Set No. 1

Question Booklet No.

03922

17P/216/22 (i)

_	(To b	e filled u	p by the c	andidate b	y blue/bluck l	ell-point p	(n)	
Roll No.								
Serial No.				*************	2017		4	F

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-paint pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigitators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the cornect option of the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in but cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Anner Sheet at the end of the Tour
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपकुषत निर्देश हिन्दी में अन्तिम आवरण वृद्ध पर दिये गए हैं।]

SEAL

ROUGH WORK एक कार्य

Mic. Zoology code No (484)

20子 17P/216/22 (i)

No. of Questions: 120

Time: 2 Hours	Full Marks: 360
•••••	

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted
question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 01. Which type of cleavage occurs in most of the protostomes?
 - (1) Radiel

(2) Bilateral

(3) Spiral

- (4) Elliptical
- 02. Which of the following echinoderms resembles the ancestral from?
 - (1) Sea star

(2) Sea lily

(3) Sea urchin

- (4) Sand dellar
- 03. Larva of gastropoda is:
 - (1) Trochophore

(2) Veliger

(3) Nauplius

- (4) Plateus
- 04. The larva of crustaceans are called as:
 - (1) Trochophore

(2) Pluteus

(3) Naupilus

(4) Veliger

Whi	ch class of phylum Cnidaria	lacks	a medusa stage is :					
(1)	Hydrazoa	(2)	Anthozoa					
(3)	Scyphozoa	(4)	None of the above					
Hol	othuria is :	(*)						
(1)	Biradial symmetrical	(2)	Radial symmetrical					
(3)	Bilateral symmetrical	. (4)	Spherical symmetrical					
Pala	aemon has:							
(1)	(1) 18 pairs of appendages							
(2)	19 pairs of appendages							
(3)	20 pairs of appendages							
(4)	21 pairs of appendages		•.					
A cr	nidocyte is a specialized cell	which	helps in :					
(1)	Digesting food	(2)	Sensing light					
(3)	Capturing food	(4)	Circulating water					
Wh	ich stage of liver fluke is infe	ctious	to human ?					
(1)	Sporocyst	(2)	Metacercaria					
(3)	Cercaria	(4)	Redia					
Wh	ich of the following is respire	atory or	gan of crustaceans?					
(1)	Book gills	(2)	Book lungs					
(3)	Gills	(4)	Tracheae					
	(1) (3) Hol (1) (3) (1) (2) (3) (4) (3) (4) (1) (3) (1) (3) (1) (3) (1) (1)	 Hydrazoa Scyphozoa Holothuria is: Biradial symmetrical Bilateral symmetrical Palaemon has: 18 pairs of appendages 19 pairs of appendages 20 pairs of appendages 21 pairs of appendages 21 pairs of appendages 21 pairs of appendages Capturing food Capturing food Which stage of liver fluke is infection. Sporocyst Cercaria Book gills 	(3) Scyphozoa (4) Holothuria is: (1) Biradial symmetrical (2) (3) Bilateral symmetrical (4) Palaemon has: (1) 18 pairs of appendages (2) 19 pairs of appendages (3) 20 pairs of appendages (4) 21 pairs of appendages (4) 21 pairs of appendages (5) A cnidocyte is a specialized cell which (1) Digesting food (2) (3) Capturing food (4) Which stage of liver fluke is infectious (1) Sporocyst (2) (3) Cercaria (4) Which of the following is respiratory or (1) Book gills (2)					

11.	Nec	pilina is a							
	(1)	Connecting link between arthropods and annelids.							
	(2)	Connecting link between annelids and molluscans							
	(3)	Connecting link between	een plan	ts a	nd animals				
	(4)	Connecting link betw	een arth	ropo	ods and molluscans				
12.	Thi	rd chamber in the ston	nach of a	run	ninant mammal is :				
	(1)	Abomasum		(2)	Rumen				
	(3)	Omasum	٠.	(4)	Reticulum				
13.	In r	man, the deciduous set	of teeth	inc	ludes :				
	(1)	(1) 8 incisors, 4 canines, 8 molars							
	(2)	(2) 8 incisors, 4 canines, 8 premolars							
	(3)	(3) 8 incisors, 4 canines, 4 premolars molars, 4 molars							
	(4)	8 incisors, 2 canines,	10 mola	·					
14.		which of the following	g anime	ıls :	notochord does not persist				
	(1)	Branchiostoma		21	Myxine				
	(3)	Dollohum		(4)	Ichthyophis				
15.	Hepatic portal system is present in all								
	(1)	Amniotes only	. ((2)	Amniotes and Anamniotes				
	(3)	Anamniotes only	•	4	Fishes only				
	.0.12	•	5	•	P.T.O.				
	188	(***		DC12					

