	(C) is doubled	$\langle \mathbf{D} \rangle$	is halved				
115.	carrying cost of ₹ 100 unit-year. If the	stock	units, ordering cost of ₹ 100 order, and out costs are estimated to be nearly ₹ 400 safety stock justified by the carrying cost				
	(A) 4 (B) 20	(C)	40 (D) 100				
116.	Vehicle manufacturing assembly line is	an exa	ample of				
	(A) Product layout	(B)	Process layout				
	(C) Manual layout		Fixed layout				
	1						
117.	Production flow analysis (PFA) is a m from	iethod	of identifying part families that uses data				
	(A) Engineering drawings	(B)	Production schedule				
	(C) Bill of materials	(1)	Route sheets				
8002020			12 (20 EQ. 2012 VIII) (27 E				
118.	A component can be produced by any of the four processes, I. II. III and IV. Process I has fixed cost of ₹ 20 and variable cost of ₹ 3 per piece. Process II has fixed cost of ₹ 50 and variable cost of ₹ 40 and variable cost of ₹ 2 per piece. Process IV has fixed cost of ₹ 10 and variable cost of ₹ 4 per piece. If company wishes to produce 100 pieces of the component, from economic point of view it should choose. (A) Process I. (B) Process II. (C) Process III. (D) Process IV.						
119.	A dummy activity is used in PERT netw	ork to	describe				
			Necessary time delay				
	(C) Resource restriction		Resource idleness				
	**************************************	Melok	999900000000000000000				
120.	The project activities, precedence relati The critical path of the project is	onship	ps and durations are described in the table.				

	100	Activity	Precedence	Duration (in day)
		P		3
	-	Q	-	4
	1	R	P	5
	15	S	Q	5
		T	R. S	7
	100	T.	R. S	5
	**	V	T	2
		W	ſ.	10
(A)	P-R-T-V	(B) Q-S	-T-V (C) P	-R-U-W (D) Q-S-U-W

Set - A 15 ME

SPACE FUR ROUGH WURK

