GGSIPU mathmatics 2011

1. Let $f\left(x=a x+b, a<0\right.$, then $f^{-1} x=f x, \quad \forall x$ if and only if
$a \mathrm{a}=\mathbf{- 1}, \mathrm{b} \in \mathrm{R}$
b $a=-1, b=4$
c $a=-3, b \in R$
d None of these
2. The domain of $\cos ^{-1} \frac{x-3}{2}-\log _{10} 4-x$ is
a 1,4
b [1,4
c 1,4]
d $[1,4]$
3. If $f(x$ is a polynomial function of the second degree such that $f-3=6, f(0=6$ and $f(2=11$, then the graph of the function fx cuts the ordinate $\mathrm{x}=1$ at the point
a 1,8
b 1,4
c $1,-2$
d None of these
4. Let A and B be two sets, then $A \cup B^{\prime} \cap A^{\prime} \cap B$ is equal to
a A^{\prime}
b A
c B^{\prime}
d None of these
5. The mean of 10 observations is 16.3 . By an error one observation id is registered as $\mathbf{3 2}$ instead of
6. Then ,the correct mean is
a 15.6
b 15.4
c 15.7
d $\quad 15.8$
7. Mean deviaof $6,8,12,15,10,9$ through mean is
a 10
b $\quad 2.33$
c 2
d None of these
8. The image of the point 2,1 w.r.t. the line $x+1=0$ is
a 2,5
b 0,5
c $-\mathbf{4 , 1}$
d $-2,-3$
9. The value of x which satisfies $8^{1}+\cos x+\cos ^{2} x+\ldots=64$ in $[-\pi, \pi]$ is
a $\pm \frac{\pi}{2}, \pm \frac{\pi}{3}$
b $\pm \frac{\pi}{3}$
b $\pm \frac{\pi}{2}, \pm \frac{\pi}{6}$
d $\pm \frac{\pi}{6}, \pm \frac{\pi}{3}$
10. If $d=\lambda a \times b+\mu b \times c+v c x a$ is equal to and $[a b c]=1 / 8$, then $\lambda+\mu+v$
a d. a+b+c
b 2d.a+b+c
c 4d. $a+b+c$
d $8 \mathrm{~d} . a+b+c$
11. The area of the triangle formed by the points whose position vectors are $\mathbf{3 i}+\mathbf{j}, 5 \mathbf{i}+\mathbf{2 j} \mathbf{+ k}, \mathbf{i}-\mathbf{2 j + 3 k}$ is
a $\sqrt{23}$ sq units
b $\sqrt{\mathbf{2 1}} \mathrm{sq}$ units
c $\sqrt{\mathbf{2 9}}$ sq units
d $\sqrt{\mathbf{3 3}}$ sq units
 perpendicular to both the lines are
a $\left(\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)$
b $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
c $\left(-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
d $\quad\left(\frac{2}{\sqrt{14}},-\frac{1}{\sqrt{14}},-\frac{3}{\sqrt{14}}\right)$
12. The length of the normal to the curve $y=a \cosh \left(\frac{x}{a}\right)$ at any point varies as
a ordinate
b abscissa
c square of the abscissa
d square of the ordin ate
13. The slope of the tangent to the curve $y=\int_{0}^{x} \frac{d x}{1+x^{3}}$ at the point where $x=1$ is
a 1
b $1 / 2$
c 1 d None of these
14. If $f\left(x=\operatorname{alog}_{e}|x|+b x^{2}+x\right.$ has extremum at $x=1$ and $x=3$, then
a $a-3 / 4, b=-1 / 8$
b $a=3 / 4, b=-1 / 8$
c $a=-3 / 4, b=1 / 8$
d None of the aovive
15. In the expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{n}, \mathrm{n} \in \mathrm{N}$, if the sum of the coefficient of x^{5} and x^{10} is 0 , then n is
a 25
b 20
C 15
d None of these
16. Let z_{1}, z_{2} be two roots of the equation $z^{2}+a z+b=0, z$ being complex number. Further assume that the origin, z_{1} and z_{2} form an equiliateral triangle. Then,
$a a^{2}=b$
$b a^{2}=2 b$
$c a^{2}=3 b$
d $a^{2}=4 b$
17. A square is inscribed in the circle $x^{2}+y^{2}-2 x+4 y-3=0$ with its sides parallel to the coordinate axes. One vertex of square is
a 3,4
b 3, -4
c 8, -5
d $-8,5$
18. If $f: R \rightarrow R$ is continuous such that $f(x+y=f x \quad+f(y, \quad \forall x, y \in R$ and $f(1=2$, then $f(100$ equals to
a 100
b 50
c 200
d 0
19. $\mathrm{fx}=\mathrm{x} \sin \frac{1}{x}$ is
a continuous but not differentiable at $x=0$
b discontinuous but differentiable at $\mathrm{x}=0$
c differentiable at $\mathbf{x}=\mathbf{0}$
d can not be determined
collegedunia
20. $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2}-b c & b^{2}-c a & c^{2}-a b\end{array}\right|$ equals to
a 0
b 1
c abc
da -bbecc -a
21. The sum $\cos 1^{0}+\cos 2^{0}+\cos 3^{0}+\ldots+\cos 179^{\circ}+\cos 180^{\circ}$ is equal to
a 0
b 1