16.	Cen	trum, pre and post zyga	pophysis, tr	ansverse Process are parts of :
	(1)	Skull of frog		
	(2)	Vertebrae of frog		20
	(3)	Sternum of frog		
	(4)	Pectoral girdle of frog		
17.				lacks ear pinnae, lays eggs,
	pos	sesses functional mamn	nary glands	and toothless horny beak?
	(1)	Pteropus	(2)	Salpa
	(3)	Delphinus	(4)	Omithorhychus
18.	The	cranial nerves, Branch	ialis innerv	ate gills in fishes and are the
	bra	nch of:		
	(1)	Glossopharyngeal	(2)	Vagus
	(3)	Trigeminal	(4)	Abducens
19.	Sca	les arranged in overlapp	oing manne	r having posterior margin with
	teet	th are:		
	(1)	Placoid	(2)	Ganoid
	(3)	Cycloid	(4)	Ctenoid

20.	Whi	ch one of the following ma	mmal is	cursorial in	habit ?
	(1)	Horse	(2)	Bat.	
	(3)	Whale	(4)	Mole .	
21.	The	ear ossicle 'Stapes' in mar	n is home	ologous to :	(*)
	(1)	Articular	(2)	Hyomandit	oular
	(3)	Quadrate	(4)	None	•
22.	ln ä	mammal like rat, dorsal a	orta give	out a pair of	arteries supplying
	bloc	od to diaphragm. Which of	the follow	wings is that	artery?
	(1)	Anterior mesentery	(2)	Phrenic	
	(3)	Posterior mesentery	(4)	Iliac	•
23.	If a	cell contains 23 pairs of	chromos	ómes just a	fter completion of
	mit	otic telophase, how many o	hromatid	s were prese	nt in metaphase?
	(1)	23	(2)	46	*
-	(3)	92	(4)	184	
24.	The	membrane phopholipids	orm bilay	er, when we	ter is available on
	bot	h sides, due to :			•
	(1)	Its amphipathic nature			
	(2)	Presence of unsaturated	fatty acid	ls	d .
	(3)	Presence of saturated an	d unsatu	rated fatty a	cids in its tail
	(4)	Presence of cholesterol a	long with	phospholip	ids
		4			

25.	In	hybridization	experiments,	high	stringency	washing	means,
	wa	shing in preser	nce of :				

- (1) Low salt concentration and high temperature
- (2) High salt concentration and high temperature
- (3) High salt concentration and low temperature
- (4) Only water

26. The most important cell type associated with immunity of the body is:

(1) Platelets

(2) Lymphocytes

(3) RBCs

(4) Neutrophils

27. Polysomes are many:

- (1) Ribosomes attached to an individual mRNA
- (2) Chain of nuclesomes forming chromatin
- (3) Several hysosomes fusing during phagocytosis
- (4) Centrosomes clustering during mitotic division

28. Which one of the following organelles is rich in acid hydrolases?

- (1) Lysosomes
- (2) Golgi complex
- (3) Peroxisomes
- (4) Rough endoplasmic reticulum

29.	Which of the	e following	chromosome	will have	highest	DNA	content?	

- (1) Satellite chromosomes
- (2) X-chromosome
- (3) Lampbrush chromosomes
- (4) Polytene chromosomes
- 30. If an object is viewed under a compound microscope in the following conditions: Wavelength of light used = 500 nm; Refractive index of medium = 1; Angular aperture Sin 70° = 0.94, the limit of resolution will be:
 - (1) Approximately 230 nm
 - (2) Approximately 330 nm
 - (3) Approximately 430 nm
 - (4) Approximately 30 nm
- 31. The fuels for Krebs cycle occurring in mitochondria are:
 - (1) amino acids and nucleosides
 - (2) nucleic acids and monopeptides
 - (3) pyruvate and fattyacids
 - (4) pyramidine and phospholipids

P.T.O.

- 32. What will happen if a lysosome is ruptured in side a cell?
 - (1) All the organelles of the cell will get digested
 - (2) The lysosomal enzymes wil get inactivated due to non acidic pH of cytoplasm
 - (3) The lysosomal proteins will get transported back to other lysosomes
 - (4) The individual will get inclusion cell disease
- 33. Due to mutation one amino acid may get replaced by another amino acid. Such mutations are termed as
 - (1) Nonsense mutation
 - (2) Missense mutation
 - (3) Frame shift mutation
 - (4) In frame mutation
- 34. A human baby born with a short, fleshy tail protruding from the base of the spine is an example of:
 - (1) Elongated vertebral column
 - (2) Atavism
 - (3) Edward's syndrome
 - (4) Placental infection

35.	The	first ancestral mamma	ls belong to						
•	(1)	Morganucodontidae	(2)	Theropods	•				
	(3)	Balacnopteridae	(4)	Tarsiidae					
36.	For	an advantageous trait	having very	low or no heritabil	ity, what is				
	the	probability that it will i	selected	in the evolutionary	process?				
	(1)	High	(2)	Intermediate	•				
	(3)	Low	(4)	Almost none	,				
37.	Ger	etic drift play an impor	tant role in	:	÷				
	(1)	Large population							
	(2)	Small population .							
	(3)	Bottleneck population	ı		•				
,	(4)	Both 2 and 3		•					
38.	Dive	ersification of a small gro	oup of ances	stral species into a la	age number				
	of descendant species that occupy a wide range of ecological niches								
	is known as :								
•	(1)	Genetic drift	(2)	Migration					
	(3)	Gradualism	(4)	Niche selection	•				
,		· -,	11		P.T.O.				

39.	The increase in body size with decrease in average temperature in								
	case	case of warm blooded animals is stated by:							
	(1)	Bergmann's rule	(2)	Wallace's rule					
	(3)	Spencer's rule	(4)	Allen's rule					
40.	The first fossilized evidence of cells are microfossils of :								
	(1)	Prokaryotic cells in stromate	olites						
	(2)	Prokaryotic cells in Allochth	onous	Si .					
	(3)	Acritarchs							
	(4)	Ediacaran fossils							
41.	According to Darwinism, which of the following can evolve and hence,								
	forn	orms the unit of evolution :							
	(1)	Chromosome	(2)	Gene					
	(3)	Population	(4)	Individual					
42.	Which of the following individuals have the greatest fitness?								
	(1) An individual who is homozygous for sickle-cell anemia living in a malaria – free area of the world								
*	(2)	 An individual who is heterozygous for a sickle-cell trait living an a malaria-infested area 							
	(3)	An individual who is homozygous for sickle-cell anemia living in							
		a malaria-infested area							
	(4)	An individual not carrying a mutation for sickle-cell anemia living							
		in a malaria-infested area .							

43. According to Hardy-Weinberg theory, p² + 2pq =

(1) 100

(2) $1 - g^3$

(3) q^{2}

(4) 1

44. According to "Out of Africa" theory, which of the following human species migrated out of Africa?

- (1) Homo habilis and Australopithecus
- (2) Homo erectus and Homo habilis
- (3) Homo erectus and Homo sapiens
- (4) Homo sapiens and Homo near der the lensis

45. Which characteristic was selected for in the earliest primates to allow them to become successful in their environment?

- (1) Prehensile fingers and toes
- (2) Bipedalism
- (3) Cranial capacity
- (4) Ability to migrate

P.T.Q.