C -1
d 2
22. If a, b, c are in GP and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{x}}$, then x, y, z are in
a AP
b GP
c HP
d None of these
23. If A is a square marix such that $A^{2}=I$, then A^{-1} is equal to
a 1
b 0
c A
d I+A
24. $5^{\text {th }}$ term from the end in the expansion of $\left(\frac{x^{2}}{2}-\frac{2}{x^{2}}\right)^{12}$ is
a $-7920 x^{-4}$ b 7920x ${ }^{4}$
c 7920x ${ }^{4}$ d $-7920 x^{4}$
25. Which of the following is not a logical statement?
a 8 is less than 6
b every set is a finite set
c Kashmir is far from here
d the sun is a star
26. $\tan ^{-1} 1+\tan ^{-2} 2+\tan ^{-2} 3$ is equal to
a 0 b π
C $\frac{\pi}{2}$
d None of these
27. $\int_{0}^{\infty} \frac{1}{1+e^{x}} \mathrm{dx}$ is equal to
a 0 b π
c $\log 2-1 \quad d \quad-\log 2$
28. If $|a|=8,|b|=3$ and $|a x b|=12$, then the value of $a . b$ is
a 6 or -6 b $12 \sqrt{3}$ or $-12 \sqrt{3}$
c 8 or $-8 \quad$ d None of these
29. The value of ${ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots+-1{ }^{n^{n}} C_{n}$ is
a 1
b 0
c 2^{n}
d n
30. Coefficient of variation of two distribution are 50% and 60% and their arithmetic means means are arithmetic means are 30 and 25 respectively. Difference of their standard deviation is
a 1
b 1.5
c 2.5
d 0
31. If I, j, k are the usual three perpendicular are the usual three perpendicular unit vectors then the value of $\mathbf{i . j x k})+\mathrm{j} . \mathrm{ixk})+\mathrm{k} . \mathrm{ixj}$ is
a 0
b -1
c 3
d 1
32. The solution of $y d x-x d y+\log x d x=0$ is
a $y-\log x-1=C x$
b $x+\log y+1=C x$
c $y+\log x+1=C x$
$d y+\log x-1=C x$
33. Which of the following differential equation has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution ?
a $\frac{d^{2} y}{d x^{2}}+y=0$
b $\frac{d^{2} y}{d x^{2}}-y=0$