- 46. Which one of the following characteristics of an axon is most dependent on its diameter?
 - (1) The magnitude of its resting potential
 - (2) The duration of its refractory period
 - (3) The conduction velocity of its action potential
 - (4) The activity of its sodium-potassium pump
- 47. The amount of force produced by a skeletal muscle can be increased by :
 - (1) Increasing extracellular Mg2+
 - (2) Decreasing extracellular Ca2+
 - (3) Increasing the concentration of acetylcholinesterase
 - (4) Decreasing the interval between contractions
- 48. Connexin is an important component of:
 - (1) Gap junction
 - (2) Sarcoplasmic reticulum
 - (3) Microtubule
 - (4) Synaptic vesicle

49.	Proj	pagation of the action potentia	d thro	ough the heart is fastest in the
	(1)	SA node	(2)	Atrial muscle
	(3)	Purkinje fibres	(4)	AV node
50.	Dur	ing exercise, there is an incre	ease i	n a person's :
	(1)	Diastolic pressure	- 53	
	(2)	Stroke volume		
	(3)	Venous compliance	٠,	
	(4)	Pulmonary arterial resistance	e	
51.	Puls	se pressure increases when :		
	(1)	Heart rate increases		
	(2)	Stroke volume decreases		
	(3)	Mean arterial pressure incre	ases	•
	(4)	Aortic compliance increases		
52.	Vol	tage gated K+ channel is inhib	ited l	y:
	(1)	Tetradotoxin	(2)	Triethanolamine
	(3)	Saxitoxin	(4)	Both 1 and 3
				*

	(1)	Opening cGMP coupled	Na* chan	nel
	(2)	Closure of Na+-K' ATPas	se	
	(3)	Closure of 5'-GMP coup	led Na+ ch	annel
	(4)	Increase in the glutama	te release	
54.	Rem	oval of the N-terminal Va	ıl (Asp) ₄ Ly	s activates :
	(1)	Trypsinogen		
	(2)	Chymotrypsinogen		
	(3)	Pepsinogen		
	(4)	Procarboxypeptidase		
55.	H+-K	C ATPase in parietal cells	s can be in	hibited by:
	(1)	Ranitidine	(2)	Cimetidine
	(3)	Opemprazole	(4)	Ouabain
56.	Stin	nulation of which one of	the follow	ing groups of neurons in the
	resp	iratory centre stimulates l	both inspir	atory and expiratory muscles?
	(1)	DRG	(2)	VRG
	(3)	both 1 and 2	(4)	Broca's neurons

53. During scotopic vision, rod cells are activated by:

57.	Neb	Nebulin is associated with the structure of:								
	(1)	Z line		(2)	Tick filament	,				
	(3)	Myosin head	•	(4)	Thin filaments					
58.	12	se titration of which of	the foll	owin	g -amino acids wi	ll yield 3 pK				
	(1)	Ser		(2)	Asp					
	(3)	Val		(4)	Met					
59.	Dis	ulphide bond in a prot	ein is g	ener	ated between :					
	(1)	Met - Met		(2)	Met - Cys					
	(3)	Cys - Cys		(4)	Met - Thr					
60.	In a	protein, Helix-köp-he	lix den	otes	:					
	(1)	Tertiary structure								
	(2)	Quaternary structure	2	jot.						
	(3)	Structural motif								
	(4)	Supercoiled unit								
	PR1	• •				8				
61.		kinetic pattern of a	11.							
		centration of an inhibit				out declined				
	Vm	Vmax value, Identify nature of the inhibitor used:								
	(1)	Uncompetitive	**	(2)	Non-competitive					
	(3)	Competitive		(4)	Mixed type					
			47							
		9 9				P.T.O.				

- 62. Formation of lariat configuration is associated with:
 - (1) Initiation of translation
 - (2) Poly A tailing of mRNA
 - (3) Splicing of mRNA
 - (4) Termination of transcription
- 63. Degeneracy of genetic codes indicates for
 - (1) Degradation of codons
 - (2) Inconsistency of codons
 - (3) More than one codons for a single amino acid
 - (4) One codon for more than one amino acids
- 64. Aminoacyl-tRNA-synthetase is utilized for
 - (1) Splicing of a tRNA
 - (2) Charging of a tRNA
 - (3) Synthesis of a tRNA
 - (4) Degradation of a tRNA
- 65. A cDNA is constructed from:
 - (1) A double stranded DNA
 - (2) A single stranded DNA
 - (3) A rRNA
 - (4) A mRNA

66.	Which of the following hormone is used to indna labour in human							
	fem	ales?	*					
	(1)	Vasopressin		(2)	Prolactin			
	(3)	Oxytocin	•	(4)	Sometotropin			
67.	If o	ver production of	growth horn	one i	s initiated early in life; i	t leads		
	to:	•	6			27.		
	(1)	Acromegaly		(2)	Dwarlism			
	(3)	Gigantism		(4)	Myxedema			
68.	Sup	erior hypophysial	artery form	s sec	ondary plexus in :			
	(1)	pars distalis				10		
9	(2)	Pars tuberalis			1974			
	(3)	Pars intermedia	•					
	(4)	Pars nervosa			•			
			- Company Pietr					
69.	Whi	ich hormone of the	e pars distal	is sho	ws increased secretion (luring		
	stre	88 ?						
	(1)	ACTH	e entre	(2)	STH			
	(3)	FSH	٨	(4)	LH .			
				-				
			19		1	P.T.O.		

70.	Androgen binding protein (ABP) is secreted by:						
	(1)	Leydig cells	(2)	Myoid cells			
	(3)	Germ cells	(4)	Sertoli cells			
71,	Ovu	lation takes place durin	g which sta	age of the estrous cycle?			
	(1)	Metestrus .	(2)	Proestrus			
	(3)	Estrus	(4)	Diestrus			
72.	Addison's disease is associated with patho- physiology of:						
	(1)	Thyroid gland	(2)	Pituitary gland			
	(3)	Pineal gland	(4)	Adrenal gland			
73.	Inh	ibin exerts negative feed	back action	n on :			
	(1)	STH	(2)	FSH			
	(3)	TSH	(4)	LH .			
74.	Prec	cursor amino acid for th	yroid horm	one synthesis is :			
	(1)	Alanine	(2)	Threonine			
	(3)	Tyrosine	(4)	Tryptophan			

7 5.	Cal	Calcitonin is derived from which of the following gland?							
	(1)	Parathyroid	(2)	Pituitary					
	(3)	Thyroid	(4)	Pincal					
76.	Wh	ich cell is not found in	islets of La	ngerhans ?					
	(1)	A cell	(2)	B cell	3				
*	(3)	C cell	(4)	D cell					
77.	Нур	ophysectomy refers to	removal of	:					
	(i)	Hypothalamus	(2)	Pineal gland					
	(3)	Pituitary gland	(4)	Thyroid gland					
	(1) (2) (3) (4)	second set of genes cification of Drosophila Gap genes Pair rule genes Segment polarity generations Homeotic selector generations	during earl	y embryonic dev	posterior axis				
79.	Dur: entir	ing gastrulation the n e embryo is known as	novement of	ectodermal cells	to cover the				
	(1)	Delamination	(2)	Invagination					
	(3)	Ingression	(4)	Epiboly					
			21		D T C				

80.	Fast block to polyspermy is accomplished by:									
	(1)	Changes in membrane pote	ential							
	(2)	(2) Cortical rotation								
	(3)	(3) Cortical reaction								
	(4)	Acrosomal reaction								
81.	Acrosomal vesicle in mature sperm is derived from:									
	(1)	Endoplasmic reticulum	(2)	Golgi complex						
	(3)	Lysosome	(4)	Mitochondria						
82.	Mar	mmalian oocyte is:								
	(1)	Alecithal	(2)	Isolecithal						
	(3)	Centrolecithal	(4)	Telolecithal						
83.	A transparent model system which revolutionized studies on developmental biology after Drosophila is :									
	(1)	Dictyostelium discoidium	(2)	Sea urchin						
	(3)	Caenorhabditis elegans	(4)	Xenopus						
84.	Maı	mmalian genome has :								
	(1) Two HOX complexes, ANT-C and BX-C									
	(2)	(2) Four HOX complexes, HOXA, HOXB, HOXC and HOXD								
	(3)	One complex namely HOM	-c							
	(4)	Variable number of comple	xes in	different species						
				*						