C $\frac{d^{2} y}{d x^{2}}+1=0 \quad$ d $\quad \frac{d^{2} y}{d x^{2}}-1=0$
34. $\int \frac{1}{\sin (x-a) \sin (x-b)} d x$ is equal to
a $\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x+b)}{\sin (x+a)}\right|+C$
b $\quad \frac{1}{\sin (b+a)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|-C$
C $\quad \frac{1}{\sin (b+a)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C$
d None of the above
35. $\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}$ is equal to
a $\frac{1}{4}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+\mathrm{C}$
b $\frac{1}{2}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+\mathrm{C}$
C $\quad-\frac{1}{4}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+\mathrm{C} \quad$ - $-\frac{1}{2}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+\mathrm{C}$
36. If $\tan ^{-1} 2, \tan ^{-1} 3$ are two angles of a triangle, then the third angle is
a 30°
b $45{ }^{\circ}$
(c $60{ }^{\circ}$
d 75°
37. $\lim _{x \rightarrow 0}\left(\frac{16^{x}+9^{x}}{2}\right)^{1 / x}$ is equal to
a $25 / 2$
b 1212
$\begin{array}{ll}\text { (c) } 1 & \text { (d) } 1 / 4\end{array}$
38. Let $a=\min \left\{x^{2}+2 x+3, x \in R\right\}$ and $b=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}$. The value of $\sum_{r=0}^{n} a^{r} \cdot b^{n-r}$ is
a $\frac{2^{n+1}-1}{3 \cdot 2^{11}}$
b $\frac{2^{n+1}+1}{3.2^{n}}$
(c) $\frac{4^{n+1}-1}{3.2^{n}}$
(d) one of these
39. The matrix $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$ is a
a diagonal matrix
b symmetric matrix
c skew -symmetric matrix
d identity matrix
40. A teacher takes 3 children frpom her class to the $z o o$ at a time as often as she can, but she does not taker the same three children to the zoo more than once. She finds that she goes to the $\mathbf{z o o} \mathbf{8 4}$ times more that a particular child goes to the zoo. The number of children in her class is
a 12
b 10
c 60
d None of these
41. If $A=-3,4, B=-1,-2, C=5,6, D=x,-4$ are vertices of a quadrilateral such that $\triangle A B D=2 \Delta A C D$. Then, x is equal to
a 6
b 9
c 69
d 96
42. The area of the parallelogram formed by the points $1,1,1, \quad-1,5,5,2,2,5$ is
a 81
b 9
c 336
(d) 13
43. If $f\left(x=\frac{g^{x}}{9^{x}+3}\right.$, then $f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+\ldots+\left(\frac{2011}{2012}\right)$ is equal to
a 1005 b 1005.5
(c 1006 d 1006.5
44. $\sqrt{1-\sin ^{2}} \overline{101}^{0} . \sec 101^{0}$
a $0 \quad$ b 2
c | $\mathbf{- 1}$
(d)?
45. $\tan ^{-1}\left(\frac{1}{1+2}\right)+\tan ^{-1}\left(\frac{1}{1+(2)(3)}\right)$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{1+(3)(4}\right)+\ldots+\tan ^{-1}\left(\frac{1}{1+n(n+1)}\right)=\tan ^{-1} \theta \\
& \text { a } \frac{n}{n+1} \text { (1) } \frac{n+1}{n+2} \\
& \text { c } \frac{n+2}{n+1} \text { d } \frac{n}{n+2}
\end{aligned}
$$

46. If $A_{3 \times 3}$ and $\operatorname{det} A=6$, then $\operatorname{det} 2 \operatorname{adj} A$ is equal to
a 48
b 8
c 288
d 12
47. The probability that a leap year o0nly 52 Sundays is
a $\frac{4}{7}$
b $\frac{5}{7}$
C $\frac{6}{7}$
d $\frac{1}{7}$
48. If $\int \frac{2^{x}}{\sqrt{1-4^{x}}} \mathrm{dx}=\lambda \sin ^{-1} 2^{x}+C$, thern λ equals to
a $\quad \log 2$
b $\frac{1}{2} \log 2$

C $\frac{1}{2} \quad$ d $\frac{1}{\log 2}$
49. If If S is circumcenter, G the centroid, O the orthocenter of $\triangle A B C$, then $S A+S B+S C$ is equal to
a SG b OS
c SO d OG
50. The centre and redius of the sphere $\left.r^{2}-2 r 3 i+4 j-5 k\right)+1=0$ are
a $3 \mathbf{i}+4 \mathbf{j}-5 k, 1 \quad b \quad-3 i-4 j+5 k, 7$
c $-3 i-4 j+5 k, 7 \quad d \quad 3 i+4 j-5 k, 7$