85. In mammals the primary sex is not determined by :

- (1) X-autosome ratio
- (2) SRY gene
- (3) Presence of Y-Chromosome
- (4) SOX9

86. Teratogens are:

- (1) Endogenous metabolites that cause birth defects
- (2) Exagenous agents that cause birth defects
- (3) Exogenous agents causing cancer
- (4) Used to cure birth defects '

87. The term 'epimorphosis' is used for :

- (1) Regenerations where dedifferenciation of adult structures followed by redifferentiation occurs
- (2) Regenerations where only re-patterning of the existing tissue occurs
- (3) The differentiation of epithelial tissue
- (4) Mid blastula transition

88. Bones and cartilages of our body develops from :

- (1) embryonic ectoderm
- (2) embryonic mesoderm
- (3) embryonic endoderm
- (4) ecto-endodermal transition

89.	The thickened ectodermal tissue in limb bud which stimulates and						
	guides the mesenchymal cells to form limb is known as:						
	(1)	Primary organizer	(2)	Limb mesnchyme			
	(3)	Zone of polarizing acivity	(4)	Apical ectodermal ridge			
90.	Whi	ch one of the following shows a	one-	way passage in an ecosystem?			
	(1)	Free energy	(2)	Carbon .			
	(3)	Nitrogen	(4)	Potassium			
91.	The	area of heaviest use within th	ne ho	me range is known as :			
	(1)	Busy area	(2)	Heavy area			
	(3)	Core area	(4)	Shell area			
92.	Acid	l rain is due to increase in at	mosp	heric concentration of:			
	(1)	Ozone and dust	(2)	CO2 and CO			
•//	(3)	SO ₂ and CO	(4).	SO ₂ and NO ₂			
93.	Whi	ch one of the following is the	corre	ect sequence in a food chain?			
	(1)) Grass → chameleon → insect → bird					
	(2)	Grass \rightarrow fox \rightarrow rabbit \rightarrow bi	rd				
	(3)	Phytoplankton -> zooplankt	ton –	• fish			
	(4)	Fallen leaves → bacteria →	insec	et larvae			

94	. Th	ne second trophic level	in a lake eco	system is:	
	(1)	Phytoplankton	(2)	Zooplankton	•
	(3)	Benthos	(4)	Periphyton	
95	. Th	e Taj Mahal is threate	ned due to th	e,effect of :	
	(1)		(2)		
	(3)	Chlorine	(4)	Sulphur dioxide	
96.	Mi	namata discase in Japa	n was cause	d through the pollution o	f water
	by	•			
	(1)	Mercury	(2)	Methyl isocyanate	
	(3)	Lead	(4)	Cyanide	
97.	An	inventory of all behavi	oural pattern	s of a species is known	· · · · ·
	(1)	Ethogram	(2)	Actogram	es an .
	(3)	Actigraphy	(4)	Ethography	
8.	An ind	innate behaviour patt	ern that is s	stereotyped, spontaneou	s and
	(1)	Fixed action pattern			
	(2)	Stereotype pattern			
	(3)	Social pattern			
	(4)	Individual pattern	***		•
			10		

99.	A biological rhythm of about 24 hours' duration is known as:						
	(1)	Circalunar rhythm	(2)	Circatidal rhythm			
	(3)	Circadian rhythm	(4)	Circannual rhythm			
100				ot followed by any form of			
	rein	forcement is known as:					
	(1)	Fatigue	(2)	Sensory block			
	(3)	Habituation	(4)	Learning			
101	. A pl	neromone which produce initiation of a mounting s	an imme	diate motor response, such as			
	(1)	Priming pheromone	(2)	CALL TRANSPORT AND THE STREET CONTRACTOR			
	(3)	Specific pheromone	(4)	Signaling pheromone			
102	.A sc	cientific name contains in	formation	about its:			
	(1)	Family and Species					
	(2)	Genus and Species					
	(3)	Phylum and Order					
	(4)	Class and Family					
103	3.A d	ichotomous key is used t	o:				
	(1)	Locate an organism					
	(2)	Identify an organism					
	(3)	Divide a kingdom					
	(4)	Interbreed species					

104. Which of the following	name is written	according to	trinominl	pattern
of nomenclature?			: 9	

- (1) Drosophila bipectinata, Duda
- (2) Musca nebula
- (3) Drosophila melanogaster
- (4) Corvus splendens splendens

105. The term 'tautonym' stands for :

- (1) Same generic and species name
- (2) Different genus and species name
- (3) Same species and subspecies name
- (4) A species without any race
- 106. Which of the following species concept considers morphological features of animals to distinguish a species?
 - (1) Typological

(2) Ecological

(3) Evolutionary

- (4) Biological
- 107. A taxonomic level concerned with the characterization and naming of species is known as:
 - (1) Alpha taxonomy
 - (2) Beta taxonomy
 - (3) Gamma taxonomy
 - (4) Omega taxonomy

P.T.O.

- 108. A gradual geographic change of a character im a series of contiguous populations is known as :
 - (1) Continuous variation
 - (2) Phylogenetic variation
 - (3) Clinal variation
 - (4) Discontinuous variation
- 109. Which species concept advocates that "Only individuals exist while species are abstractions created by people:
 - (1) Typological species concept
 - (2) Nominalistic species concept
 - (3) Biological species concept
 - (4) Evolutionary species concept
- 110. Biological species concept gives emphasis mainly on :
 - (1) Geographical isolation
 - (2) Morphological features
 - (3) Phylogenetic relationships
 - (4) Reproductive relationships

- 111. Which of the following is a correct match of the animal with its taxonomic group?
 - (1) Chelicerata-Tape worm; Cestoda-Horse shoe crab; Echinoidea-Sea urchins; Cephalopoda- Octopus
 - (2) Chelicerata Horse shoe crab; Cestoda Tape worm; Echinoidea
 Sea urchins; Cephalopoda Octopus
 - (3) Chelicerata Horse shoe crab; Cestoda Octopus; Echinoidea Sea urchins; Cephalopoda Tape worm
- (4) Chelicerata Tape worm; Cestoda Octopus; Echinoidea Sea urchins; Cephalopoda - Horse shoe crab
- 112. In Linean hierarchy Family comes between :
 - (1) Order and Tribe
 - (2) Class and Order
 - (3) Phylum and Class
 - (4) Genus and Species
- 113. The silk glands of Bombyx mori are modified:
 - (1) Scent glands
- (2) Heroid's gland
- (3) Salivery glands
- (4) Prothoracic glands
- 114. The Pebrine disease of silk worm is caused by :
 - (1) Nosema bombycis
- (2) Exorista bombycis
- (3) Labia arachidis
- (4) Nosema cerranae

			1 mont 2		
115. Whic	h of the following is a	n agricultura	pest ?		
(1)	Apis Indica				
(2)	Locusta migratoria				
(3)	Laccifer lacca	2 . 3			
(4)	Coccinella septempu	nctata			
116. Polle	n basket is present o	n:			
(1)	Fore leg	(2)	Middle 1	127	
(3)	Hind leg	(4)	Abdome	n	
117. Whi	ch of the following lac	ks sting in h	oney beer	n colony?	
(1)	Queen	(2)	Workers		
(3)	Drone	(4)	None	*	
			_		
118. Indi	an Institute of Natura		Gums:	.1	
(1)	Ranchi	(2)	Bhuvne		
(3)	Raipur	(4)	Mirzapu	ır	
119. Ale	uritic acid is				
(1)	Amino acid			,	
(2)	Fatty acid				
(3)	A fatty acid obtaine	d from shellad	by sapo	nification	
(4)	None				
			on host t	rees for lac in	sect?
120.In	India, which is not th	e most comm	OII HOSE C	1000	
(1)					
(2)	Ber (Ziziphus Mau				
(3)	Kusum (Schleicher	a oleosa)			
(4)					
		Malestan			600
		30	4		

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठीं पर केवल नीली-काली बाल-प्याइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देंकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांकः और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुधित साधन का प्रयोग माना जायेगा।
- प्रध्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिवे गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिवे गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल औ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

